Fault Analysis of the Ntrusign Digital Signature Scheme
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Etsi Gr Qsc 001 V1.1.1 (2016-07)
ETSI GR QSC 001 V1.1.1 (2016-07) GROUP REPORT Quantum-Safe Cryptography (QSC); Quantum-safe algorithmic framework 2 ETSI GR QSC 001 V1.1.1 (2016-07) Reference DGR/QSC-001 Keywords algorithm, authentication, confidentiality, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. -
Protecting Public Keys and Signature Keys
Public-key cryptography offers certain advantages, providing the keys can be 3 adequately protected. For every security threat there must be an appropriate j countermeasure. Protecting Public Keys and Signature Keys Dorothy E. Denning, Purdue University With conventional one-key cryptography, the sender Consider an application environment in which each and receiver of a message share a secret encryption/ user has an intelligent terminal or personal workstation decryption key that allows both parties to encipher (en- where his private key is stored and all cryptographic crypt) and decipher (decrypt) secret messages transmitted operations are performed. This terminal is connected to between them. By separating the encryption and decryp- a nationwide network through a shared host, as shown in tion keys, public-key (two-key) cryptography has two at- Figure 1. The public-key directory is managed by a net- tractive properties that conventional cryptography lacks: work key server. Users communicate with each other or the ability to transmit messages in secrecy without any prior exchange of a secret key, and the ability to imple- ment digital signatures that are legally binding. Public- key encryption alone, however, does not guarantee either message secrecy or signatures. Unless the keys are ade- quately protected, a penetrator may be able to read en- crypted messages or forge signatures. This article discusses the problem ofprotecting keys in a nationwide network using public-key cryptography for secrecy and digital signatures. Particular attention is given to detecting and recovering from key compromises, especially when a high level of security is required. Public-key cryptosystems The concept of public-key cryptography was intro- duced by Diffie and Hellman in 1976.1 The basic idea is that each user A has a public key EA, which is registered in a public directory, and a private key DA, which is known only to the user. -
Secure Remote Password (SRP) Authentication
Secure Remote Password (SRP) Authentication Tom Wu Stanford University [email protected] Authentication in General ◆ What you are – Fingerprints, retinal scans, voiceprints ◆ What you have – Token cards, smart cards ◆ What you know – Passwords, PINs 2 Password Authentication ◆ Concentrates on “what you know” ◆ No long-term client-side storage ◆ Advantages – Convenience and portability – Low cost ◆ Disadvantages – People pick “bad” passwords – Most password methods are weak 3 Problems and Issues ◆ Dictionary attacks ◆ Plaintext-equivalence ◆ Forward secrecy 4 Dictionary Attacks ◆ An off-line, brute force guessing attack conducted by an attacker on the network ◆ Attacker usually has a “dictionary” of commonly-used passwords to try ◆ People pick easily remembered passwords ◆ “Easy-to-remember” is also “easy-to-guess” ◆ Can be either passive or active 5 Passwords in the Real World ◆ Entropy is less than most people think ◆ Dictionary words, e.g. “pudding”, “plan9” – Entropy: 20 bits or less ◆ Word pairs or phrases, e.g. “hate2die” – Represents average password quality – Entropy: around 30 bits ◆ Random printable text, e.g. “nDz2\u>O” – Entropy: slightly over 50 bits 6 Plaintext-equivalence ◆ Any piece of data that can be used in place of the actual password is “plaintext- equivalent” ◆ Applies to: – Password databases and files – Authentication servers (Kerberos KDC) ◆ One compromise brings entire system down 7 Forward Secrecy ◆ Prevents one compromise from causing further damage Compromising Should Not Compromise Current password Future passwords Old password Current password Current password Current or past session keys Current session key Current password 8 In The Beginning... ◆ Plaintext passwords – e.g. unauthenticated Telnet, rlogin, ftp – Still most common method in use ◆ “Encoded” passwords – e.g. -
Jeffrey Hoffstein Jill Pipher Joseph H. Silverman
Undergraduate Texts in Mathematics Je rey Ho stein Jill Pipher Joseph H. Silverman An Introduction to Mathematical Cryptography Second Edition Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, Canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale University, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, RI, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interre- lations among different aspects of the subject. They feature examples that illustrate key concepts as well as exercises that strengthen understanding. More information about this series at http://www.springer.com/series/666 Jeffrey Hoffstein • Jill Pipher Joseph -
NSS: an NTRU Lattice –Based Signature Scheme
ISSN(Online) : 2319 - 8753 ISSN (Print) : 2347 - 6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 4, Issue 4, April 2015 NSS: An NTRU Lattice –Based Signature Scheme S.Esther Sukila Department of Mathematics, Bharath University, Chennai, Tamil Nadu, India ABSTRACT: Whenever a PKC is designed, it is also analyzed whether it could be used as a signature scheme. In this paper, how the NTRU concept can be used to form a digital signature scheme [1] is described. I. INTRODUCTION Digital Signature Schemes The notion of a digital signature may prove to be one of the most fundamental and useful inventions of modern cryptography. A digital signature or digital signature scheme is a mathematical scheme for demonstrating the authenticity of a digital message or document. The creator of a message can attach a code, the signature, which guarantees the source and integrity of the message. A valid digital signature gives a recipient reason to believe that the message was created by a known sender and that it was not altered in transit. Digital signatures are commonly used for software distribution, financial transactions etc. Digital signatures are equivalent to traditional handwritten signatures. Properly implemented digital signatures are more difficult to forge than the handwritten type. 1.1A digital signature scheme typically consists of three algorithms A key generationalgorithm, that selects a private key uniformly at random from a set of possible private keys. The algorithm outputs the private key and a corresponding public key. A signing algorithm, that given a message and a private key produces a signature. -
Lattice-Based Cryptography - a Comparative Description and Analysis of Proposed Schemes
Lattice-based cryptography - A comparative description and analysis of proposed schemes Einar Løvhøiden Antonsen Thesis submitted for the degree of Master in Informatics: programming and networks 60 credits Department of Informatics Faculty of mathematics and natural sciences UNIVERSITY OF OSLO Autumn 2017 Lattice-based cryptography - A comparative description and analysis of proposed schemes Einar Løvhøiden Antonsen c 2017 Einar Løvhøiden Antonsen Lattice-based cryptography - A comparative description and analysis of proposed schemes http://www.duo.uio.no/ Printed: Reprosentralen, University of Oslo Acknowledgement I would like to thank my supervisor, Leif Nilsen, for all the help and guidance during my work with this thesis. I would also like to thank all my friends and family for the support. And a shoutout to Bliss and the guys there (you know who you are) for providing a place to relax during stressful times. 1 Abstract The standard public-key cryptosystems used today relies mathematical problems that require a lot of computing force to solve, so much that, with the right parameters, they are computationally unsolvable. But there are quantum algorithms that are able to solve these problems in much shorter time. These quantum algorithms have been known for many years, but have only been a problem in theory because of the lack of quantum computers. But with recent development in the building of quantum computers, the cryptographic world is looking for quantum-resistant replacements for today’s standard public-key cryptosystems. Public-key cryptosystems based on lattices are possible replacements. This thesis presents several possible candidates for new standard public-key cryptosystems, mainly NTRU and ring-LWE-based systems. -
Basics of Digital Signatures &
> DOCUMENT SIGNING > eID VALIDATION > SIGNATURE VERIFICATION > TIMESTAMPING & ARCHIVING > APPROVAL WORKFLOW Basics of Digital Signatures & PKI This document provides a quick background to PKI-based digital signatures and an overview of how the signature creation and verification processes work. It also describes how the cryptographic keys used for creating and verifying digital signatures are managed. 1. Background to Digital Signatures Digital signatures are essentially “enciphered data” created using cryptographic algorithms. The algorithms define how the enciphered data is created for a particular document or message. Standard digital signature algorithms exist so that no one needs to create these from scratch. Digital signature algorithms were first invented in the 1970’s and are based on a type of cryptography referred to as “Public Key Cryptography”. By far the most common digital signature algorithm is RSA (named after the inventors Rivest, Shamir and Adelman in 1978), by our estimates it is used in over 80% of the digital signatures being used around the world. This algorithm has been standardised (ISO, ANSI, IETF etc.) and been extensively analysed by the cryptographic research community and you can say with confidence that it has withstood the test of time, i.e. no one has been able to find an efficient way of cracking the RSA algorithm. Another more recent algorithm is ECDSA (Elliptic Curve Digital Signature Algorithm), which is likely to become popular over time. Digital signatures are used everywhere even when we are not actually aware, example uses include: Retail payment systems like MasterCard/Visa chip and pin, High-value interbank payment systems (CHAPS, BACS, SWIFT etc), e-Passports and e-ID cards, Logging on to SSL-enabled websites or connecting with corporate VPNs. -
11 Digital Signatures
This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996. For further information, see www.cacr.math.uwaterloo.ca/hac CRC Press has granted the following specific permissions for the electronic version of this book: Permission is granted to retrieve, print and store a single copy of this chapter for personal use. This permission does not extend to binding multiple chapters of the book, photocopying or producing copies for other than personal use of the person creating the copy, or making electronic copies available for retrieval by others without prior permission in writing from CRC Press. Except where over-ridden by the specific permission above, the standard copyright notice from CRC Press applies to this electronic version: Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying. c 1997 by CRC Press, Inc. Chapter 11 Digital Signatures Contents in Brief 11.1 Introduction :::::::::::::::::::::::::::::425 11.2 A framework for digital signature mechanisms ::::::::::426 11.3 RSA and related signature schemes :::::::::::::::::433 11.4 Fiat-Shamir signature schemes :::::::::::::::::::447 11.5 The DSA and related signature schemes ::::::::::::::451 11.6 One-time digital signatures :::::::::::::::::::::462 11.7 Other signature schemes ::::::::::::::::::::::471 11.8 Signatures with additional functionality ::::::::::::::474 11.9 Notes and further references ::::::::::::::::::::481 11.1 Introduction This chapter considers techniques designed to provide the digital counterpart to a handwrit- ten signature. -
A Study on the Security of Ntrusign Digital Signature Scheme
A Thesis for the Degree of Master of Science A Study on the Security of NTRUSign digital signature scheme SungJun Min School of Engineering Information and Communications University 2004 A Study on the Security of NTRUSign digital signature scheme A Study on the Security of NTRUSign digital signature scheme Advisor : Professor Kwangjo Kim by SungJun Min School of Engineering Information and Communications University A thesis submitted to the faculty of Information and Commu- nications University in partial fulfillment of the requirements for the degree of Master of Science in the School of Engineering Daejeon, Korea Jan. 03. 2004 Approved by (signed) Professor Kwangjo Kim Major Advisor A Study on the Security of NTRUSign digital signature scheme SungJun Min We certify that this work has passed the scholastic standards required by Information and Communications University as a thesis for the degree of Master of Science Jan. 03. 2004 Approved: Chairman of the Committee Kwangjo Kim, Professor School of Engineering Committee Member Jae Choon Cha, Assistant Professor School of Engineering Committee Member Dae Sung Kwon, Ph.D NSRI M.S. SungJun Min 20022052 A Study on the Security of NTRUSign digital signature scheme School of Engineering, 2004, 43p. Major Advisor : Prof. Kwangjo Kim. Text in English Abstract The lattices have been studied by cryptographers for last decades, both in the field of cryptanalysis and as a source of hard problems on which to build encryption schemes. Interestingly, though, research about building secure and efficient -
Elliptic Curve Cryptography and Digital Rights Management
Lecture 14: Elliptic Curve Cryptography and Digital Rights Management Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) March 9, 2021 5:19pm ©2021 Avinash Kak, Purdue University Goals: • Introduction to elliptic curves • A group structure imposed on the points on an elliptic curve • Geometric and algebraic interpretations of the group operator • Elliptic curves on prime finite fields • Perl and Python implementations for elliptic curves on prime finite fields • Elliptic curves on Galois fields • Elliptic curve cryptography (EC Diffie-Hellman, EC Digital Signature Algorithm) • Security of Elliptic Curve Cryptography • ECC for Digital Rights Management (DRM) CONTENTS Section Title Page 14.1 Why Elliptic Curve Cryptography 3 14.2 The Main Idea of ECC — In a Nutshell 9 14.3 What are Elliptic Curves? 13 14.4 A Group Operator Defined for Points on an Elliptic 18 Curve 14.5 The Characteristic of the Underlying Field and the 25 Singular Elliptic Curves 14.6 An Algebraic Expression for Adding Two Points on 29 an Elliptic Curve 14.7 An Algebraic Expression for Calculating 2P from 33 P 14.8 Elliptic Curves Over Zp for Prime p 36 14.8.1 Perl and Python Implementations of Elliptic 39 Curves Over Finite Fields 14.9 Elliptic Curves Over Galois Fields GF (2n) 52 14.10 Is b =0 a Sufficient Condition for the Elliptic 62 Curve6 y2 + xy = x3 + ax2 + b to Not be Singular 14.11 Elliptic Curves Cryptography — The Basic Idea 65 14.12 Elliptic Curve Diffie-Hellman Secret Key 67 Exchange 14.13 Elliptic Curve Digital Signature Algorithm (ECDSA) 71 14.14 Security of ECC 75 14.15 ECC for Digital Rights Management 77 14.16 Homework Problems 82 2 Computer and Network Security by Avi Kak Lecture 14 Back to TOC 14.1 WHY ELLIPTIC CURVE CRYPTOGRAPHY? • As you saw in Section 12.12 of Lecture 12, the computational overhead of the RSA-based approach to public-key cryptography increases with the size of the keys. -
(Not) to Design and Implement Post-Quantum Cryptography
SoK: How (not) to Design and Implement Post-Quantum Cryptography James Howe1 , Thomas Prest1 , and Daniel Apon2 1 PQShield, Oxford, UK. {james.howe,thomas.prest}@pqshield.com 2 National Institute of Standards and Technology, USA. [email protected] Abstract Post-quantum cryptography has known a Cambrian explo- sion in the last decade. What started as a very theoretical and mathe- matical area has now evolved into a sprawling research ˝eld, complete with side-channel resistant embedded implementations, large scale de- ployment tests and standardization e˙orts. This study systematizes the current state of knowledge on post-quantum cryptography. Compared to existing studies, we adopt a transversal point of view and center our study around three areas: (i) paradigms, (ii) implementation, (iii) deployment. Our point of view allows to cast almost all classical and post-quantum schemes into just a few paradigms. We highlight trends, common methodologies, and pitfalls to look for and recurrent challenges. 1 Introduction Since Shor's discovery of polynomial-time quantum algorithms for the factoring and discrete logarithm problems, researchers have looked at ways to manage the potential advent of large-scale quantum computers, a prospect which has become much more tangible of late. The proposed solutions are cryptographic schemes based on problems assumed to be resistant to quantum computers, such as those related to lattices or hash functions. Post-quantum cryptography (PQC) is an umbrella term that encompasses the design, implementation, and integration of these schemes. This document is a Systematization of Knowledge (SoK) on this diverse and progressive topic. We have made two editorial choices. -
PFLASH - Secure Asymmetric Signatures on Smartcards
PFLASH - Secure Asymmetric Signatures on Smartcards Ming-Shing Chen 1 Daniel Smith-Tone 2 Bo-Yin Yang 1 1Academia Sinica, Taipei, Taiwan 2National Institute of Standards and Technology, Gaithersburg, MD, USA 20th July, 2015 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 1/20 Minimalism Low power 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 Minimalism Low power No arithmetic coprocessor 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 Minimalism Low power No arithmetic coprocessor Minimalist Architecture 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 Minimalism Low power No arithmetic coprocessor Minimalist Architecture Little Cost 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 SFLASH In 2003, the NESSIE consortium considered SFLASH the most attractive digital signature algorithm for use in low cost smart cards. 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 3/20 SFLASH In 2003, the NESSIE consortium considered SFLASH the most attractive digital signature algorithm for use in low cost smart cards. Very Fast 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 3/20 SFLASH In 2003, the NESSIE consortium considered SFLASH the most attractive digital signature algorithm for use in low cost smart cards.