EFFECTS of RADIATION EXPOSURE on LUNG CARCINOGENESIS APPROVED by SUPERVISORY COMMITTEE Jerry W. S

Total Page:16

File Type:pdf, Size:1020Kb

EFFECTS of RADIATION EXPOSURE on LUNG CARCINOGENESIS APPROVED by SUPERVISORY COMMITTEE Jerry W. S EFFECTS OF RADIATION EXPOSURE ON LUNG CARCINOGENESIS APPROVED BY SUPERVISORY COMMITTEE ______________________________ Jerry W. Shay, Ph.D. Professor of Cell Biology ______________________________ David A. Boothman, Ph.D. Professor Simmons Cancer Center ______________________________ John D. Minna, M.D. Professor of Internal Medicine ______________________________ Michael D. Story, Ph.D. Associate professor of Radiation Oncology DEDICATION Dedicated to my lovely wife Nikki for all of her love and support. EFFECTS OF RADIATION EXPOSURE ON LUNG CARCINOGENESIS by OLIVER DELGADO DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas December, 2009 Copyright by OLIVER DELGADO, 2009 All Rights Reserved ACKNOWLEDGEMENTS I would like to acknowledge and thank first and foremost my mentors, Jerry Shay and Woody Wright. The complementarity of your distinctive thoughts and approaches provided me with an unparalleled environment to learn and mature as a young scientist. I would like to thank my thesis committee: Dr. David Boothman, Dr. John Minna, and Dr. Michael Story for their comments and support throughout the years. In addition, thank you to Dr. James Richardson who taught me to see the order within an H&E section. Thanks to all the current and former Shay/Wright lab members that have made my time in the lab both enjoyable and challenging. In particular, I would like to thank David Minna, Suzie Hight, Kimberly Batten, Erin Kitten, Phil Smiraldo, Andres Roig, Richard MacDonnell, Gail Marian, and Aadil Kaisani for their help and/or advice with one or all of my projects. Thank you to the entire UTSW NSCOR team; especially to those that ventured with me to the deep reaches of space (I mean Brookhaven National Laboratory). I would like to give a special thank you to my wife, Nikki. Without your love, patience, and support throughout these years I would have been lost. Last but definitely not least, I would like to acknowledge and thank my parents, Armando and Minervina Delgado. Everything I am and have achieved is due to you. v EFFECTS OF RADIATION EXPOSURE ON LUNG CARCINOGENESIS OLIVER DELGADO, Ph.D. The University of Texas Southwestern Medical Center at Dallas, 2009 JERRY W. SHAY, Ph.D. Lung cancer is one of the most prevalent forms of cancer in both men and women with over 1.3 million annual related deaths worldwide. Analysis of several human populations exposed to radiation reveals that the lung is remarkably susceptible to the carcinogenic effects of radiation exposure. The considerable lung surface area and slow rate of epithelial turnover may have causal roles in this vulnerability. This may be due to the increased probability vi vii that a progenitor cell of the lung, which is proposed to be the cancer-initiating cell, may acquire multiple carcinogenic alterations from radiation exposure. Currently, the lung is believed to have several facultative progenitor cells, situated throughout the lung epithelium, that are regionally restricted in their regenerative capacity. Normal human bronchial epithelial cells (HBECs), immortalized through the expression of Cdk4 and hTERT, provide a sustainable cell reagent for the evaluation of the radiation effects in vitro. These HBECs retain a novel multipotent capacity in vitro (capable of differentiating into both central and peripheral lung cell types) and thus may represent an unrestricted progenitor of the adult lung that resembles an embryonic progenitor. Studies to determine whether the differentiation state influences radiation exposure effects, such as DNA damage and repair, are ongoing. As cellular responses change upon the acquisition of oncogenic mutations, the effects of fractionated or acute radiation exposure on lung carcinogenesis in vivo were determined utilizing the transgenic LA1 K-ras mouse model of lung cancer compared to wildtype littermates. Radiation-induced carcinogenesis is a major concern not only for cancer patients being treated with therapeutic radiation but also for astronauts on long-term space missions. X-ray radiation did not affect the incidence or progression of lung carcinogenesis in this mouse model of lung cancer. High-energy 56Fe- particle irradiation (a type of radiation present in deep space), however, significantly increased the incidence of invasive carcinoma when administered as a viii fractionated dose but not as a single acute dose. These results demonstrate that pre-initiated lesions may be more susceptible to malignant transformation upon exposure to radiation. Thus, radiation may have an impact on both lung cancer initiation and progression. TABLE OF CONTENTS TITLE ................................................................................................................... i DEDICATION ..................................................................................................... ii TITLE PAGE ...................................................................................................... iii COPYRIGHT ...................................................................................................... iv ACKNOWLEDGEMENTS ..................................................................................v ABSTRACT ........................................................................................................ vi TABLE OF CONTENTS .................................................................................... ix PRIOR PUBLICATIONS ................................................................................. xiii LIST OF FIGURES .......................................................................................... xiv LIST OF TABLES ........................................................................................... xvii LIST OF APPENDICES ................................................................................. xviii LIST OF ABBREVIATIONS ........................................................................... xix CHAPTER ONE: INTRODUCTION ...................................................................1 1.1. Basic Lung Biology ...............................................................................1 1.2. Lung Development...............................................................................10 1.3. Stem Cells of the Lung: Homeostasis and Repair ...............................16 1.4. Lung Cancer, Mouse Models of Lung Cancer, and Lung Cancer Stem Cells .....................................................................................................35 1.5. Radiation and Lung Cancer .................................................................46 ix CHAPTER TWO: MULTIPOTENCY OF IMMORTALIZED HUMAN BRONCHIAL EPITHELIAL CELLS ................................................................53 2.1. Introduction ..................................................................................................53 2.2. Results ..................................................................................................59 2.2.1. In Vitro Analysis of HBEC3 KT Potency ...................................59 2.2.2. Transcriptional Analysis of HBEC3 KT Cell Line ....................64 2.2.3. Development of a 3D Differentiation Model Using the HBEC3 KT Cell Line ....................................................................................68 2.3. Discussion ............................................................................................72 2.4. Materials and Methods .........................................................................79 CHAPTER THREE: CHARACTERIZATION OF IN VITRO TRANSFORMED HBEC3 KT POPULATION AND CLONES ISOLATED IN SERUM AND SERUM-FREE ....................................................................................................84 3.1. Introduction ..........................................................................................84 3.2. Results ..................................................................................................89 3.2.1. Analysis of 3D Differentiation Capacity of in vitro Transformed HBEC3 KT Cells .......................................................................89 3.2.2. Characterization of in vitro Transformed HBEC3 KT Clones Isolated in Presence or Absence of Serum ................................90 x xi 3.2.3. Evaluation of Tumorigenicity of in vitro Transformed HBEC3 KT Clones Isolated in Serum ...........................................................97 3.3. Discussion ............................................................................................98 3.4. Materials and Methods .......................................................................102 CHAPTER FOUR: INVASIVE CANCER INDUCED BY RADIATION IN LA1 K-RAS MOUSE MODEL OF LUNG CANCER .............................................106 4.1. Introduction ........................................................................................106 4.2. Results ................................................................................................111 4.2.1. Effect of Acute or Fractionated Doses of 1.0 Gy X-Rays of 56Fe- Particles on Wildtype and LA1 KRAS Mice ............................111 4.2.2. Genomic Analysis of Pulmonary Radiation Response to Irradiation ...............................................................................120 4.2.3. Determination of Relative
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Specific Functions of the Wnt Signaling System in Gene Regulatory Networks
    Specific functions of the Wnt signaling system in PNAS PLUS gene regulatory networks throughout the early sea urchin embryo Miao Cui, Natnaree Siriwon1, Enhu Li2, Eric H. Davidson3, and Isabelle S. Peter3 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 Contributed by Eric H. Davidson, October 9, 2014 (sent for review September 12, 2014; reviewed by Robert D. Burke and Randall T. Moon) Wnt signaling affects cell-fate specification processes throughout Fig. 1A. Cells located at the vegetal pole will become skeleto- embryonic development. Here we take advantage of the well-studied genic mesodermal cells. These cells are surrounded by the veg2 gene regulatory networks (GRNs) that control pregastrular sea urchin cell lineage. This lineage consists of veg2 mesodermal cells, lo- embryogenesis to reveal the gene regulatory functions of the entire cated adjacent to skeletogenic cells and giving rise to all other Wnt-signaling system. Five wnt genes, three frizzled genes, two se- mesodermal cell fates such as esophageal muscle cells, blasto- creted frizzled-related protein 1 genes, and two Dickkopf genes are coelar cells, and pigment cells, and of veg2 endoderm cells, expressed in dynamic spatial patterns in the pregastrular embryo of which will form the foregut and parts of the midgut. At a further Strongylocentrotus purpuratus. We present a comprehensive analysis distance from the vegetal pole, but still within the vegetal half of of these genes in each embryonic domain. Total functions of the the embryo, is the veg1 lineage, consisting of veg1 endoderm, Wnt-signaling system in regulatory gene expression throughout the located adjacent to veg2 endoderm and giving rise to the other embryo were studied by use of the Porcupine inhibitor C59, which parts of the midgut and the hindgut, and of veg1 ectoderm, the interferes with zygotic Wnt ligand secretion.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Meta-Analysis of Nasopharyngeal Carcinoma
    BMC Genomics BioMed Central Research article Open Access Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation Xia Chen†1,2, Shuang Liang†1, WenLing Zheng1,3, ZhiJun Liao1, Tao Shang1 and WenLi Ma*1 Address: 1Institute of Genetic Engineering, Southern Medical University, Guangzhou, PR China, 2Xiangya Pingkuang associated hospital, Pingxiang, Jiangxi, PR China and 3Southern Genomics Research Center, Guangzhou, Guangdong, PR China Email: Xia Chen - [email protected]; Shuang Liang - [email protected]; WenLing Zheng - [email protected]; ZhiJun Liao - [email protected]; Tao Shang - [email protected]; WenLi Ma* - [email protected] * Corresponding author †Equal contributors Published: 7 July 2008 Received: 16 February 2008 Accepted: 7 July 2008 BMC Genomics 2008, 9:322 doi:10.1186/1471-2164-9-322 This article is available from: http://www.biomedcentral.com/1471-2164/9/322 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic transformation is not well understood. The combination of bioinformatics with evidences from biological experiments paved a new way to gain more insights into the molecular mechanism of cancer. Results: We profiled gene expression using a meta-analysis approach. Two sets of meta-genes were obtained. Meta-A genes were identified by finding those commonly activated/deactivated upon EBV infection/reactivation.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Negative Regulation of Diacylglycerol Kinase &Theta
    Cell Death and Differentiation (2010) 17, 1059–1068 & 2010 Macmillan Publishers Limited All rights reserved 1350-9047/10 $32.00 www.nature.com/cdd Negative regulation of diacylglycerol kinase h mediates adenosine-dependent hepatocyte preconditioning G Baldanzi1,5, E Alchera2,5, C Imarisio2, M Gaggianesi1, C Dal Ponte2, M Nitti3, C Domenicotti3, WJ van Blitterswijk4, E Albano2, A Graziani1,5 and R Carini*,2,5 In liver ischemic preconditioning (IP), stimulation of adenosine A2a receptors (A2aR) prevents ischemia/reperfusion injury by promoting diacylglycerol-mediated activation of protein kinase C (PKC). By concerting diacylglycerol to phosphatidic acid, diacylglycerol kinases (DGKs) act as terminator of diacylglycerol signalling. This study investigates the role of DGK in the development of hepatocyte IP. DGK activity and cell viability were evaluated in isolated rat hepatocytes preconditioned by 10 min hypoxia followed by 10 min re-oxygenation or by the treatment with the A2aR agonist, CGS21680, and subsequently exposed to prolonged hypoxia. We observed that after IP or A2aR activation, a decrease in DGK activity was associated with the onset of hepatocyte tolerance to hypoxia. CGS21680-induced stimulation of A2aR specifically inhibited DGK isoform h by activating RhoA–GTPase. Consistently, both siRNA-mediated downregulation of DGK h and hepatocyte pretreatment with the DGK inhibitor R59949 induced cell tolerance to hypoxia. The pharmacological inhibition of DGK was associated with the diacylglycerol- dependent activation of PKC d and e and of their downstream target p38 MAPK. In conclusion, we unveil a novel signalling pathway contributing to the onset of hepatocyte preconditioning, which through RhoA–GTPase, couples A2aR to the downregulation of DGK.
    [Show full text]
  • LAG-3: from Molecular Functions to Clinical Applications
    Open access Review J Immunother Cancer: first published as 10.1136/jitc-2020-001014 on 13 September 2020. Downloaded from LAG-3: from molecular functions to clinical applications Takumi Maruhashi , Daisuke Sugiura , Il- mi Okazaki , Taku Okazaki To cite: Maruhashi T, Sugiura D, ABSTRACT (PD-1) and cytotoxic T lymphocyte antigen Okazaki I, et al. LAG-3: from To prevent the destruction of tissues owing to excessive 4 (CTLA-4) significantly improved the molecular functions to clinical and/or inappropriate immune responses, immune outcomes of patients with diverse cancer applications. Journal for cells are under strict check by various regulatory ImmunoTherapy of Cancer types, revolutionizing cancer treatment. The mechanisms at multiple points. Inhibitory coreceptors, 2020;8:e001014. doi:10.1136/ success of these therapies verified that inhib- including programmed cell death 1 (PD-1) and cytotoxic jitc-2020-001014 itory coreceptors serve as critical checkpoints T lymphocyte antigen 4 (CTLA-4), serve as critical checkpoints in restricting immune responses against for immune cells to not attack the tumor Accepted 29 July 2020 self- tissues and tumor cells. Immune checkpoint inhibitors cells as well as self-tissues. However, response that block PD-1 and CTLA-4 pathways significantly rates are typically lower and immune-related improved the outcomes of patients with diverse cancer adverse events (irAEs) are also observed in types and have revolutionized cancer treatment. However, patients administered with immune check- response rates to such therapies are rather limited, and point inhibitors. This is indicative of the immune-rela ted adverse events are also observed in a continued need to decipher the complex substantial patient population, leading to the urgent need biology of inhibitory coreceptors to increase for novel therapeutics with higher efficacy and lower response rates and prevent such unwanted toxicity.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Patient-Based Cross-Platform Comparison of Oligonucleotide Microarray Expression Profiles
    Laboratory Investigation (2005) 85, 1024–1039 & 2005 USCAP, Inc All rights reserved 0023-6837/05 $30.00 www.laboratoryinvestigation.org Patient-based cross-platform comparison of oligonucleotide microarray expression profiles Joerg Schlingemann1,*, Negusse Habtemichael2,*, Carina Ittrich3, Grischa Toedt1, Heidi Kramer1, Markus Hambek4, Rainald Knecht4, Peter Lichter1, Roland Stauber2 and Meinhard Hahn1 1Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany; 2Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt am Main, Germany; 3Central Unit Biostatistics, Deutsches Krebsforschungszentrum, Heidelberg, Germany and 4Department of Otorhinolaryngology, Universita¨tsklinik, Johann-Wolfgang-Goethe-Universita¨t Frankfurt, Frankfurt, Germany The comparison of gene expression measurements obtained with different technical approaches is of substantial interest in order to clarify whether interplatform differences may conceal biologically significant information. To address this concern, we analyzed gene expression in a set of head and neck squamous cell carcinoma patients, using both spotted oligonucleotide microarrays made from a large collection of 70-mer probes and commercial arrays produced by in situ synthesis of sets of multiple 25-mer oligonucleotides per gene. Expression measurements were compared for 4425 genes represented on both platforms, which revealed strong correlations between the corresponding data sets. Of note, a global tendency towards smaller absolute ratios was observed when
    [Show full text]