Model Transformation Languages with Modular Information Hiding the Karlsruhe Series on Software Design and Quality Volume 17

Total Page:16

File Type:pdf, Size:1020Kb

Model Transformation Languages with Modular Information Hiding the Karlsruhe Series on Software Design and Quality Volume 17 The Karlsruhe Series on Software Design and Quality 17 Model Transformation Languages with Modular Information Hiding Andreas Rentschler Model Transformation Languages Model Transformation with Modular Information Hiding transformation module M export I1 import I2 { mapping A::m1():B { } Andreas Rentschler 17 Andreas Rentschler Model Transformation Languages with Modular Information Hiding The Karlsruhe Series on Software Design and Quality Volume 17 Chair Software Design and Quality Faculty of Computer Science Karlsruhe Institute of Technology and Software Engineering Division Research Center for Information Technology (FZI), Karlsruhe Editor: Prof. Dr. Ralf Reussner Model Transformation Languages with Modular Information Hiding von Andreas Rentschler Dissertation, Karlsruher Institut für Technologie (KIT) Fakultät für Informatik Tag der mündlichen Prüfung: 14. Januar 2015 Referenten: Prof. Dr. Ralf Reussner Prof. Dr. Bernhard Beckert Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe KIT Scientific Publishing is a registered trademark of Karlsruhe Institute of Technology. Reprint using the book cover is not allowed. www.ksp.kit.edu This document – excluding the cover – is licensed under the Creative Commons Attribution-Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ The cover page is licensed under the Creative Commons Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE): http://creativecommons.org/licenses/by-nd/3.0/de/ Print on Demand 2015 ISSN 1867-0067 ISBN 978-3-7315-0346-0 DOI: 10.5445/KSP/1000045910 Model Transformation Languages with Modular Information Hiding zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften der Fakultät für Informatik des Karlsruher Instituts für Technologie genehmigte Dissertation von Andreas Rentschler aus Eberbach (Baden) Tag der mündlichen Prüfung: 14. Januar 2015 Erster Gutachter: Prof. Dr. Ralf Reussner Zweiter Gutachter: Prof. Dr. Bernhard Beckert Abstract With a ratio of an estimated 60%, maintenance costs constitute a substiantial share of the lifecycle costs of a typical software project. It is a major ob- jective of software engineers to explore techniques that help to enhance maintainability and understandability of software artifacts. One established concept in this field is modular programming. By providing concepts to divide functionality into independent modules, modular programming helps to manage even complex programs. David L. Parnas has expanded on this idea by introducing the additional concept of module interfaces. Accord- ing to Parnas, any outbound dependencies of a module must be explicitly declared in the module’s interface description to foster the encapsulation of design decisions (information hiding). Modularity is broadly used by modern general-purpose languages to tackle the complexity of larger programs. No need for such a high-level concept arises for most domain-specific languages, i.e., lean languages designed for compact problem descriptions. One notable exception to this rule of thumb are model transformation languages. Model transformations, together with models, form the principal artifacts in model-driven software development, a methodology of software engineering that aims to automatically generate large parts of a software from abstract models. In such a process, transforma- tions play a pivotal role, as they assign semantics to models by means of other models and languages with already well-defined semantics, usually residing at a lower level of abstraction. Industrial practitioners report that, despite their domain-specificity, transformation programs on larger models quickly get sufficiently large and complex and at the same time less maintainable. i A multitude of specific transformation languages exist, and most of them establish some sort of modularity, but almost all of them solely have reuse in mind while they neglect maintenance issues. An interface concept to attain information hiding modularity as propagated by Parnas is supported by none of them. This thesis presents three contributions that render maintenance of model transformations more efficient. The first and major scientific contribution of this thesis is an information hiding modularity concept tailored to model transformations. One novelty when it comes to model transformations is that metamodels are software artifacts that are specified independently from the transformation. Thus, interfaces must not only control visibility of methods, but also control accessibility to incoming and outgoing data types. Access control can be explicitly declared on a fine-grained level, i.e., packages and classes inside a metamodel. For obtaining maximal usability, on top of our proposed syntactical extension, a type inference system is defined that statically checks at design-time if interface contracts are met or if they are not. Our module concept has been initially defined for the imperative transformation language QVT-Operational (QVT-O) due to its clarity. In the scope of this thesis, it is further shown that the concept is applicable to declarative transformation languages as well. In this context, we study the semantics of the declarative transformation language QVT- Relations (QVT-R). Legacy transformations are often monolithic or a suitable modular design cannot be determined. To improve maintenance effort in such cases, we de- velop a concept for visualization of dependence information according to the methodology of visual analytics, the second contribution of this thesis. The concept is implemented as a maintenance tool that statically analyzes dependencies occurring among mapping methods and model elements. In- formation is shown in an interactive graph-based view that offers cross-view navigation and task-dependent filtering. ii In addition, a software clustering approach is adapted to the requirements of the transformation domain. It forms the third contribution of this thesis. In contrast to previously known approaches, high cohesion and low coupling is not only based on control dependencies, it can also incorporate dependencies to the classes of metamodels and their package structure. The approach is particularly suitable to find decompositions for legacy transformations. We evaluated each of the three contributions in a case study based on larger transformations from the Palladio research project. For this purpose, the module concept had been integrated into two imperative transformation languages, Xtend and QVT-O. The first study focuses on an Xtend transformation that maps architec- tural descriptions in the Palladio component model to simulation code. It is shown that locating the concerns in the modularized variant requires signifi- cantly less effort than in the previous unmodularized variant. In the study, two realistic maintenance scenarios had been examined, a bug fix and a functional enhancement. The second case study validates the visualization approach in an empirical experiment. Participants had to carry out realistic maintenance tasks on a QVT-O transformation for mapping the Palladio com- ponent model to a queueing Petri net model. Results show that participants using the approach spotted locations of concerns with significantly higher efficiency. The third case study aims to evaluate the automatic clustering approach. Two previously modularized transformations are automatically re-modularized, one QVT-O transformation that translates a set of advanced modeling concepts of the Palladio model to basic concepts, and an Xtend transformation that maps the Palladio model to simulation code. We are able to confirm a significantly higher similarity between the automatically and the manually clustered variant, when taking not only control but also model struc- tures and dependencies into account of the automatic clustering process. This dissertation points out that also domain-specific languages must provide appropriate structuring concepts to ensure readability and main- tainability of larger and more complex programs. The particular notion iii of an interface highly depends on the domain and the requested level of granularity; In the case of model transformations, for example, we regard mapping methods in combination with distinct model elements as equivalent parts of an interface, thereby gaining extended expressiveness that results in significantly better maintainable software. iv Kurzfassung Betrachtet man die Gesamtkosten eines typischen Softwareprojekts über seinen gesamten Lebenszyklus, so tragen die Kosten ihrer Wartung mit geschätzten 60% zu einem wesentlichen Teil zu den Gesamtkosten bei. Soft- waretechniker sind deswegen von je her an Techniken interessiert, die die Wartbarkeit und Lesbarkeit der Softwareartefakte steigern. Ein bewährtes Entwurfskonzept ist das modulare Programmieren; es sieht die Auftren- nung von Funktionalität in unabhängige Module vor, und macht damit auch komplexere Programme beherrschbar. David L. Parnas hat diese Idee um einen Schnittstellenbegriff erweitert, bei dem die Abhängigkeiten eines Moduls nach außen explizit in seiner Schnittstelle zu deklarieren sind, um die Kapselung von Entwurfsentscheidungen – das sogenannte Information Hiding – zu ermöglichen. Derartig ausgereifte Modulkonzepte sind jedoch bisher hauptsächlich nur in Allzwecksprachen vorzufinden, während domänenspezifischere Sprachen in der Regel nur für kleinere Programme konzipiert sind, sodass Wartungs- probleme hier eher selten auftreten. Eine Ausnahme
Recommended publications
  • Object-Oriented Programming in Scheme with First-Class Modules
    Ob jectOriented Programming in Scheme with FirstClass Mo dules and Op eratorBased Inheritance Guruduth Banavar Gary Lindstrom Department of Computer Science University of Utah Salt LakeCityUT Abstract Wecharacterize ob jectoriented programming as structuring and manipulating a uniform space of rstclass values representing modules a distillation of the notion of classes Op erators over mo dules individually achieve eects such as encapsulation sharing and static binding A variety of idioms of OO programming nd convenient expression within this mo del including several forms of single and multiple inheritance abstract classes class variables inheritance hierarchy combination and reection Weshow that this programming style simplies OO programming via enhanced uniformity and supp orts a exible mo del of ob jectorientation that provides an attractive alternative to metaprogramming Finallyweshow that these notions of OO programming are language indep endent by implementing a Mo dular Scheme prototyp e as a completion of a generic OO framework for mo dularity Pap er Category Research Topic Area Language design and implementation Intro duction Classbased ob jectoriented programming is usually thought of as creating a graph structured inher itance hierarchy of classes instantiating some of these classes and computing with these instances Instances are typically rstclass values in the language ie they can b e created stored accessed and passed into and out of functions Classes on the other hand are usually not rstclass values and inheritance is
    [Show full text]
  • Modular Programming with Functions
    CHAPTER 4 MODULAR PROGRAMMING WITH FUNCTIONS Copyright © 2013 Pearson Education, Inc. Modularity •A program may also contain other functions, and it may refer to functions in another file or in a library. These functions , or modules , are sets of statements that perform an operation or compute a value •To maintain simplicity and readability in long and complex programs, we use a short main, and other functions instead of using one long main function. •By separating a solution into a group of modules, each module is easier to understand, thus adhering to the basic guidelines of structured programming Copyright © 2013 Pearson Education, Inc. Modularity •Braking a problem into a set of modules has many advantages: 1. Every module can be written and tested separately from the rest of the program 2. A module is smaller than a complete program, so testing is easier 3. Once a module has been tested, it can be used in new program without having to retest it ( reusability ) 4. Use of modules ( modularity ) usually reduces the overall length of programs 5. Several programmers can work on the same project if it is separated into modules Copyright © 2013 Pearson Education, Inc. Modularity Main Modules Copyright © 2013 Pearson Education, Inc. Function Definition •A function consists of a definition statement followed by declarations and statements. The general form of a function is: return_type function_name(parameter_declarations) { declarations; statements; return expression; } •The parameter declarations represent the information passed to the function •Additional variables used by the function are defined in declarations statement •All functions should include a return statement Copyright © 2013 Pearson Education, Inc.
    [Show full text]
  • Scope in Fortran 90
    Scope in Fortran 90 The scope of objects (variables, named constants, subprograms) within a program is the portion of the program in which the object is visible (can be use and, if it is a variable, modified). It is important to understand the scope of objects not only so that we know where to define an object we wish to use, but also what portion of a program unit is effected when, for example, a variable is changed, and, what errors might occur when using identifiers declared in other program sections. Objects declared in a program unit (a main program section, module, or external subprogram) are visible throughout that program unit, including any internal subprograms it hosts. Such objects are said to be global. Objects are not visible between program units. This is illustrated in Figure 1. Figure 1: The figure shows three program units. Main program unit Main is a host to the internal function F1. The module program unit Mod is a host to internal function F2. The external subroutine Sub hosts internal function F3. Objects declared inside a program unit are global; they are visible anywhere in the program unit including in any internal subprograms that it hosts. Objects in one program unit are not visible in another program unit, for example variable X and function F3 are not visible to the module program unit Mod. Objects in the module Mod can be imported to the main program section via the USE statement, see later in this section. Data declared in an internal subprogram is only visible to that subprogram; i.e.
    [Show full text]
  • A Parallel Program Execution Model Supporting Modular Software Construction
    A Parallel Program Execution Model Supporting Modular Software Construction Jack B. Dennis Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A. [email protected] Abstract as a guide for computer system design—follows from basic requirements for supporting modular software construction. A watershed is near in the architecture of computer sys- The fundamental theme of this paper is: tems. There is overwhelming demand for systems that sup- port a universal format for computer programs and software The architecture of computer systems should components so users may benefit from their use on a wide reflect the requirements of the structure of pro- variety of computing platforms. At present this demand is grams. The programming interface provided being met by commodity microprocessors together with stan- should address software engineering issues, in dard operating system interfaces. However, current systems particular, the ability to practice the modular do not offer a standard API (application program interface) construction of software. for parallel programming, and the popular interfaces for parallel computing violate essential principles of modular The positions taken in this presentation are contrary to or component-based software construction. Moreover, mi- much conventional wisdom, so I have included a ques- croprocessor architecture is reaching the limit of what can tion/answer dialog at appropriate places to highlight points be done usefully within the framework of superscalar and of debate. We start with a discussion of the nature and VLIW processor models. The next step is to put several purpose of a program execution model. Our Parallelism processors (or the equivalent) on a single chip.
    [Show full text]
  • The Best of Both Worlds?
    The Best of Both Worlds? Reimplementing an Object-Oriented System with Functional Programming on the .NET Platform and Comparing the Two Paradigms Erik Bugge Thesis submitted for the degree of Master in Informatics: Programming and Networks 60 credits Department of Informatics Faculty of mathematics and natural sciences UNIVERSITY OF OSLO Autumn 2019 The Best of Both Worlds? Reimplementing an Object-Oriented System with Functional Programming on the .NET Platform and Comparing the Two Paradigms Erik Bugge © 2019 Erik Bugge The Best of Both Worlds? http://www.duo.uio.no/ Printed: Reprosentralen, University of Oslo Abstract Programming paradigms are categories that classify languages based on their features. Each paradigm category contains rules about how the program is built. Comparing programming paradigms and languages is important, because it lets developers make more informed decisions when it comes to choosing the right technology for a system. Making meaningful comparisons between paradigms and languages is challenging, because the subjects of comparison are often so dissimilar that the process is not always straightforward, or does not always yield particularly valuable results. Therefore, multiple avenues of comparison must be explored in order to get meaningful information about the pros and cons of these technologies. This thesis looks at the difference between the object-oriented and functional programming paradigms on a higher level, before delving in detail into a development process that consisted of reimplementing parts of an object- oriented system into functional code. Using results from major comparative studies, exploring high-level differences between the two paradigms’ tools for modular programming and general program decompositions, and looking at the development process described in detail in this thesis in light of the aforementioned findings, a comparison on multiple levels was done.
    [Show full text]
  • Software Quality / Modularity
    Software quality EXTERNAL AND INTERNAL FACTORS External quality factors are properties such as speed or ease of use, whose presence or absence in a software product may be detected by its users. Other qualities applicable to a software product, such as being modular, or readable, are internal factors, perceptible only to computer professionals who have access to the actual software text. In the end, only external factors matter, but the key to achieving these external factors is in the internal ones: for the users to enjoy the visible qualities, the designers and implementers must have applied internal techniques that will ensure the hidden qualities. EXTERNAL FACTORS Correctness: The ability of software products to perform their tasks, as defined by their specification. Correctness is the prime quality. If a system does not do what it is supposed to do, everything else about it — whether it is fast, has a nice user interface¼ — matters little. But this is easier said than done. Even the first step to correctness is already difficult: we must be able to specify the system requirements in a precise form, by itself quite a challenging task. Robustness: The ability of software systems to react appropriately to abnormal conditions. Robustness complements correctness. Correctness addresses the behavior of a system in cases covered by its specification; robustness characterizes what happens outside of that specification. There will always be cases that the specification does not explicitly address. The role of the robustness requirement is to make sure that if such cases do arise, the system does not cause catastrophic events; it should produce appropriate error messages, terminate its execution cleanly, or enter a so-called “graceful degradation” mode.
    [Show full text]
  • Chapter-2 Object Oriented Programming Very Short/ Short Answer Questions 1
    CHAPTER-2 OBJECT ORIENTED PROGRAMMING VERY SHORT/ SHORT ANSWER QUESTIONS 1. Discuss major OOP concepts briefly. Ans. Following are the general OOP concepts: 1. Data Abstraction: Data abstraction means, providing only essential information to the outside word and hiding their background details i.e. to represent the needed information in program without presenting the details. 2. Data Encapsulation: The wrapping up of data and operations/functions (that operate o the data) into a single unit (called class) is known as Encapsulation. 3. Modularity: Modularity is the property of a system that has been decomposed into a set of cohesive and loosely coupled modules. 4. Inheritance: Inheritance is the capability of one class of things to inherit capabilities or properties from another class. 5. Polymorphism: Polymorphism is the ability for a message or data to be processed in more than one form. 2. What are programming paradigms? Give names of some popular programming paradigms. Ans. Programming Paradigm: A Programming Paradigm defines the methodology of designing and implementing programs using the key features and building blocks of a programming language. Following are the different programming paradigms: (i) Procedural Programming (ii) Object Based Programming (iii) Object Oriented Programming 3. What are the shortcomings of procedural and modular programming approaches? Ans. Following are the various shortcomings of procedural and modular programming approaches: Procedural Programming is susceptible to design changes. Procedural Programming leads to increased time and cost overheads during design changes. Procedural and Modular programming both are unable to represent real world relationship that exists among objects. In modular programming, the arrangement of the data can’t be changed without modifying all the functions that access it.
    [Show full text]
  • Modular Programming
    Modular Programming Prof. Clarkson Fall 2016 Today’s music: "Giorgio By Moroder" by Daft Punk Te Moog modular synthesizer Review Previously in 3110: • Functions, data • lots of language features • how to build small programs Today: • language features for building large programs: structures, signatures, modules Question What’s the largest program you’ve ever worked on, by yourself or as part of a team? A. 10-100 LoC B. 100-1,000 LoC C. 1,000-10,000 LoC D. 10,000-100,000 LoC E. 100,000 LoC or bigger Scale • My solution to A1: 100 LoC • My solution to A2: 300 LoC • OCaml: 200,000 LoC • Unreal engine 3: 2,000,000 LoC • Windows Vista: 50,000,000 LoC http://www.informationisbeautiful.net/visualizations/million-lines-of-code/ ...can’t be done by one person ...no individual programmer can understand all the details ...too complex to build with subset of OCaml we’ve seen so far Modularity Modular programming: code comprises independent modules – developed separately – understand behavior of module in isolation – reason locally, not globally Java features for modularity • classes, packages: organize identifiers (classes, methods, fields, etc.) into namespaces • interfaces: describe related classes • public, protected, private: control what is visible outside a namespace • subtyping, inheritance: enables code reuse OCaml features for modularity • structures: organize identifiers (functions, values, etc.) into namespaces • signatures: describe related modules • abstract types: control what is visible outside a namespace • functors, includes: enable
    [Show full text]
  • Modularity and Reuse of Domain-Specific Languages
    Modularity and reuse of domain-specific languages Citation for published version (APA): Sutii, A. M. (2017). Modularity and reuse of domain-specific languages: an exploration with MetaMod. Technische Universiteit Eindhoven. Document status and date: Published: 07/11/2017 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim.
    [Show full text]
  • A Module System for C++ (Revision 2)
    Document number: N4214 Date: 2014-10-13 Working group: Modules SG Reply to: [email protected] A Module System for C++ (Revision 2) Gabriel Dos Reis Mark Hall Gor Nishanov Abstract We present a design of and a specification of module system for C++. The proposal focuses on programmer’s view of modules (both production and consumption) and how to better support modular programming in the large, componentization, scalable compilation, and semantics-aware devel- oper tools. Contents 1 Introduction ......... 1 5 Tools Support ......... 20 2 The Problems ......... 2 6 Build Systems ........ 21 3 Goals and Principles ..... 4 7 Migration ........... 21 4 Design Choices ........ 7 A Standardese ......... 21 1 Introduction The lack of direct language support for componentization of C++ libraries and programs, combined with increasing use of templates, has led to serious impedi- ments to compile-time scalability, and programmer productivity. It is the source of lackluster build performance and poor integration with cloud and distributed build systems. Furthermore, the heavy-reliance on header file inclusion (i.e. copy-and- paste from compilers’ perspective) and macros stifle flowering of C++ developer tools in increasingly semantics-aware development environments. Responding to mounting requests from application programmers, library de- velopers, tool builders alike, this report proposes a module system for C++ with a handful of clearly articulated goals. The proposal is informed by the current state of the art regarding module systems in contemporary programming languages, past 1 suggestions [4, 6] and experiments such as Clang’s [2, 5], and practical constraints specific to C++ ecosystem, deployment, and use. The design is minimalist; yet, it aims for a handful of fundamental goals 1.
    [Show full text]
  • Design and Validation Computer Protocols
    DESIGN AND VALIDATION OF COMPUTER PROTOCOLS Gerard J. Holzmann -----------, PRE NTI CE HALL SOFTWARE SERI ES www.spinroot.com DESIGN AND VALIDATION OF COMPUTER PROTOCOLS Gerard J. Holzmann Bell Laboratories Murray Hill, New Jersey 07974 PRENTICE-HALL Englewood Cliffs, New Jersey 07632 www.spinroot.com Prentice Hall Software Series Brian W. Kernighan, Advisor Copyright 1991 by Lucent Technologies, Bell Laboratories, Incorporated. This book is typeset in Times Roman by the author, using an Linotronic 200P phototypesetter and a DEC VAX 8550 running the 10th Edition of the UNIX operating system. DEC and VAX are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 Prentice-Hall International (UK) Limited, London Prentice-Hall of Australia Pty. Limited, Sydney Prentice-Hall Canada Inc., Toronto Prentice-Hall Hispanoamericana, S.A., Mexico Prentice-Hall of India Private Limited, New Delhi Prentice-Hall of Japan, Inc., Tokyo Simon & Schuster Asia Pte. Ltd., Singapore Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro www.spinroot.com CONTENTS Foreword ix Preface xi Part I Ð Basics 1. Introduction 1.1 Early Beginnings 1 1.2 The First Networks 9 1.3 Protocols as Languages 12 1.4 Protocol Standardization 13 1.5 Summary 15 Exercises 16 Bibliographic Notes 16 2.
    [Show full text]
  • Dash1.Gz.Pdf
    6DEI >ook M=I JOFAIAJ troff -ms -mpictures|lp -dstdout|ps2pdf En LK?E@= 5=nI >O JDA =KJDoH, KIEnC = LAnoLo 6DEnk2=@ : ! 6=>lAJ HKnnEnC JDA 'BHonJ oFAH=JEnC IOI­ JAm. 4An@AHA@: %--$ '.4ON6 'BHonJ.oHC 6DEI EI = MoHk oB BE?JEon. N=mAI, ?D=H=?JAHI, Fl=?AI =n@ En?E@AnJI AEJDAH =HA JDA FHo@K?J oB JDA =KJDoHߣI Em=CEn=JEon oH =HA KIA@ BE?JEJEoKIlO, =n@ =nO HAIAm>l=n?A Jo =?JK=l FAH­ IonI,lELEnCoH@A=@,>KIEnAIIAI,?omF=nEAI,ALAnJIoHlo?=lAIEIAnJEHAlO?oEn?E@AnJ=l. M16/++/2K>lE?,om=En 9FRONT FREQUENTLY QUESTIONED ANSWERS Those who can do, those who can’t write and those who can’t write make ezines. ߞ 5=FAMKllAn@AH ACHTUNG! 6DEI @o?KmAnJߣI 5647+674- ߞ =n@ IomA oB EJI 6-:6 ߞ EI Fl=CE=HEzA@ ߞ BHomJDAO2-N*5,.)3 ACHTUNG! 601515NO6)52)+- ACHTUNG! 1nBoHm=JEon FHoLE@A@ >O JDEI @o?KmAnJ m=O >A oKJ@=JA@ oH jKIJ Fl=En MHonC.7IAOoKH>H=En.NO4-.7N,5. _sl’s info is incorrect. ߞ =nJD_N i really hate the openbsd content in the fqa ߞ =EjK 0 − Introduction to Plan 9 .-9D=JEI2l=n'? ..-2l=n'EInoJ7N1: ...-2l=n'EInoJFl=n'FoHJ ... -2l=n'EInoJ1nBAHno .. -2l=n'EInoJ=FHo@K?J ..!-2l=n'EInoJBoHOoK . -9DO2l=n'? . .-9D=J@oFAoFlAlEkA=>oKJ2l=n'? . ..-9D=J@oOoKKIA2l=n'BoH? . -9D=J@oFAoFlAD=JA=>oKJ2l=n'? . .-9D=JEInoJEn2l=n' . .!-9DO@E@2l=n'ߣI?HA=JoHICELAKFon2l=n'? . ."-9D=JEIJDA@A=lMEJD2l=n'ߣIMAEH@lE?AnIA? . .".-4E?D=H@5J=llm=nD=JAIJDA2l=nNEnAlE?AnIA?EH?= .
    [Show full text]