Cesium-Based Colloidal Halide Perovskite Nanocrystal

Total Page:16

File Type:pdf, Size:1020Kb

Cesium-Based Colloidal Halide Perovskite Nanocrystal CESIUM-BASED COLLOIDAL HALIDE PEROVSKITE NANOCRYSTAL: STABILITY AND LEAD-FREE DESIGN BY CHANG LU A Dissertation Submitted to the Graduate Faculty of Wake Forest University Graduate School of Arts and Sciences in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Chemistry August 2019 Winston-Salem, North Carolina Copyright Chang Lu 2019 Approved By: Scott M. Geyer, Ph.D., Advisor Michael D. Gross, Ph.D., Chair Elham Ghadiri, Ph.D. Paul B. Jones, Ph.D. Akbar Salam, Ph.D. Acknowledgements Time flies very fast. I can still remember the very first day I spent at Salem Hall, I was nervous, not very comfortable speaking English and I just barely passed the Organic Placement Exam. Now, when I look at this thesis, my PhD is close to an end. While I am writing these acknowledgement words, I find myself thinking back on these five incredible years I have had here at WFU, as well as in Winston-Salem. I would not have such a positive experience and scientific contribution here without many people I have met along the journey. Therefore, I would like to thank the following people for shaping the past years into a truly incredible memory in my life. I would like to thank Dr. Geyer first. What I have learnt from you are not just experience and QD or ALD techniques, it is the positive and attentive attitude to zero in on a specific area, a specific question. When I was an undergraduate, there was always someone you can seek for help, and I am really used to this learning mode. However, being a PhD student is different, nobody can teach you everything. I have to confront the problems and issues by myself. What you have shown me was if I am not familiar with this software/theory/technique/setup/system, etc, face it and learn/solve it. This is simple but sometimes not very easy for me to do. Moreover, working under you is quite enjoyable, I can report any flash on my mind and ask for unconditional chemical or equipment support from you. Thanks for all the patience and encouragements you have given to me. Special thanks go to my committee, Dr. Gross and Dr. Salam, I am thankful to all the discussion with you, your engineering and quantum mechanical perspectives truly broaden my horizon with the perovskite projects I have been working on. II I would also like to thank my colleagues in our lab: Hui, Dominique, Xiao and Alex. My work at WFU could not be possible without the helpful discussion and assistance from many of you. I really enjoy the thought sharing and look forward to pumping out more publications with you in the future. Throughout the years here at WFU, there are also a lot of internal and external collaborators and staff members who have helped me. Being involved in collaborative projects, I had the chance to work with extraordinary scientists, students and professors. In this regard, I would love to thank: the Carroll lab (Prof. David Carroll, Corey, Chaochao, Wenxiao, Junwei and Kateryna); the Jurchescu lab (Prof. Oana Jurchescu, Andrew and Peter); the Donati lab (Prof. George Donati, Charles, Jake); Dr. Day, Dr. Wright, Dr. KB Ucer, Dr. Brown-Harding, Dr. Tracy, and etc. Last but not least, I would like to thank my family, although I am thousands of miles away from you, but I can always feel you are with me and you are close to me. Chang Lu July 2019 III Table of Contents List of Figures ________________________________________________________________ VI List of Tables ________________________________________________________________ X List of Abbreviations __________________________________________________________ XI Abstract ____________________________________________________________________ XIII Chapter 1 Introduction _______________________________________________________ 1 1.1 Semiconductor and Its Impact _______________________________________________ 1 1.2 Fundamentals of Semiconductor Nanocrystals ___________________________________ 3 1.3 Synthetical Approach for Colloidal Nanocrystal: The Hot-Injection Method __________ 16 1.4 Cesium Lead Halide Perovskites ____________________________________________ 24 1.5 Current Obstacles of Lead Halide Perovskite: Instability and Lead Toxicity __________ 30 1.6 Common Characterization Techniques ________________________________________ 36 1.7 The Outline of This Dissertation and The Scope of Phd Projects ___________________ 39 Chapter 2 The Hidden Role of Oleic Acid in Cs-Oleate Reagent for Perovskite Nanocrystal Synthesis ___________________________________________________________________ 56 2.1 Introduction _____________________________________________________________ 57 2.2 Experimental Sections ____________________________________________________ 59 2.3 Results and Discussion ____________________________________________________ 62 2.4 Conclusion _____________________________________________________________ 74 Chapter 3 Enhanced Structural Stability of Colloidal α-CsPbI3 NCs in Solution Phase with Trioctylphosphine ___________________________________________________________ 81 3.1 Introduction _____________________________________________________________ 82 3.2 Experimental Sections ____________________________________________________ 84 3.3 Results and Discussion ____________________________________________________ 86 3.4 Conclusion _____________________________________________________________ 94 Chapter 4 Ligand-Mediated Water Resistance Stability Enhancement for CsPbBr3 Perovskite Nanocrystals _____________________________________________________ 100 4.1 Introduction ____________________________________________________________ 100 4.2 Experimental Sections ___________________________________________________ 102 4.3 Results and Discussion ___________________________________________________ 106 4.4 Conclusion ____________________________________________________________ 112 Chapter 5 The Synthesis of Pb-Free Perovskites: Vacancy-Ordered Double Perovskite Cs2SnI6 and Perovskite Alternative Cs3Bi2Br9 ___________________________________ 117 5.1 Introduction ____________________________________________________________ 117 IV 5.2 Experimental Sections ___________________________________________________ 121 5.3 Results and Discussion ___________________________________________________ 123 5.4 Conclusion ____________________________________________________________ 132 Chapter 6 Synthesis Of Lead-Free Cs3Sb2Br9 Perovskite Nanocrystals with Enhanced Activity in Photocatalytic CO2 Reduction Reaction _______________________________ 139 6.1 Introduction ____________________________________________________________ 140 6.2 Experimental Sections ___________________________________________________ 141 6.3 Results and Discussion ___________________________________________________ 145 6.4 Conclusion ____________________________________________________________ 152 Chapter 7 Summary and Outlook ____________________________________________ 157 7.1 Summary ______________________________________________________________ 157 7.2 Future Perspective_______________________________________________________ 160 Appendix A Supporting Information for Chapter 2 ______________________________ 162 A.1 Extra Control Experiments for Soluble CsOL Preparation _______________________ 162 A.2 Pure CsOL Powders Synthesis and NMR Characterization _______________________ 163 A.3 Precursor Characterization ________________________________________________ 168 A.4 Electrostatic Potential Calculation for Cs Butanoate ____________________________ 170 Appendix B Supporting Information for Chapter 6 ______________________________ 172 B.1 Additional Morphological Characterization for Cs3Sb2Br9 NCs ___________________ 172 B.2 XPS of Cs3Sb2Br9 and CsPbBr3 NCs ________________________________________ 173 B.3 DFT Calculations for Band Structure and Reaction Pathway _____________________ 176 B.4 Characterizations of CsPbBr3 And Cs3Sb2Br9 NCs _____________________________ 182 B.5 Transient Absorption ____________________________________________________ 183 Appendix C Materials Characterizations ______________________________________ 186 Appendix D Copyright Documents ____________________________________________ 189 Curriculum Vitae ___________________________________________________________ 191 V List of Figures Figure 1.1 A band diagram for a light emitting diode device. The injection of electron and hole from cathode and anode will result in the recombination of electron and hole in the semiconductor layer, which in turn will emit light. ___________________________ 2 Figure 1.2 Shapes of the 1s orbital (red), the 2p orbitals (yellow), the 3d orbitals (blue) and the 4f orbitals (green). ______________________________________________________ 5 Figure 1.3 (a) Construction of MOs from two AOs; (b) Energy diagram for MOs constructed from AOs. __________________________________________________________ 7 Figure 1.4 The bonding and antibonding orbitals in MAPbI3. ____________________________ 7 Figure 1.5 Evolution of atomic-molecular levels into bands and the formation of valence and conduction bands by overlapping s and p orbitals in a semiconductor. EF is the Fermi energy. _____________________________________________________________ 8 Figure 1.6 Band diagrams for conductor, semiconductor and insulator. ____________________ 9 Figure 1.7 The band structure evolution with respect of the size of a semiconductor system. Bulk, NC (from tens of atoms to a few hundred of atoms) and molecule (few atoms) band diagrams. __________________________________________________________ 10 Figure 1.8 The Brus calculation for the
Recommended publications
  • Hybridisation of Perovskite Nanocrystals with Organic Molecules for Highly Efficient Liquid Scintillators
    Cho et al. Light: Science & Applications (2020) 9:156 Official journal of the CIOMP 2047-7538 https://doi.org/10.1038/s41377-020-00391-8 www.nature.com/lsa ARTICLE Open Access Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators Sangeun Cho1,SungwooKim2,JongminKim1, Yongcheol Jo1, Ilhwan Ryu3, Seongsu Hong1,Jae-JoonLee3, SeungNam Cha4,EunBiNam5,SangUckLee 5,SamKyuNoh1, Hyungsang Kim1,JungwonKwak 2 and Hyunsik Im1 Abstract Compared with solid scintillators, liquid scintillators have limited capability in dosimetry and radiography due to their relatively low light yields. Here, we report a new generation of highly efficient and low-cost liquid scintillators constructed by surface hybridisation of colloidal metal halide perovskite CsPbA3 (A: Cl, Br, I) nanocrystals (NCs) with organic molecules (2,5-diphenyloxazole). The hybrid liquid scintillators, compared to state-of-the-art CsI and Gd2O2S, demonstrate markedly highly competitive radioluminescence quantum yields under X-ray irradiation typically employed in diagnosis and treatment. Experimental and theoretical analyses suggest that the enhanced quantum yield is associated with X-ray photon-induced charge transfer from the organic molecules to the NCs. High-resolution X-ray imaging is demonstrated using a hybrid CsPbBr3 NC-based liquid scintillator. The novel X-ray scintillation mechanism in our hybrid scintillators could be extended to enhance the quantum yield of various types of scintillators, enabling low-dose radiation detection in various fields, including fundamental science and imaging. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction scintillators, liquid scintillators generally have better Highly sensitive X-ray detection is becoming increas- resistance to damage arising from exposure to intense ingly important in areas from everyday life to industry, the radiation while providing excellent area/volume scal- – military, and scientific research1 4.
    [Show full text]
  • Colloidal Perovskite Nanocrystals and Led Applications
    BEŞKAZAK Emre Emre COLLOIDAL PEROVSKITE COLLOIDAL PEROVSKITE NANOCYRISTALS AND LED NANOCRYSTALS AND LED APPLICATIONS A THESIS APPLICATIONS SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF ABDULLAH GUL UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF M.Sc. By Emre BEŞKAZAK December 2019 AGU 2019 COLLOIDAL PEROVSKITE NANOCRYSTALS AND LED APPLICATIONS A THESIS SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF ABDULLAH GUL UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF M. Sc. By Emre BEŞKAZAK December 2019 SCIENTIFIC ETHICS COMPLIANCE I hereby declare that all information in this document has been obtained in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all materials and results that are not original to this work. Name-Surname: Emre BEŞKAZAK Signature : REGULATORY COMPLIANCE M.Sc. thesis titled Colloidal Perovskite Nano Crystals And LED Applications has been prepared in accordance with the Thesis Writing Guidelines of the Abdullah Gül University, Graduate School of Engineering & Science. Prepared By Advisor Emre BEŞKAZAK Assoc. Prof. Evren MUTLUGÜN Head of the Electrical and Computer Engineering Program Assoc. Prof. Vehbi Çağrı GÜNGÖR ACCEPTANCE AND APPROVAL M.Sc. thesis titled Colloidal Perovskite Nano Crystals And LED Applications and prepared by Emre BEŞKAZAK has been accepted by the jury in the Electrical and Computer Engineering Graduate Program at Abdullah Gül University, Graduate School of Engineering & Science. 26 /12 / 2019 JURY: Advisor : Assoc.
    [Show full text]
  • Photon Reabsorption in Mixed Cspbcl3:Cspbi3 Perovskite Nanocrystal Films for Light-Emitting Diodes Nathaniel J
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Article pubs.acs.org/JPCC Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes Nathaniel J. L. K. Davis,† Francisco J. de la Peña,‡ Maxim Tabachnyk,† Johannes M. Richter,† Robin D. Lamboll,† Edward P. Booker,† Florencia Wisnivesky Rocca Rivarola,‡ James T. Griffiths,‡ Caterina Ducati,‡ S. Matthew Menke,† Felix Deschler,† and Neil C. Greenham*,† † Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, U.K. ‡ Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, U.K. *S Supporting Information ABSTRACT: Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core−shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light- emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs.
    [Show full text]
  • Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
    nanomaterials Review Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals Lei Hou 1,2 , Philippe Tamarat 1,2 and Brahim Lounis 1,2,* 1 Université de Bordeaux, LP2N, F-33405 Talence, France; [email protected] (L.H.); [email protected] (P.T.) 2 Institut d’Optique and CNRS, LP2N, F-33405 Talence, France * Correspondence: [email protected] Abstract: Lead-halide perovskite nanocrystals (NCs) are attractive nano-building blocks for photo- voltaics and optoelectronic devices as well as quantum light sources. Such developments require a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structure has long been debated. In this review, we give an overview of recent magneto- optical spectroscopic studies revealing the entire excitonic fine structure and relaxation mechanisms in these materials, using a single-NC approach to get rid of their inhomogeneities in morphology and crystal structure. We highlight the prominent role of the electron-hole exchange interaction in the order and splitting of the bright triplet and dark singlet exciton sublevels and discuss the effects of size, shape anisotropy and dielectric screening on the fine structure. The spectral and temporal manifestations of thermal mixing between bright and dark excitons allows extracting the specific nature and strength of the exciton–phonon coupling, which provides an explanation for their remarkably bright photoluminescence at low temperature although the ground exciton state is optically inactive. We also decipher the spectroscopic characteristics of other charge complexes Citation: Hou, L.; Tamarat, P.; whose recombination contributes to photoluminescence. With the rich knowledge gained from these Lounis, B.
    [Show full text]
  • Long-Range Exciton Diffusion in Two- Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals
    Long-Range Exciton Diffusion in Two- Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals Erika Penzo,1* Anna Loiudice,2 Edward S. Barnard,1 Nicholas J. Borys,1† Matthew J. Jurow,1,3 Monica Lorenzon,1 Igor Rajzbaum,1 Edward K. Wong,1 Yi Liu, 1,3 Adam M. Schwartzberg,1 Stefano Cabrini,1 Stephen Whitelam,1 Raffaella Buonsanti,2 Alexander Weber-Bargioni1* 1 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 2 Institute of Chemical Sciences and Engineering of the École Polytechnique Fédérale de Lausanne, CH 1015, Switzerland 3 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Corresponding Authors * Erika Penzo: [email protected] *Alexander Weber-Bargioni: [email protected] 1 ABSTRACT Förster Resonant Energy Transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as an optoelectronic design element to transport energy. However, so far nanocrystal (NC) systems supported only diffusion lengths of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.5 cm2/s diffusivity through an ordered, two-dimensional assembly of cesium lead bromide perovskite nanocrystals (CsPbBr3 PNCs). Exciton diffusion was directly measured via steady-state and time-resolved photoluminescence (PL) microscopy, with physical modeling providing deeper insight into the transport process. This exceptionally efficient exciton transport is facilitated by PNCs’ high PL quantum yield, large absorption cross-section, and high polarizability, together with minimal energetic and geometric disorder of the assembly. This FRET-mediated exciton diffusion length matches perovskites’ optical absorption depth, thus enabling the design of device architectures with improved performances, and providing insight into the high conversion efficiencies of PNC-based optoelectronic devices.
    [Show full text]
  • Room Temperature Single-Photon Emission and Lasing for All-Inorganic Colloidal Perovskite Quantum Dots
    Nano Energy 28 (2016) 462–468 Contents lists available at ScienceDirect Nano Energy journal homepage: www.elsevier.com/locate/nanoen Communication Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots Xiaosheng Tang a, Zhiping Hu a, Weiwei Chen a, Xin Xing b, Zhigang Zang a,n, Wei Hu a, Jing Qiu a, Juan Du b,nn, Yuxin Leng b,e, Xiaofang Jiang c, Liqiang Mai d a Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China b State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China c Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, PR China d Department of Materials Science & Engineering, Wuhan University of Technology, China e School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China article info abstract Article history: Recent reports regarding metal halide semiconductors of perovskite nanocrystal structures have pre- Received 11 July 2016 sented us a promising future on their optoelectronic applications such as laser and light harvesting Received in revised form devices. In this paper, all-inorganic perovskites CsPbX3 (X¼Cl, Br and I) quantum dots (QDs) with tunable 28 August 2016 fluorescence from 400 nm to 700 nm were prepared by a facile hot-injection method. Besides, random Accepted 30 August 2016 lasing with coherent feedback was observed in films of CsPbX QDs. Under 400 nm optical excitation at Available online 31 August 2016 3 room temperature, sharp lasing peaks emission at around 427 nm, 527 nm and 539 nm with low pump Keywords: thresholds intensity were achieved by halide substitution.
    [Show full text]
  • Perovskite Nanocrystals for Energy Conversion and Storage
    Nanophotonics 2019; 8(10): 1607–1640 Review article Athanasia Kostopoulou*, Konstantinos Brintakis, Nektarios K. Nasikas and Emmanuel Stratakis* Perovskite nanocrystals for energy conversion and storage https://doi.org/10.1515/nanoph-2019-0119 perovskite nanostructures in different morphologies is Received April 20, 2019; revised June 18, 2019; accepted June 19, summarized and the energy-related properties and appli- 2019 cations are extensively discussed in this paper. Abstract: The high demand for energy consumption in Keywords: perovskite nanocrystals; energy conversion everyday life, and fears of climate change are driving devices; energy storage devices; thermoelectrics. the scientific community to explore prospective materi- als for efficient energy conversion and storage. Perovs- kites, a prominent category of materials, including metal 1 Introduction halides and perovskite oxides have a significant role as energy materials, and can effectively replace conventional The high demand for energy consumption in everyday life materials. The simultaneous need for new energy mate- activities along with fears of the climate changes highlight rials together with the increased interest for making new the importance to develop efficient energy conversion devices, and exploring new physics, thrust the research and storage devices. Thus, sufficient energy conversion to control the structuring of the perovskite materials at and storage together with low-cost energy materials are the nanoscale. Nanostructuring of the perovskites offers the most important requirements. In order to design such unique features such as a large surface area, extensive devices, it is crucial to study and understand the under- porous structures, controlled transport and charge-car- lying principles and mechanisms of renewable energy rier mobility, strong absorption and photoluminescence, conversion and storage.
    [Show full text]
  • Metal Halide Perovskite Light Emitters SPECIAL FEATURE: PERSPECTIVE Young-Hoon Kima,B,1, Himchan Choa,B,1, and Tae-Woo Leea,B,2
    SPECIAL FEATURE: PERSPECTIVE Metal halide perovskite light emitters SPECIAL FEATURE: PERSPECTIVE Young-Hoon Kima,b,1, Himchan Choa,b,1, and Tae-Woo Leea,b,2 Edited by John A. Rogers, University of Illinois, Urbana, IL, and approved August 16, 2016 (received for review May 10, 2016) Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges,
    [Show full text]
  • Colloidal Lead Halide Perovskite Nanocrystals: Synthesis, Optical Properties and Applications
    OPEN NPG Asia Materials (2016) 8, e328; doi:10.1038/am.2016.167 www.nature.com/am REVIEW Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications He Huang1, Lakshminarayana Polavarapu2, Jasmina A Sichert2, Andrei S Susha1, Alexander S Urban2 and Andrey L Rogach1 Lead halide perovskite nanocrystals (NCs) are receiving a lot of attention nowadays, due to their exceptionally high photoluminescence quantum yields reaching almost 100% and tunability of their optical band gap over the entire visible spectral range by modifying composition or dimensionality/size. We review recent developments in the direct synthesis and ion exchange-based reactions, leading to hybrid organic–inorganic (CH3NH3PbX3) and all-inorganic (CsPbX3) lead halide (X = Cl, Br, I) perovskite NCs, and consider their optical properties related to quantum confinement effects, single emission spectroscopy and lasing. We summarize recent developments on perovskite NCs employed as an active material in several applications such as light-emitting devices, solar cells and photodetectors, and provide a critical outlook into the existing and future challenges. NPG Asia Materials (2016) 8, e328; doi:10.1038/am.2016.167; published online 18 November 2016 INTRODUCTION (commonly Cs+), respectively. The optical and electronic properties Metal halide perovskite materials have attracted great scientificand of perovskites are tunable by varying the composition of constituted technological interest in recent years, due to their attractive optical halide ions
    [Show full text]
  • Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes
    nanomaterials Review Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes Dongxiang Luo 1, Lin Wang 2, Ying Qiu 3,*, Runda Huang 4 and Baiquan Liu 5,* 1 Institute of Semiconductors, South China Normal University, Guangzhou 510631, China; [email protected] 2 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore; [email protected] 3 Guangdong R&D Center for Technological Economy, Guangzhou 510000, China 4 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; [email protected] 5 State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China * Correspondence: [email protected] (Y.Q.); [email protected] (B.L.) Received: 26 May 2020; Accepted: 17 June 2020; Published: 24 June 2020 Abstract: In recent years, impurity-doped nanocrystal light-emitting diodes (LEDs) have aroused both academic and industrial interest since they are highly promising to satisfy the increasing demand of display, lighting, and signaling technologies. Compared with undoped counterparts, impurity-doped nanocrystal LEDs have been demonstrated to possess many extraordinary characteristics including enhanced efficiency, increased luminance, reduced voltage, and prolonged stability. In this review, recent state-of-the-art concepts to achieve high-performance impurity-doped nanocrystal LEDs are summarized. Firstly, the fundamental concepts of impurity-doped nanocrystal LEDs are presented. Then, the strategies to enhance the performance of impurity-doped nanocrystal LEDs via both material design and device engineering are introduced.
    [Show full text]
  • VU Research Portal
    VU Research Portal A Computational Approach to Understanding Lead Halide Perovskite Nanocrystals ten Brinck, S.C. 2020 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) ten Brinck, S. C. (2020). A Computational Approach to Understanding Lead Halide Perovskite Nanocrystals. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 02. Oct. 2021 VRIJE UNIVERSITEIT A COMPUTATIONAL APPROACH TO UNDERSTANDING LEAD HALIDE PEROVSKITE NANOCRYSTALS ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor of Philosophy aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. V. Subramaniam, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de Faculteit der Bètawetenschappen op dinsdag 15 september 2020 om 13.45 uur in de aula van de universiteit, De Boelelaan 1105 door Stephanie Caroline ten Brinck geboren te Den Haag promotor: prof.dr.
    [Show full text]
  • Free Cesium Manganese Bromine Perovskite Nanocrystal by Solvent Concentration
    Discovery of the Crystal Phase Transition on Lead- free Cesium Manganese Bromine Perovskite Nanocrystal by Solvent Concentration Tae Wook Kang Korea Institute of Ceramic Engineering and Technology Eun Jin Choi Korea Institute of Ceramic Engineering and Technology Young Ji Park Korea Institute of Ceramic Engineering and Technology Jonghee Hwang Korea Institute of Ceramic Engineering and Technology Byungseo Bae Yeongwol Industrial Promotion Agency Sun Woog Kim ( [email protected] ) Korea Institute of Ceramic Engineering and Technology Research Article Keywords: CsMnBr3 perovskite nanocrystals, Metal halide Cs3MnBr5 nanocrystal, Phase-tunable synthesis Posted Date: August 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-805887/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/12 Abstract We have been demonstrated the crystal phase transition for lead-free cesium manganese bromine perovskite nanocrystal synthesized by the modied hot-injection method due to change the concentration of solvent (trioctylphosphine; TOP). The compositions to be synthesized were determined by the amount of TOP solvent, and the structure phase of nanocrystal was changed from hexagonal CsMnBr3 to tetragonal Cs3MnBr5 as the amount of TOP solvent increased. The emission peaks of CsMnBr3 and Cs3MnBr5 nanocrystals were observed at 650 nm (red) and 520 nm (green), respectively. After a durability test at 85 °C and 85% humidity for 24 h, the lead-free perovskite CsMnBr3 nanocrystal powder maintained its initial emission intensity, and the metal halide Cs3MnBr5 nanocrystal powder exhibited an increase in red emission due to the post-synthesis of CsMnBr3 nanocrystals. Introduction + + Lead halide perovskites, which have the general formula APbX3 (where A = CH3NH3 (MA), HC(NH2)2 (FA), or Cs+; X = Cl, Br or I), has been studied since the middle of the 20th century [1–5].
    [Show full text]