The Riemannian Metric and Curvature Tensor on a Manifold

Total Page:16

File Type:pdf, Size:1020Kb

The Riemannian Metric and Curvature Tensor on a Manifold m The Riemannian Metric and Curvature Tensor on a Manifold a t h e m a t i c s Niles G. Johnson, 2003 David T. Guarrera, Northwestern University Homer F. Wolfe, New College of Florida Advisors: DaGang Yang and Morris Kalka (Tulane University) Department of Mathematics The computation of terms in a Taylor series illustrates an interplay between key geometric notions. he main goal and result of our of flat Euclidean space affixed at each point nian” means that the different inner prod- T work this summer was a com- on the manifold (see Figure 1(b)). This is a ucts change smoothly. With the metric in putation exhibiting the relation- generalization of the tangent lines (m = 1) the tangent space we produce a notion of ship between the curvature tensor and the studied in every calculus course. angle and distance on the manifold itself. Riemannian metric on a smooth Rieman- To say that a manifold is Riemannian is The 2-sphere (a mathematical model for the nian manifold. The most interesting and to say that it has a Riemannian metric, G = surface of a ball) is a Riemannian manifold. m exciting aspects of our work, however, were (gij) i,j = 1, which is an inner product on each When you say that the “straight lines” are the methods employed in the calculation. tangent space— it defines the measure of great circles and that each has length 2πr We will walk through an overview of these angles and distances in the tangent space. (where r is the radius of the sphere), you methods but leave most of the technical For vectors x, y in some tangent space, are recognizing the notion of angle and details in another paper. As we go, the goal G(x, y) = xGy, using matrix multiplication distance which is induced by the standard for which we worked is simple and should with x written as a row and y written as inner product on the tangent spaces. The be kept in mind. Differentiable functions a column. If p is the point whose tangent 2-sphere is in fact a smooth Riemannian can be written (in various ways) as infinite space we are considering, we may emphasize manifold; smooth means intuitively the polynomials, and one of the standard ways this by writing the components of G as gij|p same thing as its English homonym, and is called the Taylor series for the function. instead of just gij. This inner product need mathematically it means that everything in We looked at the Taylor series for a Ri- not be the same for each tangent space sight is differentiable (even the derivatives, emannian metric and showed that the terms (remember there is one for every point on and the derivatives of the derivatives, and in this polynomial are equal to expressions the manifold), but the adjective “Rieman- the . .). involving only the curvature tensor and its covariant derivatives. ��� GROUNDWORK � The setting for our investigation is a � geometric object referred to above as a � smooth Riemannian manifold. There are complicated technical definitions of mani- folds, but the idea they describe is a place in which small regions look like (are closely approximated by) small regions in Euclid- ��� ean space of a certain dimension, m, where m can be 1 (the real line, R), 2 (the plane, R2), 3 (R3), etc. The surface of a ball is a good example (for m = 2), because it shows how small pieces of a manifold could look like small pieces of a plane, while the whole manifold might not look like a plane (see Figure 1. A sphere is a good example of a smooth Riemannian manifold. a. A small Figure 1(a)). For each point on a manifold region of the sphere actually looks like a plane; b. At each point on a manifold, here we consider a tangent space, which is a copy our sphere, there is a tangent space. 30 Volume 2 Issue 1 Fall 2003 jur.rochester.edu 31 Taking derivatives on a manifold is The result we obtained expresses this tricky business, especially differentiating Taylor series in terms of the curvature tensor a tensor. We use two kinds of derivatives, and covariant derivatives of the curvature The curvature tensor and its covariant the partial derivative, ∂, and the covariant tensor (covariant derivatives can be thought derivatives are expressed as derivative, , both of which are directional of as partial derivatives for a tensor). The derivatives. To describe how components general line of reasoning we follow is: of G change along a certain direction (say k x ) we use ∂k. One of the important facts 1. Use the 'right' coordinate system and about differentiation in Euclidean space is study G and R in that coordinate sys- that partial derivatives of a smooth vector tem. (4) field commute; ∂k ∂l = ∂l ∂k for all l and k for each i, j, k1, …, kn. For n = 2 and n = 3, between 1 and m. On a general manifold, 2. Differentiate something called the we know the relationships more explicitly this is no longer true. The curvature tensor Gauss lemma to obtain a system of (the `polynomial in lower order partials' is a function, R, which describes the dif- equations involving appropriate par- turns out to be zero in each case). ference between k l and l k; that is, tial derivatives of the gij. the degree to which the manifold deviates from flat Euclidean space (how `curved’ it 3. Examine the summation is). Whereas the metric has m2 components, the curvature tensor has m4 components, (5) denoted Rikjl for some i, j, k, l, = 1, 2, …. Just Using the expression for covariant de- as with the components of the metric, each rivatives of R in terms of components component of the curvature tensor is a real gij (and their partial derivatives), find number (which may be different for differ- the highest-order derivatives of the gij (6) ent points on the manifold). For technical appearing in the summation above. reasons, we have to use the covariant de- THE GAUSS LEMMA rivative (instead of the partial derivative) to 4. Use relations derived from the Gauss The equalities above show that one determine how the components of R change lemma to reduce the terrible linear cannot simply substitute covariant deriva- as we move across the manifold along some combination of highest-order deriva- tives of the R into the Taylor series for gij. line. All we will need to know here is that tives to a single highest-order deriva- Instead, we use the Gauss lemma to express a covariant derivative in the direction of xk tive. summations of the form found in the Taylor is denoted k. series (equation 2) as summations of covari- Inductively, the lower order derivatives ant derivatives of R. AME LAN G P of the gij can be written in terms of lower Geometrically, the Gauss lemma says The curvature tensor is derived from the order covariant derivatives of the Rikjl, and that straight lines emanating from a point metric, and the net result of our work is a subtraction then gives the result. on a manifold are perpendicular to loci of description of the opposite result— namely Explicitly, we will compute, for each n, constant distance from the point. Algebra- that the metric can be described in terms ically, this can be expressed as of the curvature tensor. We achieve this by considering the Taylor series for the met- (7) ric, which is a natural generalization of the Taylor series studied during the first couple DERIVATIVES OF THE GAUSS LEMMA of semesters of calculus. One of the most (3) The beauty of equation 7 is that it easily th interesting Taylor series is the expression for a particular constant Cn. allows us to derive dependencies of the n for the exponential function. If t is a real order partials of gij at a base point p on the number and e = 2.718… denotes the base COORDINATES AND THE EXPRESSION FOR R manifold; this base point is the origin of our of the natural logarithm, then IN TERMS OF G coordinate system. Differentiating equation In linear algebra one studies various 7 by ∂/∂xi, we get (1) choices of bases for vector spaces, and an im- For a manifold, the same idea is general- portant first step in our work was to choose ized slightly to higher dimensions by taking a nonstandard basis more naturally suited sums over different combinations of com- to express the geometric relationships un- Evaluating at the origin (base point), ponents. If p is a point on the manifold der consideration. We referred to this new we get and q is a point nearby whose coordinates basis as the orthonormal frame (sometimes 1 in Euclidean space with respect to p are x , called local canonical coordinates). In this gij(0) = δki (8) x2,…,xm then in reasonable circumstances orthonormal frame, we have some identities o h n s o n for G automatically; they are a result that is not terribly impressive, since it is a property of normal coordinates that j (2) we have already derived. Let us continue the 32 Volume 2 Issue 1 Fall 2003 jur.rochester.edu 33 m process by differentiating again, this time Substituting, the above simplifies to by ∂/∂ l. We get (i,l | s,k) + (l,s | i,k) + (s,i | l,k) = 0 x (16) We can find the number of distinct a t h e m a t i c s Gauss equations that must exist for each Again, we evaluate at the base point to get order n.
Recommended publications
  • A Geometric Take on Metric Learning
    A Geometric take on Metric Learning Søren Hauberg Oren Freifeld Michael J. Black MPI for Intelligent Systems Brown University MPI for Intelligent Systems Tubingen,¨ Germany Providence, US Tubingen,¨ Germany [email protected] [email protected] [email protected] Abstract Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the struc- ture of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensional- ity reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Rieman- nian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data. 1 Learning and Computing Distances Statistics relies on measuring distances. When the Euclidean metric is insufficient, as is the case in many real problems, standard methods break down. This is a key motivation behind metric learning, which strives to learn good distance measures from data.
    [Show full text]
  • INTRODUCTION to ALGEBRAIC GEOMETRY 1. Preliminary Of
    INTRODUCTION TO ALGEBRAIC GEOMETRY WEI-PING LI 1. Preliminary of Calculus on Manifolds 1.1. Tangent Vectors. What are tangent vectors we encounter in Calculus? 2 0 (1) Given a parametrised curve α(t) = x(t); y(t) in R , α (t) = x0(t); y0(t) is a tangent vector of the curve. (2) Given a surface given by a parameterisation x(u; v) = x(u; v); y(u; v); z(u; v); @x @x n = × is a normal vector of the surface. Any vector @u @v perpendicular to n is a tangent vector of the surface at the corresponding point. (3) Let v = (a; b; c) be a unit tangent vector of R3 at a point p 2 R3, f(x; y; z) be a differentiable function in an open neighbourhood of p, we can have the directional derivative of f in the direction v: @f @f @f D f = a (p) + b (p) + c (p): (1.1) v @x @y @z In fact, given any tangent vector v = (a; b; c), not necessarily a unit vector, we still can define an operator on the set of functions which are differentiable in open neighbourhood of p as in (1.1) Thus we can take the viewpoint that each tangent vector of R3 at p is an operator on the set of differential functions at p, i.e. @ @ @ v = (a; b; v) ! a + b + c j ; @x @y @z p or simply @ @ @ v = (a; b; c) ! a + b + c (1.2) @x @y @z 3 with the evaluation at p understood.
    [Show full text]
  • Lecture 2 Tangent Space, Differential Forms, Riemannian Manifolds
    Lecture 2 tangent space, differential forms, Riemannian manifolds differentiable manifolds A manifold is a set that locally look like Rn. For example, a two-dimensional sphere S2 can be covered by two subspaces, one can be the northen hemisphere extended slightly below the equator and another can be the southern hemisphere extended slightly above the equator. Each patch can be mapped smoothly into an open set of R2. In general, a manifold M consists of a family of open sets Ui which covers M, i.e. iUi = M, n ∪ and, for each Ui, there is a continuous invertible map ϕi : Ui R . To be precise, to define → what we mean by a continuous map, we has to define M as a topological space first. This requires a certain set of properties for open sets of M. We will discuss this in a couple of weeks. For now, we assume we know what continuous maps mean for M. If you need to know now, look at one of the standard textbooks (e.g., Nakahara). Each (Ui, ϕi) is called a coordinate chart. Their collection (Ui, ϕi) is called an atlas. { } The map has to be one-to-one, so that there is an inverse map from the image ϕi(Ui) to −1 Ui. If Ui and Uj intersects, we can define a map ϕi ϕj from ϕj(Ui Uj)) to ϕi(Ui Uj). ◦ n ∩ ∩ Since ϕj(Ui Uj)) to ϕi(Ui Uj) are both subspaces of R , we express the map in terms of n ∩ ∩ functions and ask if they are differentiable.
    [Show full text]
  • Chapter 13 Curvature in Riemannian Manifolds
    Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + .
    [Show full text]
  • 5. the Inverse Function Theorem We Now Want to Aim for a Version of the Inverse Function Theorem
    5. The inverse function theorem We now want to aim for a version of the Inverse function Theorem. In differential geometry, the inverse function theorem states that if a function is an isomorphism on tangent spaces, then it is locally an isomorphism. Unfortunately this is too much to expect in algebraic geometry, since the Zariski topology is too weak for this to be true. For example consider a curve which double covers another curve. At any point where there are two points in the fibre, the map on tangent spaces is an isomorphism. But there is no Zariski neighbourhood of any point where the map is an isomorphism. Thus a minimal requirement is that the morphism is a bijection. Note that this is not enough in general for a morphism between al- gebraic varieties to be an isomorphism. For example in characteristic p, Frobenius is nowhere smooth and even in characteristic zero, the parametrisation of the cuspidal cubic is a bijection but not an isomor- phism. Lemma 5.1. If f : X −! Y is a projective morphism with finite fibres, then f is finite. Proof. Since the result is local on the base, we may assume that Y is affine. By assumption X ⊂ Y × Pn and we are projecting onto the first factor. Possibly passing to a smaller open subset of Y , we may assume that there is a point p 2 Pn such that X does not intersect Y × fpg. As the blow up of Pn at p, fibres over Pn−1 with fibres isomorphic to P1, and the composition of finite morphisms is finite, we may assume that n = 1, by induction on n.
    [Show full text]
  • Hodge Theory
    HODGE THEORY PETER S. PARK Abstract. This exposition of Hodge theory is a slightly retooled version of the author's Harvard minor thesis, advised by Professor Joe Harris. Contents 1. Introduction 1 2. Hodge Theory of Compact Oriented Riemannian Manifolds 2 2.1. Hodge star operator 2 2.2. The main theorem 3 2.3. Sobolev spaces 5 2.4. Elliptic theory 11 2.5. Proof of the main theorem 14 3. Hodge Theory of Compact K¨ahlerManifolds 17 3.1. Differential operators on complex manifolds 17 3.2. Differential operators on K¨ahlermanifolds 20 3.3. Bott{Chern cohomology and the @@-Lemma 25 3.4. Lefschetz decomposition and the Hodge index theorem 26 Acknowledgments 30 References 30 1. Introduction Our objective in this exposition is to state and prove the main theorems of Hodge theory. In Section 2, we first describe a key motivation behind the Hodge theory for compact, closed, oriented Riemannian manifolds: the observation that the differential forms that satisfy certain par- tial differential equations depending on the choice of Riemannian metric (forms in the kernel of the associated Laplacian operator, or harmonic forms) turn out to be precisely the norm-minimizing representatives of the de Rham cohomology classes. This naturally leads to the statement our first main theorem, the Hodge decomposition|for a given compact, closed, oriented Riemannian manifold|of the space of smooth k-forms into the image of the Laplacian and its kernel, the sub- space of harmonic forms. We then develop the analytic machinery|specifically, Sobolev spaces and the theory of elliptic differential operators|that we use to prove the aforementioned decom- position, which immediately yields as a corollary the phenomenon of Poincar´eduality.
    [Show full text]
  • Curvature of Riemannian Manifolds
    Curvature of Riemannian Manifolds Seminar Riemannian Geometry Summer Term 2015 Prof. Dr. Anna Wienhard and Dr. Gye-Seon Lee Soeren Nolting July 16, 2015 1 Motivation Figure 1: A vector parallel transported along a closed curve on a curved manifold.[1] The aim of this talk is to define the curvature of Riemannian Manifolds and meeting some important simplifications as the sectional, Ricci and scalar curvature. We have already noticed, that a vector transported parallel along a closed curve on a Riemannian Manifold M may change its orientation. Thus, we can determine whether a Riemannian Manifold is curved or not by transporting a vector around a loop and measuring the difference of the orientation at start and the endo of the transport. As an example take Figure 1, which depicts a parallel transport of a vector on a two-sphere. Note that in a non-curved space the orientation of the vector would be preserved along the transport. 1 2 Curvature In the following we will use the Einstein sum convention and make use of the notation: X(M) space of smooth vector fields on M D(M) space of smooth functions on M 2.1 Defining Curvature and finding important properties This rather geometrical approach motivates the following definition: Definition 2.1 (Curvature). The curvature of a Riemannian Manifold is a correspondence that to each pair of vector fields X; Y 2 X (M) associates the map R(X; Y ): X(M) ! X(M) defined by R(X; Y )Z = rX rY Z − rY rX Z + r[X;Y ]Z (1) r is the Riemannian connection of M.
    [Show full text]
  • Semi-Riemannian Manifold Optimization
    Semi-Riemannian Manifold Optimization Tingran Gao William H. Kruskal Instructor Committee on Computational and Applied Mathematics (CCAM) Department of Statistics The University of Chicago 2018 China-Korea International Conference on Matrix Theory with Applications Shanghai University, Shanghai, China December 19, 2018 Outline Motivation I Riemannian Manifold Optimization I Barrier Functions and Interior Point Methods Semi-Riemannian Manifold Optimization I Optimality Conditions I Descent Direction I Semi-Riemannian First Order Methods I Metric Independence of Second Order Methods Optimization on Semi-Riemannian Submanifolds Joint work with Lek-Heng Lim (The University of Chicago) and Ke Ye (Chinese Academy of Sciences) Riemannian Manifold Optimization I Optimization on manifolds: min f (x) x2M where (M; g) is a (typically nonlinear, non-convex) Riemannian manifold, f : M! R is a smooth function on M I Difficult constrained optimization; handled as unconstrained optimization from the perspective of manifold optimization I Key ingredients: tangent spaces, geodesics, exponential map, parallel transport, gradient rf , Hessian r2f Riemannian Manifold Optimization I Riemannian Steepest Descent x = Exp (−trf (x )) ; t ≥ 0 k+1 xk k I Riemannian Newton's Method 2 r f (xk ) ηk = −∇f (xk ) x = Exp (−tη ) ; t ≥ 0 k+1 xk k I Riemannian trust region I Riemannian conjugate gradient I ...... Gabay (1982), Smith (1994), Edelman et al. (1998), Absil et al. (2008), Adler et al. (2002), Ring and Wirth (2012), Huang et al. (2015), Sato (2016), etc. Riemannian Manifold Optimization I Applications: Optimization problems on matrix manifolds I Stiefel manifolds n Vk (R ) = O (n) =O (k) I Grassmannian manifolds Gr (k; n) = O (n) = (O (k) × O (n − k)) I Flag manifolds: for n1 + ··· + nd = n, Flag = O (n) = (O (n ) × · · · × O (n )) n1;··· ;nd 1 d I Shape Spaces k×n R n f0g =O (n) I .....
    [Show full text]
  • The Orientation Manifesto (For Undergraduates)
    The Orientation Manifesto (for undergraduates) Timothy E. Goldberg 11 November 2007 An orientation of a vector space is represented by an ordered basis of the vector space. We think of an orientation as a twirl, namely the twirl that rotates the first basis vector to the second, and the second to the third, and so on. Two ordered bases represent the same orientation if they generate the same twirl. (This amounts to the linear transformation taking one basis to the other having positive determinant.) If you think about it carefully, there are only ever two choices of twirls, and hence only two choices of orientation. n Because each R has a standard choice of ordered basis, fe1; e2; : : : ; eng (where ei is has 1 in the ith coordinates and 0 everywhere else), each Rn has a standard choice of orientation. The standard orientation of R is the twirl that points in the positive direction. The standard orientation of R2 is the counterclockwise twirl, moving from 3 e1 = (1; 0) to e2 = (0; 1). The standard orientation of R is a twirl that sweeps from the positive x direction to the positive y direction, and up the positive z direction. It's like a directed helix, pointed up and spinning in the counterclockwise direction if viewed from above. See Figure 1. An orientation of a curve, or a surface, or a solid body, is really a choice of orientations of every single tangent space, in such a way that the twirls all agree with each other. (This can be made horribly precise, when necessary.) There are several ways for a manifold to pick up an orientation.
    [Show full text]
  • On Manifolds of Negative Curvature, Geodesic Flow, and Ergodicity
    ON MANIFOLDS OF NEGATIVE CURVATURE, GEODESIC FLOW, AND ERGODICITY CLAIRE VALVA Abstract. We discuss geodesic flow on manifolds of negative sectional curva- ture. We find that geodesic flow is ergodic on the tangent bundle of a manifold, and present the proof for both n = 2 on surfaces and general n. Contents 1. Introduction 1 2. Riemannian Manifolds 1 2.1. Geodesic Flow 2 2.2. Horospheres and Horocycle Flows 3 2.3. Curvature 4 2.4. Jacobi Fields 4 3. Anosov Flows 4 4. Ergodicity 5 5. Surfaces of Negative Curvature 6 5.1. Fuchsian Groups and Hyperbolic Surfaces 6 6. Geodesic Flow on Hyperbolic Surfaces 7 7. The Ergodicity of Geodesic Flow on Compact Manifolds of Negative Sectional Curvature 8 7.1. Foliations and Absolute Continuity 9 7.2. Proof of Ergodicity 12 Acknowledgments 14 References 14 1. Introduction We want to understand the behavior of geodesic flow on a manifold M of constant negative curvature. If we consider a vector in the unit tangent bundle of M, where does that vector go (or not go) when translated along its unique geodesic path. In a sense, we will show that the vector goes \everywhere," or that the vector visits a full measure subset of T 1M. 2. Riemannian Manifolds We first introduce some of the initial definitions and concepts that allow us to understand Riemannian manifolds. Date: August 2019. 1 2 CLAIRE VALVA Definition 2.1. If M is a differentiable manifold and α :(−, ) ! M is a dif- ferentiable curve, where α(0) = p 2 M, then the tangent vector to the curve α at t = 0 is a function α0(0) : D ! R, where d(f ◦ α) α0(0)f = j dt t=0 for f 2 D, where D is the set of functions on M that are differentiable at p.
    [Show full text]
  • Deep Riemannian Manifold Learning
    Deep Riemannian Manifold Learning Aaron Lou1∗ Maximilian Nickel2 Brandon Amos2 1Cornell University 2 Facebook AI Abstract We present a new class of learnable Riemannian manifolds with a metric param- eterized by a deep neural network. The core manifold operations–specifically the Riemannian exponential and logarithmic maps–are solved using approximate numerical techniques. Input and parameter gradients are computed with an ad- joint sensitivity analysis. This enables us to fit geodesics and distances with gradient-based optimization of both on-manifold values and the manifold itself. We demonstrate our method’s capability to model smooth, flexible metric structures in graph embedding tasks. 1 Introduction Geometric domain knowledge is important for machine learning systems to interact, process, and produce data from inherently geometric spaces and phenomena [BBL+17, MBM+17]. Geometric knowledge often empowers the model with explicit operations and components that reflect the geometric properties of the domain. One commonly used construct is a Riemannian manifold, the generalization of standard Euclidean space. These structures enable models to represent non-trivial geometric properties of data [NK17, DFDC+18, GDM+18, NK18, GBH18]. However, despite this capability, the current set of usable Riemannian manifolds is surprisingly small, as the core manifold operations must be provided in a closed form to enable gradient-based optimization. Worse still, these manifolds are often set a priori, as the techniques for interpolating between manifolds are extremely restricted [GSGR19, SGB20]. In this work, we study how to integrate a general class of Riemannian manifolds into learning systems. Specifically, we parameterize a class of Riemannian manifolds with a deep neural network and develop techniques to optimize through the manifold operations.
    [Show full text]
  • Manifolds, Tangent Vectors and Covectors
    Physics 250 Fall 2015 Notes 1 Manifolds, Tangent Vectors and Covectors 1. Introduction Most of the “spaces” used in physical applications are technically differentiable man- ifolds, and this will be true also for most of the spaces we use in the rest of this course. After a while we will drop the qualifier “differentiable” and it will be understood that all manifolds we refer to are differentiable. We will build up the definition in steps. A differentiable manifold is basically a topological manifold that has “coordinate sys- tems” imposed on it. Recall that a topological manifold is a topological space that is Hausdorff and locally homeomorphic to Rn. The number n is the dimension of the mani- fold. On a topological manifold, we can talk about the continuity of functions, for example, of functions such as f : M → R (a “scalar field”), but we cannot talk about the derivatives of such functions. To talk about derivatives, we need coordinates. 2. Charts and Coordinates Generally speaking it is impossible to cover a manifold with a single coordinate system, so we work in “patches,” technically charts. Given a topological manifold M of dimension m, a chart on M is a pair (U, φ), where U ⊂ M is an open set and φ : U → V ⊂ Rm is a homeomorphism. See Fig. 1. Since φ is a homeomorphism, V is also open (in Rm), and φ−1 : V → U exists. If p ∈ U is a point in the domain of φ, then φ(p) = (x1,...,xm) is the set of coordinates of p with respect to the given chart.
    [Show full text]