Alaska Department of Environmental Conservation

Total Page:16

File Type:pdf, Size:1020Kb

Alaska Department of Environmental Conservation PETITION of Youth Petitioners and Alaska Youth for Environmental Action to the Alaska Department of Environmental Conservation For the promulgation of a rule to ensure an effective emissions reduction trajectory that is based on best climate science and will achieve safe atmospheric concentrations of carbon dioxide by 2100. Brad De Noble De Noble Law Offices LLC 11517 Old Glenn Highway, Suite 202 Eagle River, Alaska 99577 T: (907) 694-4345 E-mail: [email protected] On Behalf of Petitioners August 28, 2017 Pursuant to AS §§ 44.62.220, Alaska youth, including Essau S , Cade T , Macy Rae K , Linnea L , Jasmine I , Nathan B , Tasha E , Summer S , Liszka B , Lila S , Cecily S , Ananda L , Griffin P , Lexine D , and Solomon S , and Alaska Youth for Environmental Action, a project of the Alaska Center Education Fund, a 501(c)(3) non-profit corporation (collectively, “Petitioners”), hereby petition the Alaska Department of Environmental Conservation (“the Department”) for the adoption of a regulation under the Department’s authority and pursuant to its obligations under the Constitution of the State of Alaska, the Public Trust Doctrine, and statutes and regulations, to protect the rights and common welfare of present and future generations of Alaskans by implementing an enforceable, effective carbon dioxide (“CO2”) and GHG reduction strategy that is based on the best climate science and is aimed at ensuring that Alaska does its part to restore the concentration of CO2 in the atmosphere to 350 parts per million (“ppm”) by 2100. Such a rule is necessary in order to ensure that the worst impacts of climate change and ocean acidification are avoided and do not cause further catastrophic and irreversible harm to present and future generations of Alaskan youth. Substance of the regulation requested: Specifically, Petitioners request that the Department promulgate the rule proposed below: *** Proposed Rule PREAMBLE: Human activity, primarily from the combustion of fossil fuels, has increased the global concentration of greenhouse gases in the atmosphere. Science informs us that the increase in atmospheric carbon dioxide (CO2) concentrations has already warmed the global climate system and acidified the oceans, causing significant adverse effects to human health, safety, and welfare and Earth’s natural systems. Left unabated, global climate destabilization and ocean acidification will have long-term catastrophic effects on human systems and the habitability of Alaska and the nation. The best climate science indicates that the global concentration of CO2 in the atmosphere must be rapidly reduced to no more than 350 parts per million (ppm) to protect the climate system humans depend upon. If global CO2 emissions are reduced by at least 85% from 1990 levels by 2050, and continue to decline thereafter, and there is significant reforestation around the world, global atmospheric CO2 levels are likely to stabilize at 350 ppm by 2100 thus avoiding the most severe impacts of climate destabilization. These targets reflect the global average emissions reductions required to remedy our climate emergency without accounting for the differentiated and equitable responsibilities of individual states and their historic contribution to carbon pollution. The goal of this rule is to protect the rights of present and future generations of all Alaskans, including Alaska Natives, to a healthy atmosphere and stable climate system, and to safeguard their inheritance of the legacy and heritage of the State of Alaska. Specifically, this rule is intended to: (1) fulfill the State’s Public Trust obligation to prevent waste and substantial impairment of trust resources (2) achieve Alaska’s constitutional “principles that all persons have 1 a natural right to life, liberty, [and] the pursuit of happiness…[and] that all persons are equal and entitled to equal rights, opportunities, and protection under the law;”1 (3) realize Alaska’s constitutional obligation “to secure and transmit to succeeding generations our heritage of political, civil and religious liberty;”2 (4) to carry out the Department’s statutory duty “to conserve, improve, and protect [Alaska’s] natural resources and environment and control water, land, and air pollution, in order to enhance the health, safety, and welfare of the people of the state and their overall economic and social well-being;”3 and (5) to fulfill the Department’s statutory duty to “manage the basic resources of water, land, and air to the end that the state may fulfill its responsibility as trustee of the environment for the present and future generations.”4 DEFINITIONS: 1. “Best Climate Science” means: a. the most current scientific knowledge and understanding from qualified climate system scientists on safe levels of atmospheric CO2 and other greenhouse gases and their near-term and long-term impacts; and b. the most current scientific knowledge and understanding from qualified climate system scientists as to the greenhouse gas emissions reductions and CO2 sequestration required to stabilize the climate system and preserve a habitable and safe climate system for future generations. 2. “Carbon Budget” means the total amount of CO2 emissions that can be released over a specific time frame while ensuring a return to the maximum safe limit of 350 ppm of CO2 by 2100, or a lower level as may be determined by the best climate science. 3. “CO2” means carbon dioxide. 4. “Consumption Emissions and Inventory” means a greenhouse gas inventory focused on all emissions associated with materials and services, including electricity and fuels, consumed in Alaska, including estimates of embedded emissions associated with the life cycle of such materials and services. These emissions are included regardless of whether they physically originate in Alaska. A consumption-based inventory uniquely counts out- of-state emissions associated with producing and transporting the products, services, and fuels consumed in Alaska. It also counts emissions associated with producing and transporting fuels that are used to generate electricity consumed in Alaska. 5. “Department” means the Alaska Department of Environmental Conservation. 6. “Greenhouse Gas” or “GHG” means any gas that has contributed to anthropogenic global warming, including but not limited to carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexaflouride. 7. “In-boundary Emissions and Inventory” means the greenhouse gas inventory focused on all emissions produced within the state and also includes emissions associated with the extraction, transportation, refinement, and combustion of fossil fuels extracted in Alaska, whether such transportation, refinement, or combustion occurs within or outside of the state. In-boundary emissions inventories exclude many of the emissions associated with materials and goods produced outside, and imported into, the state. 1 ALASKA CONST. art. I, § 1. 2 ALASKA CONST. Preamble. 3 ALASKA STAT. ANN. § 46.03.010(a). 4 ALASKA STAT. ANN. § 46.03.010(b). 2 8. “MMTCO2” means million metric tons CO2. 9. “MMTCO2e” means million metric tons CO2 equivalent. 10. “PPM” means parts per million atmospheric concentration. EMISSION REDUCTIONS: 1. The Department shall regulate stationary and mobile sources of CO2 emissions and the extraction of fossil fuels within the State of Alaska to: a. Ensure that Alaska reduces its total in-boundary and consumption CO2 emissions to at least 85% below 1990 levels by 2050 in order for its emission reductions to be consistent with the global average emission reductions required to return global atmospheric CO2 to 350 ppm by the end of the century; b. Establish interim benchmarks requirements for minimum levels of emission reductions for at least the years 2020, 2030, and 2040 to guide progress toward the 2050 reduction requirement; c. Ensure that Alaska’s in-boundary CO2 emissions are reduced by at least 8.5 percent per year beginning in 2018; and d. Prepare a numerical statewide goal or “carbon budget,” taking into account both in-boundary and consumption emissions, in order to meet the requirements of subsections (a) through (c) of this section so that Alaska may do its share in achieving 350 ppm of CO2 in the atmosphere by the year 2100. CARBON ACCOUNTING AND INVENTORY: 2. The Department shall provide an accounting to Alaska citizens of its management of the atmospheric trust asset by publishing annual progress reports on statewide GHG emissions measured in both MMTCO2 and MMTCO2e. These reports must include an accounting and inventory for each and every substantial source of GHG emissions within Alaska, including, but not limited to: a. in-boundary emissions from the transportation, industrial, commercial, institutional, residential, electrical, agricultural, and waste sectors; and b. consumption emissions associated with Alaskans’ consumption of goods, services, and materials imported into Alaska. Reports must be available to the public no later than January 31 of each year, beginning in the year 2018, with a lag time of no more than one year (i.e., the 2018 report should contain emissions data from 2017). CLIMATE ACTION PLAN: 3. Within six months of adoption of these regulations, the Department, with input from stakeholders, shall adopt a Climate Action Plan to meet the reduction requirements specified herein. The Department, with input from stakeholders, shall amend the Climate Action Plan as necessary to address any adjustments to the reduction requirements and interim benchmarks affected by revisions
Recommended publications
  • Initial Results from the First Year of the Permafrost Outreach Program, Yukon, Canada P.S
    Initial results from the first year of the Permafrost Outreach Program, Yukon, Canada P.S. Lipovsky and K. Yoshikawa Initial results from the first year of the Permafrost Outreach Program, Yukon, Canada Panya S. Lipovsky1 Yukon Geological Survey Kenji Yoshikawa2 University of Alaska Fairbanks Lipovsky, P.S. and Yoshikawa, K., 2009. Initial results from the first year of the Permafrost Outreach Program, Yukon, Canada. In: Yukon Exploration and Geology 2008, L.H. Weston, L.R. Blackburn and L.L. Lewis (eds.), Yukon Geological Survey, p. 161-172. ABSTRACT In 2007, a permafrost outreach program was initiated in Yukon, Canada by installing long-term permafrost monitoring stations near public schools in Whitehorse, Faro, Ross River, Dawson, Old Crow and Beaver Creek. Shallow boreholes were drilled near participating schools, and data loggers were installed to measure hourly air and ground temperatures at a variety of depths. Frost tubes were also installed in fall 2008 to start monitoring seasonal freezing and thawing trends in the active layer. School students are actively engaged with field data collection and interpretation of results posted on a central website. The program also provides baseline data that can be used to characterize local permafrost conditions and detect long-term changes. A snapshot of current permafrost conditions is provided for each monitoring station, based on the first year of data collection. RÉSUMÉ En 2007, un programme de sensibilisation au pergélisol a été lancé au Yukon en établissant des stations de surveillance à long terme du pergélisol près d’écoles publiques à Whitehorse, Faro, Ross River, Dawson, Old Crow et Beaver Creek.
    [Show full text]
  • An Inconvenient Truth: Transcript
    An Inconvenient Truth: Transcript From: http://forumpolitics.com/blogs/2007/03/17/an-inconvient-truth-transcript March 17, 2007 Introduction You look at that river gently flowing by. You notice the leaves rustling with the wind. You hear the birds; you hear the tree frogs. In the distance you hear a cow. You feel the grass. The mud gives a little bit on the river bank. It’s quiet; it’s peaceful. And all of a sudden, it’s a gear shift inside you. And it’s like taking a deep breath and going, “Oh yeah, I forgot about this.” Earth Rise This is the first picture of the Earth from space that any of us ever saw. It was taken on Christmas Eve 1968 during the Apollo 8 mission. More…In relatively comfortable boundaries… But we are filling up that thin shell of atmosphere with pollutants. I’m Al Gore. I used to be the next president of the United States. [ laughter and applause from audience ] I don’t find that particularly funny. I’ve been trying to tell this story for a long time and I feel as I’ve failed to get the message across. I was in politics for a long time. I’m proud of my services. (Mayor of New Orleans in background ). There are good people who are in politics who hold this at arm’s length because they acknowledge it and recognize it as a moral imperative to make big changes. And they lost radio contact when they went around to the dark side of the moon and there was inevitably some suspense.
    [Show full text]
  • High Risk of Permafrost Thaw
    High Risk of Permafrost Thaw E.A.G. Schuur1, B. Abbott2, C.D, Koven3, W.J. Riley3, Z.M. Subin3, et al. 1Department of Biology, University of Florida, Gainesville, FL 2Institute of Arctic Biology at the University of Alaska, Fairbanks, AK 3Lawrence Berkeley National Laboratory, Berkeley, CA (Koven, Riley, and Subin are partially supported by the U.S. Department of Energy and LBNL under Contract No. DE-AC02-05CH11231.) Frozen soils in the north are likely to release huge amounts of carbon in a warmer world, say Edward A.G. Schuur and the Vulnerability of Permafrost Carbon Research Coordination Network. In the Arctic, temperatures are rising fast, and permafrost is thawing. Carbon released to the atmosphere from permafrost soils could accelerate climate change, but the likely magnitude of this effect is still highly uncertain. A collective estimate made by a group of permafrost experts, including myself, is that carbon could be released more quickly than models currently suggest, and at levels that are cause for serious concern. Recent years have brought reports from the far north of tundra fires1, the release of ancient carbon2, methane bubbling out of lakes3, and gigantic stores of frozen soil carbon4. The newest estimate is that some 18.8 million km2 of northern soils hold about 1,700 billion tonnes of organic carbon – the remains of plants and animals that have been accumulating in soil over thousands of years. That’s about four times all the carbon ever emitted by human activity in modern times and twice as much as is currently found in the atmosphere.
    [Show full text]
  • Recommended by the Committee)
    Information (recommended by the committee) The sound placed in our presentation functions only in the Power Point application, not on the internet version. Forestry Climate Is a branch of the The Earth's climate is economy. 182 million ha shaped by numerous of European forests cover factors and processes. It is 44.7% of its area. It is determined on the basis one of the most of long-term weather important sources of observations for the renewable energy. Our region (at least 30 forests are very diverse in years). The earth's terms of type of trees, thermal imbalance is forest policy fauna and caused by natural and flora. human factors. Forestation in Europe In Europe, the largest forest area is in Russia; it amounts to around 809 million ha, which represents 79% of the total forest area in Europe. The largest forest cover is in northern Europe (53%) and Russia (49.4%), while the smallest is in South- Eastern Europe (23%). Numerous floods of coastal Forest fires Death of many species of flora areas and fauna Heat waves in Europe Problems in agriculture, Melting of glaciers forestry and tourism Threats of climate change Change in average temperature Diseases and insect infestations Economic problems Organisms have difficulty adapting to new environmental conditions Poor yields In the graphs below, we can easily see how CO2 emissions affect polar environments. Along with the huge increase in emissions of this harmful gas in 1960, the thickness of ice sheets began to decrease, which continues to this day. This often results in flooding of coastal cities and lowlands.
    [Show full text]
  • Science Update Issue 26 / Winter 2019
    United States Forest Department of Service Science Agriculture INSIDE Warming in the Cold North .................................................. 1 Ripples Far and Wide ............................................................ 8 Assessing Vulnerability ..........................................................11 Remote Sensing the Remote Forest .........................................12 Update Issue #26 / Winter 2019 Warming in the Cold North Unlocked doors in Utqia˙gvik he town of Utqiag˙vik, Alaska, has an unspoken The Arctic tundra is one of the Earth’s coldest and rule: always leave the outer door to your house harshest biomes. Ecologist Janet Prevéy experienced this in unlocked. Formerly known as Barrow, Utqiag˙vik person in 2015. “I was there in August and it was freezing. (pronouncedT oot-ghar-vik) is the northernmost commu- There are no trees for miles,” she said. “It’s a stark landscape nity in the United States, located 300 miles north of the with these really hardy little plants that don’t grow more Arctic Circle on the Arctic Ocean. It was renamed in 2016 than three inches off the ground.” to restore the town’s traditional Inupiaq name. Prevéy was collecting data on those plants, alongside Houses are built on pilings because the ground is per- two field technicians. They took advantage of the almost mafrost—permanently frozen. If a building sits directly perpetual daylight and worked until 7:00 or 8:00 at night, on the ground, its heat thaws the icy soil causing the kneeling for hours over tiny plants. They would pull nitrile structure to sink into soft mud. In the Alaskan Arctic, gloves over their regular winter gloves to try to keep their permafrost can be as cold as 14 °F (-10 °C) and up to hands dry because the cold so quickly numbed all feeling 2,000 feet thick.
    [Show full text]
  • The Story of Carbon Meet Philip Duffy Also in This Issue
    CanopyFALL 2014 The Story of Carbon Connecting land and climate Meet Philip Duffy Introducing the President-designate of Woods Hole Research Center Also in this Issue Beyond Zero Deforestation Conversation Between Scientists How Dynamic are Tropical Forests? Forgotten Feedbacks Restoring the Biosphere Science for the Future of the Earth Where We Work Scientists to Watch Canopy Annual Magazine Letter from the of the Acting President Woods Hole Research Center Contents First of all, I hope you’ll join me in welcoming our President-designate, Dr. Philip Duffy. This External Affairs of Woods Hole Research Center coming year, the Woods Hole Research Center Canopy magazine is published by the Office of (WHRC) in Falmouth, Massachusetts. WHRC will celebrate its 30th anniversary of making is an independent research institution where a difference in the world and Phil Duffy is the scientists investigate the causes and effects of climate change to identify opportunities right person to lead this institution into the for conservation, restoration and economic next 30 years. development around the globe. 1 From the Acting President 3 Staff / Board & Donor Spotlights WHRC is all about the Land-Climate Connection, and that connection is Acting President and Senior Scientist, largely about carbon. Carbon is the thread that runs through all of the 2 Board of Directors 24 Happenings Dr. Richard A. Houghton research at WHRC and the impacts that follow from our work. Carbon dioxide (CO ) is the major heat-trapping gas under human control. CO Director of External Affairs, Eunice Youmans 2 2 drives climate change. CO2 is released to the atmosphere as a result Graphic Designer, Julianne Waite of deforestation and cultivation.
    [Show full text]
  • High Risk of Permafrost Thaw Northern Soils Will Release Huge Amounts of Carbon in a Warmer World, Say Edward A
    .... Abrupt thaw, as seen here in Alaska's Noatak National Preserve, causes the land to collapse, accelerating permafrost degradation and carbon release. High risk of permafrost thaw Northern soils will release huge amounts of carbon in a warmer world, say Edward A. G. Schuur, Benjamin Abbott and the Permafrost Carbon Network. rctic temperatures are rising fast, largely because of the realization that organic greenhouse gas with about 25 times more and permafrost is thawing. Carbon carbon is stored much deeper in frozen soils warming potential than C02 over a 100-year A released into the atmosphere from than was thought. Inventories typically meas­ period. However, waterlogged environments permafrost soils will accelerate climate ure carbon in the top metre of soil. But the also tend to retain more carbon within the change, but the magnitude of this effect physical mixing during freeze-thaw cycles, in soil. It is not yet understood how these fac­ remains highly uncertain. Our collective combination with sediment deposition over tors will act together to affect future climate. estimate is that carbon will be released more hundreds and thousands of years, has buried The ability to project how much carbon will quickly than models suggest, and at levels permafrost carbon many metres deep. be released is hampered both by the fact that that are cause for serious concern. The answers to three key questions will models do not account for some important We calculate that permafrost thaw will determine the extent to which the emission processes, and by a lack of data to inform the release the same order of magnitude of of this carbon will affect climate change: How models.
    [Show full text]
  • Ebook Download the Drunken Forest
    THE DRUNKEN FOREST PDF, EPUB, EBOOK Gerald Durrell | 192 pages | 21 Apr 2016 | Pan MacMillan | 9781509827077 | English | London, United Kingdom The Drunken Forest PDF Book Tanned edges, else, clean and tidy. Durrell is in quest of the odder of the small birds and animals to be founf in the Argentinian Pampas and the little-explored Chaco territory of Paraguay. Goblins On Acid First edition copy. Unless they happen to be near a road or a rabbit trail, drunken forests are usually the result of a gradual climate warming that melts permafrost. It's not just trees. Please, email us to describe your idea. The item may have some signs of cosmetic wear, but is fully operational and functions as intended. Published by Penguin Books Published by Penguin, Harmondsworth. Light age spotting to end papers. Bright copy of Durrell's fifth book, an account of his animal-collecting expedition to the Argentine pampas and the Chaco territory of Paraguay. Ralph Thompson illustrator. In any case, this book is a keeper and I recommend it to everyone. Goblins On Acid buy track 3. Short description : Gerald Da ell. I love Durrell's books, all of them great! Unsourced material may be challenged and removed. A nice reading copy. Almost there! Ratings and Reviews Write a review. Matt Warder. The partnership was an extraordinarily fruitful one, lasting a full decade and resulting in Durrell's most attractive books, including, of course, 'My Family and other Animals'. Notify me of new posts via email. Drunken, or "collapsed" trees, are one of the more visible signs of change in the north.
    [Show full text]
  • High Density Airborne Lidar Estimation of Disrupted Trees Induced by Landslides
    HIGH DENSITY AIRBORNE LIDAR ESTIMATION OF DISRUPTED TREES INDUCED BY LANDSLIDES Khamarrul Azahari Razak (1,2,5), Alexander Bucksch (3), Menno Straatsma (4), Cees J. Van Westen (2), Rabieahtul Abu Bakar (4), Steven M. de Jong (5) 1) UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur, Malaysia 2) Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, P.O Box 217, 7500AE, The Netherlands 3) School of Biology and School of Interactive Computing, Georgia Institute of Technology, Atlanta, Georgia, United States of America 4) Southeast Asia Disaster Prevention Research Institute, Universiti Kebangsaan Malaysia, Malaysia 5) Utrecht University, Department of Physical Geography, Utrecht, The Netherlands ABSTRACT morphology, vegetation and drainage conditions of the slopes [2]. However little attempt has been made to utilize Airborne laser scanning (ALS) data has revolutionized the ALS data to represent tree structures that may be the landslide assessment in a rugged vegetated terrain. It indicative of landslides, because the required high point enables the parameterization of morphology and vegetation density, the error in ALS data and limited capability of of the instability slopes. Vegetation characteristics are by far passive remote sensing instruments to detect variability of less investigated because of the currently available accuracy 3D-forest-structure [3]. and density ALS data and paucity of field data validation. Woody vegetation can be an indicator of local We utilized a high density ALS (HDALS) data with 170 deformation and different epochs of displacement [4]. These points m-2 for characterizing disrupted vegetation induced by methods, however, are time consuming and required an landslides by means of a variable window filter and the intensive field investigation.
    [Show full text]
  • Environmental Factors and Ecological Processes in Boreal Forests
    Annu. Rev. Ecol. Syst. 1989. 20:1-28 Copyright © 1989 by Annual Reviews Inc. All rights reserved ENVIRONMENTAL FACTORS AND ECOLOGICAL PROCESSES IN BOREAL FORESTS Gordon B. Bonan Earth Resources Branch/Code -623, Laboratory for Terrestrial Physics, NASAl Goddard Space Flight Center, Greenbelt, Maryland 20771 Herman H. Shugart Department of Environmental Sciences, University of Virginia, Charlottesville, Virgi­ nia 22903 INTRODUCTION The boreal forest is a broad, circumpolar mixture of cool coniferous and deciduous tree species which covers over 14.7 million km2, or 11%, of the earth's terrestrial surface (Figure 1). At these latitudes, a strong correlation exists between the seasonal dynamics of atmospheric carbon dioxide and the seasonal dynamics of the "greenness" (49) of the earth (145)- A possible causal relation, in which the dynamics of the forests at these latitudes reg­ ulates the atmospheric carbon concentrations, appears to be consistent with the present-day understanding of ecological processes in these ecosystems Annu. Rev. Ecol. Syst. 1989.20:1-28. Downloaded from www.annualreviews.org by Swedish University of Agricultural Sciences on 02/05/14. For personal use only. (31, 46). Along with its familiar role in plant photosynthesis, carbon dioxide is a "greenhouse" gas that markedly affects the heat budget of the earth (23). Thus, the possibility that boreal forests may actively participate in the dynam­ ics of atmospheric carbon dioxide is of considerable significance, especially since the climatic response to elevated atmospheric carbon dioxide con­ centrations seems to be strongly directed to the boreal forests of the world (32, 128). These large-scale forest/environment interactions provide motivation to understand better the environmental factors controlling the structure and 0066-4162/89/1120-0001$02.00 2 HONAN & SHUGART 1100 1000 900E � Continuous Permafrost ELZI Discontinuous Permafrost [ill] Boreal Forest 1300 1100 Annu.
    [Show full text]
  • Growth Dynamics of Black Spruce (Picea Mariana) Across Northwestern North America
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2018 GROWTH DYNAMICS OF BLACK SPRUCE (PICEA MARIANA) ACROSS NORTHWESTERN NORTH AMERICA Anastasia E. Sniderhan Wilfrid Laurier University, [email protected] Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Forest Biology Commons Recommended Citation Sniderhan, Anastasia E., "GROWTH DYNAMICS OF BLACK SPRUCE (PICEA MARIANA) ACROSS NORTHWESTERN NORTH AMERICA" (2018). Theses and Dissertations (Comprehensive). 2006. https://scholars.wlu.ca/etd/2006 This Dissertation is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. GROWTH DYNAMICS OF BLACK SPRUCE (PICEA MARIANA) ACROSS NORTHWESTERN NORTH AMERICA By: Anastasia Elizabeth Sniderhan B.Sc. Honours Ecology, University of Guelph, 2011 DISSERTATION Submitted to the Department of Geography and Environmental Studies in partial fulfillment of the requirements for Doctor of Philosophy in Geography Wilfrid Laurier University © Anastasia Elizabeth Sniderhan 2017 Abstract The impacts of climate change have been widely documented around the world. One of the most rapidly changing areas is the boreal forest of North America. The extent of change has been such that there have been shifts in long-standing climate-growth relationships in many boreal tree species; while the growth of many of these high-latitude forests were formerly limited by temperature, warming has increased the evapotranspirative demands such that there is widespread drought stress limiting productivity in the boreal forest. With the importance of the boreal forest as a global carbon sink, it is imperative to understand the extent of these changes, and to predict the resilience of the boreal forest in the face of continued climate change.
    [Show full text]
  • An Inconvenient Truth…
    An Inconvenient Truth… Watch the movie and the special features and answer the following questions. You must answer all of the questions to get full credit. 1) When was the first picture of earth taken? What is unique about it? 2) Former vice president Al Gore mentions two teachers he had in school. One he liked, and one he didn’t like. What story does he tell about the one he didn’t like? 3) What is the Mark Twain saying used in the movie and what does it mean? 4) Explain the basic science of global warming as Gore presents it. 5) Who was Roger Revelle and what did he do? When was the data first collected? 6) Explain why the graph shows temperature data going up and down every year. 7) What is happening on Mount Kilimanjaro? 8) What percentage of people in the world get their water supply from the Himalayas? 9) What do ice core drills contain? How can they measure temperature? What happened in the “cleaner” ice core drills? 10) How many years of data do we have on CO 2 and temperature from place like Antarctica? 11) Throughout history, what have the highest levels of CO 2? What are they now? What will it be in 50 years? 12) When Gore brought this data before Congress, how did they react? 13) How many cities in the United States hit new records in the last couple of years? 14) How many tornadoes were recorded in the recent record year? 15) How does global warming influence hurricane intensity? 16) What did Winston Churchill say in the 1930’s to get his people to react to an upcoming massive storm? 17) Do the effects of global warming always lead to hotter and drier conditions everywhere on the planet? Explain.
    [Show full text]