A Note on Leibniz' Argument Against Infinite Wholes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stanislaw Piatkiewicz and the Beginnings of Mathematical Logic in Poland
HISTORIA MATHEMATICA 23 (1996), 68±73 ARTICLE NO. 0005 Stanisøaw PiaËtkiewicz and the Beginnings of Mathematical Logic in Poland TADEUSZ BATO G AND ROMAN MURAWSKI View metadata, citation and similar papers at core.ac.uk brought to you by CORE Department of Mathematics and Computer Science, Adam Mickiewicz University, ul. Matejki 48/49, 60-769 PoznanÂ, Poland provided by Elsevier - Publisher Connector This paper presents information on the life and work of Stanisøaw PiaËtkiewicz (1849±?). His Algebra w logice (Algebra in Logic) of 1888 contains an exposition of the algebra of logic and its use in representing syllogisms. This was the ®rst original Polish publication on symbolic logic. It appeared 20 years before analogous works by èukasiewicz and Stamm. 1996 Academic Press, Inc. In dem Aufsatz werden Informationen zu Leben und Werk von Stanisøaw PiaËtkiewicz (1849±?) gegeben. Sein Algebra w logice (Algebra in der Logik) von 1888 enthaÈlt eine Darstel- lung der Algebra der Logik und ihre Anwendung auf die Syllogistik. PiaËtkiewicz' Schrift war die erste polnische Publikation uÈ ber symbolische Logik. Sie erschien 20 Jahre vor aÈhnlichen Arbeiten von èukasiewicz und Stamm. 1996 Academic Press, Inc. W pracy przedstawiono osobeË i dzieøo Stanisøawa PiaËtkiewicza (1849±?). W szczego lnosÂci analizuje sieË jego rozpraweË Algebra w logice z roku 1888, w kto rej zajmowaø sieË on nowymi no wczas ideami algebry logiki oraz ich zastosowaniami do sylogistyki. Praca ta jest pierwszaË oryginalnaË polskaË publikacjaË z zakresu logiki symbolicznej. Ukazaøa sieË 20 lat przed analog- icznymi pracami èukasiewicza i Stamma. 1996 Academic Press, Inc. MSC 1991 subject classi®cations: 03-03, 01A55. -
The Modal Logic of Potential Infinity, with an Application to Free Choice
The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity. -
Cantor on Infinity in Nature, Number, and the Divine Mind
Cantor on Infinity in Nature, Number, and the Divine Mind Anne Newstead Abstract. The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristote- lian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian volunta- rist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Can- tor’s thought with reference to his main philosophical-mathematical treatise, the Grundlagen (1883) as well as with reference to his article, “Über die verschiedenen Standpunkte in bezug auf das aktuelle Unendliche” (“Concerning Various Perspec- tives on the Actual Infinite”) (1885). I. he Philosophical Reception of Cantor’s Ideas. Georg Cantor’s dis- covery of transfinite numbers was revolutionary. Bertrand Russell Tdescribed it thus: The mathematical theory of infinity may almost be said to begin with Cantor. The infinitesimal Calculus, though it cannot wholly dispense with infinity, has as few dealings with it as possible, and contrives to hide it away before facing the world Cantor has abandoned this cowardly policy, and has brought the skeleton out of its cupboard. He has been emboldened on this course by denying that it is a skeleton. Indeed, like many other skeletons, it was wholly dependent on its cupboard, and vanished in the light of day.1 1Bertrand Russell, The Principles of Mathematics (London: Routledge, 1992 [1903]), 304. -
Leibniz and the Infinite
Quaderns d’Història de l’Enginyeria volum xvi 2018 LEIBNIZ AND THE INFINITE Eberhard Knobloch [email protected] 1.-Introduction. On the 5th (15th) of September, 1695 Leibniz wrote to Vincentius Placcius: “But I have so many new insights in mathematics, so many thoughts in phi- losophy, so many other literary observations that I am often irresolutely at a loss which as I wish should not perish1”. Leibniz’s extraordinary creativity especially concerned his handling of the infinite in mathematics. He was not always consistent in this respect. This paper will try to shed new light on some difficulties of this subject mainly analysing his treatise On the arithmetical quadrature of the circle, the ellipse, and the hyperbola elaborated at the end of his Parisian sojourn. 2.- Infinitely small and infinite quantities. In the Parisian treatise Leibniz introduces the notion of infinitely small rather late. First of all he uses descriptions like: ad differentiam assignata quavis minorem sibi appropinquare (to approach each other up to a difference that is smaller than any assigned difference)2, differat quantitate minore quavis data (it differs by a quantity that is smaller than any given quantity)3, differentia data quantitate minor reddi potest (the difference can be made smaller than a 1 “Habeo vero tam multa nova in Mathematicis, tot cogitationes in Philosophicis, tot alias litterarias observationes, quas vellem non perire, ut saepe inter agenda anceps haeream.” (LEIBNIZ, since 1923: II, 3, 80). 2 LEIBNIZ (2016), 18. 3 Ibid., 20. 11 Eberhard Knobloch volum xvi 2018 given quantity)4. Such a difference or such a quantity necessarily is a variable quantity. -
Measuring Fractals by Infinite and Infinitesimal Numbers
MEASURING FRACTALS BY INFINITE AND INFINITESIMAL NUMBERS Yaroslav D. Sergeyev DEIS, University of Calabria, Via P. Bucci, Cubo 42-C, 87036 Rende (CS), Italy, N.I. Lobachevsky State University, Nizhni Novgorod, Russia, and Institute of High Performance Computing and Networking of the National Research Council of Italy http://wwwinfo.deis.unical.it/∼yaro e-mail: [email protected] Abstract. Traditional mathematical tools used for analysis of fractals allow one to distinguish results of self-similarity processes after a finite number of iterations. For example, the result of procedure of construction of Cantor’s set after two steps is different from that obtained after three steps. However, we are not able to make such a distinction at infinity. It is shown in this paper that infinite and infinitesimal numbers proposed recently allow one to measure results of fractal processes at different iterations at infinity too. First, the new technique is used to measure at infinity sets being results of Cantor’s proce- dure. Second, it is applied to calculate the lengths of polygonal geometric spirals at different points of infinity. 1. INTRODUCTION During last decades fractals have been intensively studied and applied in various fields (see, for instance, [4, 11, 5, 7, 12, 20]). However, their mathematical analysis (except, of course, a very well developed theory of fractal dimensions) very often continues to have mainly a qualitative character and there are no many tools for a quantitative analysis of their behavior after execution of infinitely many steps of a self-similarity process of construction. Usually, we can measure fractals in a way and can give certain numerical answers to questions regarding fractals only if a finite number of steps in the procedure of their construction has been executed. -
Galileo and Leibniz: Different Approaches to Infinity
Arch. Hist. Exact Sci. 54 (1999) 87–99. c Springer-Verlag 1999 Galileo and Leibniz: Different Approaches to Infinity Eberhard Knobloch Communicated by J. J. Gray Introduction “God exists since mathematics is consistent, and the devil exists since we cannot prove it.” In this way Andre´ Weil, one of the leading mathematicians of this century, characterized the mathematics of our time (Meschkowski 1969, p. 112; Rosenbloom 1950, p. 72). This connection between mathematics, God and the devil is not new: I would like to recall here only the study scene in Goethe’s Faust: Faust has the devil temporarily in his hand, because the pentagram is badly drawn. What is new in Weil’s saying is the insight that even mathematics cannot provide complete foundations for itself. Metamathematics and Hilbert’s proof theory are disciplines of our century. When Hilbert set about showing how the antinomies of the set theory created by Cantor could be avoided without betraying mathematics, as described in his lecture “On the Infinite” in 1925, he emphasized the necessity of clarifying the nature of the infinite (Hilbert 1926, p. 188). The infinite plays a crucial role in analysis, this most ingenious product of mathematical science, being ramified in the most refined way. As Hilbert fittingly formulated, mathematical analysis is, so to speak, a pure symphony on the infinite (Hilbert 1926, p. 184). No wonder that three years after Hilbert’s lecture his pupil Hermann Weyl character- ized mathematics as the science of the infinite (Weyl 1925–1927, p. 1; Laugwitz 1986, p. 233). He thus defined mathematics in a completely different way than his predecessors of earlier centuries. -
Plotinus on the Soul's Omnipresence in Body
Plotinus on the Limitation of Act by Potency Gary M. Gurtler, S.J. Boston College The limitation of act by potency, central in the metaphysics of Thomas Aquinas, has its origins in Plotinus. He transforms Aristotle’s horizontal causality of change into a vertical causality of participation. Potency and infinity are not just unintelligible lack of limit, but productive power. Form determines matter but is limited by reception into matter. The experience of unity begins with sensible things, which always have parts, so what is really one is incorporeal, without division and separation. Unity is like the esse of Thomas, since it is the act that makes a thing what it is and has its fullness in God. 1. Introduction Over fifty years ago Norris Clarke, S.J., published “The Limitation of Act by Potency: Aristotelianism or Neoplatonism,” The New Scholasticism, 26 (1952) 167–194, which highlighted the role of Plotinus in formulating some of the fundamental distinctions operative in medieval philosophy. He singled out the doctrine of participation and the idea of infinity and showed how they went beyond the limits of classical Greek thought. At the same time, his work challenged some of the basic historical assumptions of Thomists about the relation of scholastic philosophy, especially St. Thomas’s, to Plato and Aristotle. I have appreciated more and more the unusual openness and self critical character of Fr. Clarke’s historical method, and am pleased to have the chance in this response to Sarah Borden’s paper to explore some of the issues raised by Fr. Clarke’s seminal article in light of my own work on Plotinus. -
24° Congresso UECI TOSSIGNANO (BO-Imola) Villa Santa Maria
Unione Esperantista Cattolica Italiana U.E.C.I IDO Fare24° clicCongresso per modificare UECI lo stile del sottotitolo dello schema TOSSIGNANO (BO-Imola) Villa Santa Maria - 4-8 giugno 2010 www.ueci.it 4 I protagonisti • Louis Couturat era un matematico, logico e glottoteta francese, noto per i suoi contributi allo sviluppo delle logica formale. • Fu fondatore della Delegazione per l'adozione di una lingua ausiliaria internazionale. (Ris-Orangis , 17 gennaio 1868 – 3 agosto 1914) 2424° Congresso UECI 4-8 GIUGNO 2010 Il marchese Louis de Beaufront • Il marchese Louis de Beaufront (1855 – 1935) è stato un linguista, glottoteta ed esperantista francese. • La sua vita rimane piena di misteri: si seppe dopo la sua morte che non era marchese, che era di padre sconosciuto e che il suo vero nome era in realtà Louis Chevreux. Precettore privato al servizio di ricche famiglie, celibe. • Consacrò tutto il suo tempo libero alla diffusione della lingua, creò le basi del movimento esperantista. 24° Congresso UECI 4-8 GIUGNO 2010 • Alcune divergenze lo opposero all'iniziatore della lingua, Ludwik Lejzer Zamenhof e alla maggioranza degli esperantisti francesi. • Non partecipò al primo congresso esperantista di Boulogne-sur- Mer dove fu adottato il Fundamento de Esperanto, cioè le norme intangibili che garantiscono la stabilità della lingua. • Louis de Beaufront creò l’IDO come tentativo di creare una versione più semplice dell'esperanto. • Ido in esperanto significa discendente ma è anche l'abbreviazione di esperantido 24° Congresso UECI 4-8 GIUGNO 2010 LA STORIA • Nell'ottobre 1907, a Parigi, un comitato internazionale di 12 membri si riunì per scegliere la lingua artificiale più adatta alla comunicazione internazionale. -
Georg Cantor English Version
GEORG CANTOR (March 3, 1845 – January 6, 1918) by HEINZ KLAUS STRICK, Germany There is hardly another mathematician whose reputation among his contemporary colleagues reflected such a wide disparity of opinion: for some, GEORG FERDINAND LUDWIG PHILIPP CANTOR was a corruptor of youth (KRONECKER), while for others, he was an exceptionally gifted mathematical researcher (DAVID HILBERT 1925: Let no one be allowed to drive us from the paradise that CANTOR created for us.) GEORG CANTOR’s father was a successful merchant and stockbroker in St. Petersburg, where he lived with his family, which included six children, in the large German colony until he was forced by ill health to move to the milder climate of Germany. In Russia, GEORG was instructed by private tutors. He then attended secondary schools in Wiesbaden and Darmstadt. After he had completed his schooling with excellent grades, particularly in mathematics, his father acceded to his son’s request to pursue mathematical studies in Zurich. GEORG CANTOR could equally well have chosen a career as a violinist, in which case he would have continued the tradition of his two grandmothers, both of whom were active as respected professional musicians in St. Petersburg. When in 1863 his father died, CANTOR transferred to Berlin, where he attended lectures by KARL WEIERSTRASS, ERNST EDUARD KUMMER, and LEOPOLD KRONECKER. On completing his doctorate in 1867 with a dissertation on a topic in number theory, CANTOR did not obtain a permanent academic position. He taught for a while at a girls’ school and at an institution for training teachers, all the while working on his habilitation thesis, which led to a teaching position at the university in Halle. -
Chapter 2 the Combinatory
Chapter 2 The Combinatory 1. Although Leibniz generally supported and adopted the logic of the Schools, while at the same time correcting and completing it, it would be a mistake to believe that his own logic was only a development or refinement of that of Aristotle. Leibniz himself suggests the opposite, when, after having bestowed on Aristotle through the mouth of Theophilus, the sumptuous praise we have read above (Chap. 1, §1), he has Philalethes deliver the following compliment: “You appear to defend common logic, but I see clearly that what you are presenting belongs to a much higher logic, which stands to the common sort as erudition does to the letters of the alphabet.”1 It is to this higher logic and not to that of Aristotle that he gives the title “universal mathematics.”2 And it is this that we must now investigate and explain. However novel Leibniz’s logic was to be, the root idea was nonetheless suggested to him by Aristotle, as he reports in several passages.3 He was not yet twelve years old when he immersed himself with pleasure in the intricacies of scholastic logic: he delighted in the books of Zabarella, Rubio, and Fonseca, and he read Suarez as easily as Milesian fables or novels. Already eager for innovation and tormented by the desire to invent, he cast onto paper criticisms and projects of reform; he acknowledged later that he experienced great pleasure in rereading the drafts he had written when he was fourteen years old. At that age, he had an idea that was to be the germ of his entire logic. -
Photogenic Venus: the "Cinematographic Turn" and Its Alternatives in Nineteenth-Century France
Photogenic Venus: The "Cinematographic Turn" and Its Alternatives in Nineteenth-Century France The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Canales, Jimena. 2002. Photogenic Venus: The "cinematographic turn" and its alternatives in nineteenth-century France. Isis 93, no. 4: 585-613. Published Version http://dx.doi.org/10.1086/375953 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3210601 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Photogenic Venus The “Cinematographic Turn” and Its Alternatives in Nineteenth-Century France By Jimena Canales* ABSTRACT During the late nineteenth century, scientists around the world disagreed as to the types of instruments and methods that should be used for determining the most important con- stant of celestial mechanics: the solar parallax. Venus’s 1874 transit across the sun was seen as the best opportunity for ending decades of debate. However, a mysterious “black drop” that appeared between Venus and the sun and individual differences in observations of the phenomenon brought traditional methods into disrepute. To combat these difficulties, the astronomer Jules Janssen devised a controversial new instrument, the “photographic revolver,” that photographed Venus at regular intervals. Another solution came from phys- icists, who rivaled the astronomers’ dominance in precision measurements by deducing the solar parallax from physical measurements of the speed of light. -
The Esperantist Background of René De Saussure's Work
Chapter 1 The Esperantist background of René de Saussure’s work Marc van Oostendorp Radboud University and The Meertens Institute ené de Saussure was arguably more an esperantist than a linguist – R somebody who was primarily inspired by his enthusiasm for the language of L. L. Zamenhof, and the hope he thought it presented for the world. His in- terest in general linguistics seems to have stemmed from his wish to show that the structure of Esperanto was better than that of its competitors, and thatit reflected the ways languages work in general. Saussure became involved in the Esperanto movement around 1906, appar- ently because his brother Ferdinand had asked him to participate in an inter- national Esperanto conference in Geneva; Ferdinand himself did not want to go because he did not want to become “compromised” (Künzli 2001). René be- came heavily involved in the movement, as an editor of the Internacia Scienca Re- vuo (International Science Review) and the national journal Svisa Espero (Swiss Hope), as well as a member of the Akademio de Esperanto, the Academy of Es- peranto that was and is responsible for the protection of the norms of the lan- guage. Among historians of the Esperanto movement, he is also still known as the inventor of the spesmilo, which was supposed to become an international currency among Esperantists (Garvía 2015). At the time, the interest in issues of artificial language solutions to perceived problems in international communication was more widespread in scholarly cir- cles than it is today. In the western world, German was often used as a language of e.g.