The UK in Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Research Program
Human Research Program National Academies, Space Studies Board Committee on a Midterm Assessment of Implementation of the Decadal Survey on Life and Physical Sciences Research Steve Davison 7 February 2017 Human Research Program (HRP) HRP mission is to enable space exploration beyond Low Earth Orbit by reducing the risks to human health & performance through a focused program of: – Basic, applied, and operational research Leading to the development and delivery of the following: – Countermeasures and risk mitigation solutions – Advanced habitability and medical support technologies – Human health, performance, and habitability standards 2 ISS Research: Critical to Mitigating Mars Mission Human Health and Performance Risks Medical Imaging Cardiovascular Muscle Function Experiment Physiology Facility Bone Loss Fluid Shift Countermeasure Experiment Nutritional Requirements Ocular Surveillance Flight Study Physiological Changes/Exercise Countermeasures HRP is a high priority for NASA science payloads aboard ISS. Crew Sleep/ Immunological3 Each USOS crewmember participates in 10-15 separate experiments. Performance Changes Compare Going to Mars to Where We Are Today with ISS ~ 1 – 2 days transit time 390 kilometers Communications (near real-time) Crew exchanges Crew supplies and logistics Crew and atmosphere samples Modified hardware Emergency Crew Return “extreme car camping in space” Trash 228,000,000 kilometers ~1 – 1.5 years transit time, ~2 – 3 years mission time Communications (up to 42 minutes) “ recreate living on Earth 4 capability” Crew Stressors in Deep Space Missions Radiation Altered Gravity Fields Hostile Closed Environment Isolation/Confinement Distance from Earth Astronauts on a Mars mission will experience unprecedented physiological, environmental, and psychosocial challenges that could lead to significant health and performance decrements in the absence of effective mitigation strategies. -
Ames Faces Great Challenges . . . and Great Opportunities
National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA February 2005 Ames faces great challenges . and great opportunities As NASA undergoes a major trans- To assist this, Ames has established are astrobiology (the study of the origin, formation and field center budgets get a New Business Office headed by Wendy evolution and distribution of life in the tighter, Ames faces both “a great chal- Dolci. Hubbard said the New Business universe), integrated next generation Office will man- computing systems; intelligent/adap- age all potential tive systems; entry, descent and landing new business as systems (with the Jet Propulsion Labo- though it were a ratory and NASA Langley Research corporate sales Center); and air traffic management sys- portfolio, and tems. Four of the five core competencies will regularly are exclusive to Ames. track and report Hubbard said that the approval of on potential new Ames’ core competencies places the cen- business oppor- ter “in the critical path” for implement- NASA photo by Tom Trower tunities. In addi- ing the agency’s priorities, particularly tion, he said that The Vision for Space Exploration. Em- managers will be phasizing the importance of maintain- required to visit ing a strong, viable work environment, key customers at Hubbard said Ames will conduct a least once a “health assessment” of its core compe- month, and that tencies by the end of March. project principal To deal with a substantially reduced investigators, “core” center budget, Hubbard an- branch chiefs or nounced a “belt-tightening” action plan Ames Center Director G. Scott Hubbard “whoever has ac- for Ames to prevent the loss of as many countability for a as 400 civil servants and 400 contractor lenge and a great opportunity” as it given product” will also be responsible jobs in a worst-case scenario. -
IST Journal 2018
The Professional Body for Technical, Specialist, and Managerial Staff Earth sciences BiomedicalMaterials Criminology Physical sciences Interdisciplinary EngineeringApplied science Marine biology Food TechnologyGraphic design Chemistry ForensicsSoftware Textiles Technology Kingfisher House, 90 Rockingham Street Sheffield S1 4EB T: 0114 276 3197 [email protected] F: 0114 272 6354 www.istonline.org.uk Spring 2018 Contents n Editor’s welcome Ian Moulson 2 n Chairman’s view Terry Croft 3 n President’s view Helen Sharman 4 n New members and registrations IST Office 6 n IST organisation IST Office 8 n Joining the IST Kevin Oxley 11 n Vikki Waring: from cupboard to laboratory Andy Connelly 12 n Personal views of equality and diversity Denise McLean & Liaque Latif 14 n Roger Dainty remembered Ken Bromfield 16 n Technicians: the oracles of the laboratory? Andy Connelly 17 n Working in a place like nowhere else on earth: CERN Anna Cook 19 n Management of errors in a clinical laboratory Raffaele Conte 22 n Dicon Nance: a technician in form Andy Connelly 25 n Making and using monoclonal antibody probes Sue Marcus 28 n Flow of electro-deoxidized titanium powder Charles Osarinmwian 31 n Gestalt theories applied to science and technology Kevin Fletcher 35 n Drosophila facility Katherine Whitley 38 n Harris Bigg-Wither and the Roburite Explosives Company Alan Gall 42 n Andrew Schally – from technician to Nobel Prize Andy Connelly 52 n Building your own Raspberry Pi microscope Tim Self 54 n Titanium production in molten electrolytes Charles Osarinmwian -
UK Space Agency Civil Space Strategy 2012-2016
UK Space Agency Civil Space Strategy An executive agency of the Department of Business, Innovation UK SPACE AGENCY Polaris House, North Star Avenue, Swindon, Wiltshire, SN2 1SZ Tel +44(0)207 215 5000 Email [email protected] Web www.bis.gov.uk/ukspaceagency CIVIL SPACE STRATEGY 2012-2016 The UK Space Agency To lead and sustain the growth of the UK Space Sector Foreword A strategy is more than simply words. A strategy demonstrates that we are carefully considering the options available to us; that we have an eye on the long-term, and most importantly, that we are committed to action. We are currently celebrating the 50th anniversary of the UK’s first foray into space, recognizing the pioneers who first ventured into unknown scientific territory with the Ariel-1 satellite. In the intervening half-century, space has become part of our lives. We use its technology to navigate our streets, access the internet and communicate around the globe. And UK space expertise has cemented Britain at the forefront of the exploration of our Universe. We have landed the Huygens probe on Titan, flown by Halley’s comet with the Giotto mission, probed the mysteries of the Universe with Herschel and Planck, and advanced our understanding of planet Earth through the Envisat and Cryosat missions. Today, space continues to be a key sector for Britain’s future. Its economic contribution to the UK economy is impressive. Total space-related turnover was £9.1 billion in 2010/11 (compared to £7.5 billion in 2008/09). This represents a real growth of 15.6% since 2008/09. -
XXIX Congress Report XXIX Planetary Congress • Austria • 2016 Photos: OEWF
XXIX Congress Report XXIX Planetary Congress • Austria • 2016 Photos: OEWF 1 John-David Bartoe, 2 Alexander Ivanchenkov, 3 Ulrich Walter, 4 Gerhard Thiele, 5 Georgi Iva- nov, 6 Yuri Gidzenko, 7 Bertalan Farkas, 8 Kevin Ford, 9 Pavel Vinogradov, 10 Charlie Walker, 11 Kimiya Yui, 12 Anatoli Artsebarskii, 13 Shannon Lucid, 14 Reinhold Ewald, 15 Claudie Haigneré, 16 Joe Acaba, 17 Ernst Messerschmid, 18 Jan Davis, 19 Franz Viehbock, 20 Loren Shriver, 21 Miroslaw Hermaszewski. 22 Sultan bin Salman al-Saud, 23 Yang Liwei, 24 Richard Garriott, 25 Mark Brown, 26 Carl Walz, 27 Bill McArthur, 28 Owen Garriott, 29 Anna Fisher, 30 George Zam- ka, 31 Rick Hieb, 32 Jerry Ross, 33 Alexander Volkov, 34 André Kuipers, 35 Jean-Pierre Haign- eré, 36 Toktar Aubakirov, 37 Kay Hire, 38 Michael Fincke, 39 John Fabian, 40 Pedro Duque, 41 Michael Foreman, 42 Sergei Avdeev, 43 Vladimir Kovolyonok, 44 Alexandar Aleksandrov, 45 Alexander Alexandrov, 46 Drew Feustel, 47 Dumitru Prunariu, 48 Alexei Leonov, 49 Rusty Sch- weickart, 50 Klaus-Dietrich Flade, 51 Anton Shkaplerov, 52 Alexander Samokutyaev, 53 Sergei Krikalev, 54 Viktor Savinykh, 55 Soichi Noguchi, 56 Bonnie Dunbar, 57 Vladimir Aksyonov, 58 Scott Altman, 59 Yuri Baturin, 60 Susan Helms, 61 Ulf Merbold, 62 Stephanie Wilson, 63 Chiaki Mukai, 64 Charlie Camarda, 65 Julie Payette, 66 Dick Richards, 67 Yuri Usachev, 68 Michael Lo- pez-Alegria, 69 Jim Voss, 70 Rex Walheim, 71 Oleg Atkov, 72 Bobby Satcher, 73 Valeri Tokarev, 74 Sandy Magnus, 75 Bo Bobko, 76 Helen Sharman, 77 Susan Kilrain, 78 Pam Melroy, 79 Janet Kavandi, 80 Tony Antonelli, 81 Sergei Zalyotin, 82 Frank De Winne, 83 Alexander Balandin, 84 Sheikh Muszaphar, 85 Christer Fuglesang, 86 Nikolai Budarin, 87 Salizhan Sharipov, 88 Vladimir Titov, 89 Bill Readdy, 90 Bruce McCandless II, 91 Vyacheslav Zudov, 92 Brian Duffy, 93 Randy Bresnik, 94 Oleg Artemiev XXIX Planetary Congress • Austria • 2016 One hundred and four astronauts and cosmonauts from 21 nations gathered Oc- tober 3-7, 2016 in Vienna, Austria for the XXIX Planetary Congress of the Associa- tion of Space Explorers. -
E. Michael Fincke (Colonel, U.S
National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 April 2021 E. Michael Fincke (Colonel, U.S. Air Force, Ret.) NASA Astronaut Summary: E. Michael Fincke was selected as an astronaut by NASA in 1996. The Pennsylvania native is the veteran of three spaceflights, Expedition 9 in 2004, Expedition 18 in 2009, and STS-134 in 2011. For Expedition 9, Fincke served as Science Officer and Flight Engineer during his six-month stay onboard the International Space Station. While there, he performed four spacewalks. For Expedition 18, Fincke served as Commander, where he and his crew prepared the station for future six-person crews. For STS-134, he served as Mission Specialist and completed three spacewalks. Col. Fincke has logged more than a year in orbit, with nine space walks. After working with NASA’s Commercial Crew Program to develop and bring two new crewed spacecraft online, the Space-X Crew Dragon and the Boeing CST-100 Starliner, Fincke was selected to serve as the Joint Operations Commander on the first crewed experimental test flight of the Starliner. Riding on the Atlas V launch vehicle, this will be Mike’s third rocket and spacecraft combination to orbit. He is currently preparing for his fourth spaceflight, scheduled to launch to the International Space Station later this year. Personal Data: Born March 14, 1967, in Pittsburgh, Pennsylvania, but considers Emsworth, Pennsylvania, to be his hometown. Married to the former Renita Saikia of Houston, Texas. They have three children. In addition to time with his family, Col. Fincke enjoys travel, geology, astronomy, learning new languages and reading. -
Laser Retroreflectors for Insight and an International Mars Geophysical Network (MGN)
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1492.pdf Laser Retroreflectors for InSight and an International Mars Geophysical Network (MGN). S. Dell’Agnello1, G.O. Delle Monache1, L. Porcelli1,2, M. Tibuzzi1, L. Salvatori1, C. Mondaini1, M. Muccino1, L. Ioppi1, O. Luongo1, M. Petrassi1, G. Bianco1,3, R. Vittori1,4, W.B. Banerdt5, J.F. Grinblat5, C. Benedetto3, F. Pasquali3, R. Mugnuolo3, D.C. Gruel5, J.L.Vago6 and P. Baglioni6. 1Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali di Frascati (INFN–LNF), Via E. Fermi 40, 00044, Frascati, Italy ([email protected]); 2Dipartimento di Fisica, Università della Calabria (UniCal), Via P. Bucci, 87036, Arcavacata di Rende, Italy; 3Agenzia Spaziale Italiana– Centro di Geodesia Spaziale “Giuseppe Colombo” (ASI–CGS), Località, Terlecchia 75100, Matera, Italy; 4Italian Air Force, Rome, Italy, ASI and Embassy of Italy in Washington DC; 5NASA–Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA 91109, USA; 6ESA–ESTEC, Noordwijk, The Netherlands. Abstract. There are laser retroreflectors on the Moon, of the INFN-ASI Affiliation-Association to NASA- but there were no laser retroreflectors on Mars until the SSERVI sservi.nasa.gov) is shown in the figure below. NASA InSight mission [1][2] landed and started oper- ating successfully on the surface of the red planet on Nov. 26, 2018. The ESA ExoMars Schiaparelli mis- sion, which unfortunately failed Mars landing in 2016, was carrying a laser retroreflector like InSight [3]. These instruments are positioned by measuring the time-of-flight of short laser pulses, the so-called “laser ranging” technique (for details on satellite/lunar laser ranging and altimetry see https://ilrs.gsfc.nasa.gov). -
The Economic Impact of Physics Research in the UK: Satellite Navigation Case Study
The economic impact of physics research in the UK: Satellite Navigation Case Study A report for STFC November 2012 Contents Executive Summary................................................................................... 3 1 The science behind satellite navigation......................................... 4 1.1 Introduction ................................................................................................ 4 1.2 The science................................................................................................ 4 1.3 STFC’s role in satellite navigation.............................................................. 6 1.4 Conclusions................................................................................................ 8 2 Economic impact of satellite navigation ........................................ 9 2.1 Introduction ................................................................................................ 9 2.2 Summary impact of GPS ........................................................................... 9 2.3 The need for Galileo................................................................................. 10 2.4 Definition of the satellite navigation industry............................................ 10 2.5 Methodological approach......................................................................... 11 2.6 Upstream direct impacts .......................................................................... 12 2.7 Downstream direct impacts..................................................................... -
United Kingdom of Great Britain and Northern Ireland
SPACE DEBRIS MITIGATION STANDARDS UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND National mechanism: Outer Space Act 1986 (OSA) Description: The Outer Space Act is the legal basis for the regulation of activities in outer space (including the launch and operation of space objects) carried out by persons connected with the United Kingdom. The Act confers licensing and other powers on the Secretary of State acting through the UK Space Agency. The Act ensures compliance with UK obligations under the international conventions covering the use of outer space to which the UK is a signatory. Under the legislation of the OSA, the Secretary of State shall not grant a licence unless he is satisfied that the activities authorised by the licence will not jeopardise public health or the safety of persons or property, will be consistent with the international obligations of the United Kingdom, and will not impair the national security of the United Kingdom. Further the Secretary of State requires the licensee to conduct his operations in such a way as to prevent the contamination of outer space or adverse changes in the environment of the Earth, and to avoid interference with activities of others in the peaceful exploration and use of outer space. The Secretary of State requires the licensee to insure himself against liability incurred in respect of damage or loss suffered by third parties, in the United Kingdom or elsewhere, as a result of the activities authorised by the licence. Further the licensee shall indemnify Her Majesty’s government in the United Kingdom against any claims brought against the government in respect of damage or loss arising out of activities carried on by him to which this Act applies. -
Church of the Brethren May Meet Hrre In
' ' , s i * Take inventory of your printed” sup One word can tell the Btory of con plies; If you need anything, the - tinued business activity in the com - j ■ ' Times stands ready to give munity—Advertising. vi:;/ you Bervice, • . AND THE SJIOUE TIMES FOUR CENTS /,-;t VOL. LX . No. 33 OCEAN GROVE, NEW JERSEY, FRIDAY, AUGUST 16, 1935 - / ' : $ THOMSON GETS ‘MARTHA" IS BIBLE LESSON HOTEL MEN WANT CHURCH 7,500 HEAR BISHOP MOUZON Mrs. Gertrude Brown To Teach At OF THE BRETHREN RARE SOUVENIRS St; Paul’s MORE PUBLICITY in Au ditoriu m sermons “Martha” is the Bible class les MAY MEET HRRE IN 1936 THREE ANNIVERSARY: MEMOS son for .the coming Sundny. Text, WILL REQUEST LARGER BUD “Jesus loved! Martha and her sister ARE PRESENTED and! Lazarus,” John,: 11:5: Read GET APPROPRIATION. Preacher Sees Chance For Uniting of Three Luke, 10\38-42 and John, VI '.17-28. National Convention Would Bring Eight Thou Sixth Founders’ Day, Stokes Gold Dr, Francis Harvey Green will be Appoint Nominating Committee Branches of Methodist Church—Prays For en Wedding and Dr. Ballard’s the teacher 'at the|. Auditorium For Report at September Meet sand Delegates for Eight Days—Dr. Hen Bible Class,, at" 2.30. .Written Ques Birthday Arc Noted In Special ing of Ocean Grove Hotel As Kingdom of God and Revival of Hope, tions will be answered at the begin son Offers Buildings for Sessions—Ar Announcements. ning of theperiod. sociation. Endorse Play-Ground Faith and Love— Gives His Definition of Three precious documents have The Assembly BiblejClhss, which D rive/ rangements Committee Decides Today. -
Rapid Development of Navigation Payloads for Galileo Full Operational Capability
Changing the economics of space RAPID DEVELOPMENT OF NAVIGATION PAYLOADS FOR GALILEO FULL OPERATIONAL CAPABILITY Alex da Silva Curiel Dubai, January 2011 SSTL - the company UK-based satellite manufacturing company owned by EADS Astrium NV (99%) and the University of Surrey (1%) • Formed in 1985, the Company now employs >320 staff and occupies dedicated facilities in Surrey, Kent & Colorado 2 A history of success 34 Satellites completed – c.200 satellite years on-orbit experience 10 Further satellites (35-43) - currently being prepared for launch 18 payloads in progress (4 optical, 14 navigation) HERITAGE: Flight proven - low risk RESULTS: All projects fixed price, delivered on-time and on-budget SUCCESS: Very high mission success – 100% mission success in last 10 years – proven equipment and full redundancy CUSTOMERS: Variety of customers including many “blue chip” operators as well as 15 successful training programmes 3 What is Galileo? Galileo is a joint initiative of the European Commission (EC) and the European Space Agency (ESA). Galileo will be Europe’s own global navigation satellite system, providing a highly accurate, guaranteed global positioning service under civilian control. It will be inter-operable with GPS and GLONASS, the two other global satellite navigation systems 4 Galileo Services • Galileo offers 5 services: – Open signal, dual frequency, mass market use – Commercial signal, better accuracy, service guarantee – authenticated data – Safety-of-Life signal, high integrity service certified for use in safety related -
Space Debris
IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low