Coagulation Factor XII in Thrombosis and Inflammation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calcium Affects Polyphosphate and Lipid Accumulation in Mucoromycota Fungi
Journal of Fungi Article Calcium Affects Polyphosphate and Lipid Accumulation in Mucoromycota Fungi Simona Dzurendova 1,*, Boris Zimmermann 1 , Achim Kohler 1, Kasper Reitzel 2 , Ulla Gro Nielsen 3 , Benjamin Xavier Dupuy--Galet 1 , Shaun Leivers 4 , Svein Jarle Horn 4 and Volha Shapaval 1 1 Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; [email protected] (B.Z.); [email protected] (A.K.); [email protected] (B.X.D.–G.); [email protected] (V.S.) 2 Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; [email protected] 3 Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; [email protected] 4 Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433 Ås, Norway; [email protected] (S.L.); [email protected] (S.J.H.) * Correspondence: [email protected] or [email protected] Abstract: Calcium controls important processes in fungal metabolism, such as hyphae growth, cell wall synthesis, and stress tolerance. Recently, it was reported that calcium affects polyphosphate and lipid accumulation in fungi. The purpose of this study was to assess the effect of calcium on the accumulation of lipids and polyphosphate for six oleaginous Mucoromycota fungi grown under different phosphorus/pH conditions. A Duetz microtiter plate system (Duetz MTPS) was used for the cultivation. The compositional profile of the microbial biomass was recorded using Fourier-transform infrared spectroscopy, the high throughput screening extension (FTIR-HTS). -
Role of the Renin–Angiotensin–Aldosterone and Kinin–Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID
International Journal of Molecular Sciences Review Role of the Renin–Angiotensin–Aldosterone and Kinin–Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID Samantha L. Cooper 1,2,*, Eleanor Boyle 3, Sophie R. Jefferson 3, Calum R. A. Heslop 3 , Pirathini Mohan 3, Gearry G. J. Mohanraj 3, Hamza A. Sidow 3, Rory C. P. Tan 3, Stephen J. Hill 1,2 and Jeanette Woolard 1,2,* 1 Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] 2 Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK 3 School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] (E.B.); [email protected] (S.R.J.); [email protected] (C.R.A.H.); [email protected] (P.M.); [email protected] (G.G.J.M.); [email protected] (H.A.S.); [email protected] (R.C.P.T.) * Correspondence: [email protected] (S.L.C.); [email protected] (J.W.); Tel.: +44-115-82-30080 (S.L.C.); +44-115-82-31481 (J.W.) Abstract: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible Citation: Cooper, S.L.; Boyle, E.; for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe Jefferson, S.R.; Heslop, C.R.A.; and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardio- Mohan, P.; Mohanraj, G.G.J.; Sidow, vascular complications (CVCs) associated with infection. -
The Rare Coagulation Disorders
Treatment OF HEMOPHILIA April 2006 · No. 39 THE RARE COAGULATION DISORDERS Paula HB Bolton-Maggs Department of Haematology Manchester Royal Infirmary Manchester, United Kingdom Published by the World Federation of Hemophilia (WFH) © World Federation of Hemophilia, 2006 The WFH encourages redistribution of its publications for educational purposes by not-for-profit hemophilia organizations. In order to obtain permission to reprint, redistribute, or translate this publication, please contact the Communications Department at the address below. This publication is accessible from the World Federation of Hemophilia’s web site at www.wfh.org. Additional copies are also available from the WFH at: World Federation of Hemophilia 1425 René Lévesque Boulevard West, Suite 1010 Montréal, Québec H3G 1T7 CANADA Tel. : (514) 875-7944 Fax : (514) 875-8916 E-mail: [email protected] Internet: www.wfh.org The Treatment of Hemophilia series is intended to provide general information on the treatment and management of hemophilia. The World Federation of Hemophilia does not engage in the practice of medicine and under no circumstances recommends particular treatment for specific individuals. Dose schedules and other treatment regimes are continually revised and new side effects recognized. WFH makes no representation, express or implied, that drug doses or other treatment recommendations in this publication are correct. For these reasons it is strongly recommended that individuals seek the advice of a medical adviser and/or to consult printed instructions provided by the pharmaceutical company before administering any of the drugs referred to in this monograph. Statements and opinions expressed here do not necessarily represent the opinions, policies, or recommendations of the World Federation of Hemophilia, its Executive Committee, or its staff. -
Reversion of Poly-Phosphates to Ortho-Phosphates in Water Distribution Systems
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2007 Reversion Of Poly-phosphates To Ortho-phosphates In Water Distribution Systems Avinash Shekhar University of Central Florida Part of the Environmental Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Shekhar, Avinash, "Reversion Of Poly-phosphates To Ortho-phosphates In Water Distribution Systems" (2007). Electronic Theses and Dissertations, 2004-2019. 3346. https://stars.library.ucf.edu/etd/3346 REVERSION OF POLY-PHOSPHATES TO ORTHO-PHOSPHATES IN WATER DISTRIBUTION SYSTEMS by AVINASH SHEKHAR B.E Vishweshwaraiah Technological University, India, 2005 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil and Environmental Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2007 Major Professors: John D. Dietz James S. Taylor © 2007 Avinash Shekhar ii ABSTRACT Ortho-phosphates and poly-phosphates are rarely present at significant levels in raw water source but are purposefully added to the water in various forms to inhibit corrosion, iron oxidation (red water), or calcium carbonate precipitation (scale formation). Ortho-phosphates serve as building blocks for poly-phosphates, which includes structures in linear chain, branched chains (metaphosphate) and “glassy” poly-phosphate polymers. -
The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state. -
Assembly of an Integrated Human Lung Cell Atlas Reveals That
medRxiv preprint doi: https://doi.org/10.1101/2020.06.02.20120634; this version posted June 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Assembly of an integrated human lung cell atlas reveals that SARS-CoV-2 receptor is co-expressed with key elements of the kinin-kallikrein, renin-angiotensin and coagulation systems in alveolar cells Davi Sidarta-Oliveira1,2, Carlos Poblete Jara1,3, Adriano J. Ferruzzi4, Munir S. Skaf4, William H. Velander5, Eliana P. Araujo1,3, Licio A. Velloso1 1Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Brazil 2 Physician-Scientist Graduate Program, School of Medical Sciences, University of Campinas, Brazil 3Nursing School, University of Campinas, Brazil 4Institute of Chemistry and Center for Computing in Engineering and Sciences University of Campinas, Brazil 5Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, USA Correspondence: Licio A. Velloso Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil Address: Rua Carl Von Lineaus s/n, Instituto de Biologia - Bloco Z. Campus Universitário Zeferino Vaz - Barão Geraldo, Campinas - SP, 13083-864 Phone: +55 19 3521-0025 E-mail: [email protected] Abstract SARS-CoV-2, the pathogenic agent of COVID-19, employs angiotensin converting enzyme-2 (ACE2) as its cell entry receptor. Clinical data reveal that in severe COVID- 19, SARS-CoV-2 infects the lung, leading to a frequently lethal triad of respiratory insufficiency, acute cardiovascular failure, and coagulopathy. -
The Plasmin–Antiplasmin System: Structural and Functional Aspects
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Cell. Mol. Life Sci. (2011) 68:785–801 DOI 10.1007/s00018-010-0566-5 Cellular and Molecular Life Sciences REVIEW The plasmin–antiplasmin system: structural and functional aspects Johann Schaller • Simon S. Gerber Received: 13 April 2010 / Revised: 3 September 2010 / Accepted: 12 October 2010 / Published online: 7 December 2010 Ó Springer Basel AG 2010 Abstract The plasmin–antiplasmin system plays a key Plasminogen activator inhibitors Á a2-Macroglobulin Á role in blood coagulation and fibrinolysis. Plasmin and Multidomain serine proteases a2-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into solu- Abbreviations ble fragments. However, besides plasmin(ogen) and A2PI a2-Antiplasmin, a2-Plasmin inhibitor a2-antiplasmin the system contains a series of specific CHO Carbohydrate activators and inhibitors. The main physiological activators EGF-like Epidermal growth factor-like of plasminogen are tissue-type plasminogen activator, FN1 Fibronectin type I which is mainly involved in the dissolution of the fibrin K Kringle polymers by plasmin, and urokinase-type plasminogen LBS Lysine binding site activator, which is primarily responsible for the generation LMW Low molecular weight of plasmin activity in the intercellular space. Both activa- a2M a2-Macroglobulin tors are multidomain serine proteases. Besides the main NTP N-terminal peptide of Pgn physiological inhibitor a2-antiplasmin, the plasmin–anti- PAI-1, -2 Plasminogen activator inhibitor 1, 2 plasmin system is also regulated by the general protease Pgn Plasminogen inhibitor a2-macroglobulin, a member of the protease Plm Plasmin inhibitor I39 family. -
Studies on a Complex Mechanism for the Activation of Plasminogen by Kaolin and by Chloroform: the Participation of Hageman Factor and Additional Cofactors
Studies on a complex mechanism for the activation of plasminogen by kaolin and by chloroform: the participation of Hageman factor and additional cofactors Derek Ogston, … , Oscar D. Ratnoff, Charles D. Forbes J Clin Invest. 1969;48(10):1786-1801. https://doi.org/10.1172/JCI106145. Research Article As demonstrated by others, fibrinolytic activity was generated in diluted, acidified normal plasma exposed to kaolin, a process requiring Hageman factor (Factor XII). Generation was impaired by adsorbing plasma with glass or similar agents under conditions which did not deplete its content of Hageman factor or plasminogen. The defect could be repaired by addition of a noneuglobulin fraction of plasma or an agent or agents eluted from diatomaceous earth which had been exposed to normal plasma. The restorative agent, tentatively called Hageman factor-cofactor, was partially purified by chromatography and had an apparent molecular weight of approximately 165,000. It could be distinguished from plasma thromboplastin antecedent (Factor XI) and plasma kallikrein, other substrates of Hageman factor, and from the streptokinase-activated pro-activator of plasminogen. Evidence is presented that an additional component may be needed for the generation of fibrinolytic activity in mixtures containing Hageman factor, HF-cofactor, and plasminogen. The long-recognized generation of plasmin activity in chloroform-treated euglobulin fractions of plasma was found to be dependent upon the presence of Hageman factor. Whether chloroform activation of plasminogen requires Hageman factor-cofactor was not determined, but glass-adsorbed plasma, containing Hageman factor and plasminogen, did not generate appreciable fibrinolytic or caseinolytic activity. These studies emphasize the complex nature of the mechanisms which lead to the generation of plasmin in human plasma. -
Use of Phosphates in Meat Products
African Journal of Biotechnology Vol. 10(86), pp. 19874-19882, 30 December, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJBX11.023 ISSN 1684–5315 © 2011 Academic Journals Review Use of phosphates in meat products Nguyen Huynh Bach Son Long, Robert Gál and František Bu ňka* Department of Food Technology and Microbiology, Faculty of Technology, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic. Accepted 9 December, 2011 Phosphates offer a range of possibilities when used in meat and poultry productions. Food grade phosphates are used in meat products for several reasons such as changing and/or stabilizing of pH- value, increasing water holding capacity in order to lead to higher yields, decreasing losses of weight in cooking, improving texture and sensory properties (tenderness, juiciness, color and flavor), extending shelf-life, etc. In addition, phosphates in meat products are also sources of the supply of phosphorus for consumers through diet, which is an essential mineral for the lives of humans. This review is focused on phosphates’ properties, functions, application in meat and poultry products as well as influence on health. Key words: Monophosphate, diphosphate, polyphosphate, texture parameters, water holding capacity, yield, meat. INTRODUCTION The use of food additives has become more prominent additives and they are essential for several reasons such in recent years due to the increased production of as increasing pH, increasing water holding capacity prepared, processed and convenient foods (USDA, (WHC; structure of muscle protein is opened) in order to 2008). Additives are used for technological purposes in lead to higher yields and stabilized meat emulsions, the manufacturing, processing, preparation, treatment, decreasing cooking losses of weight, improving texture packaging, transportation or storage of certain foods, or and sensory properties (tenderness, juiciness, color, may be reasonably expected to result in them or their flavor), extending shelf-life, etc. -
Plasmin (Human) 1.00 Mg
Plasmin (Human) 1.00 mg Ref#: HPLAS Lot#: xxxxxx Exp. Date: xxxx-xx Store at -10°C to -20°C For Research Use Only Not for Use in Diagnostic Procedures For in vitro use only Description: Plasmin Format: Frozen in 50mM Hepes/ 50 mM sodium acetate/ 50% glycerol/ pH 8.5 Host: Human Storage: Store between -10°C and -20°C Volume: 1 vial containing 0.962 mL Total Protein: 1.00 mg 1% Concentration: 1.04 mg/mL by Absorbance; Extinction Coefficient E 280 = 17.0 Activity: 228.00 nkat/mg Molecular weight: 83000 daltons Plasminogen is synthesized in the liver and circulates in plasma at a concentration of ~200 μg/mL (~2.3 μM). Plasminogen is a single-chain glycoprotein of ~88 kDa that consists of a catalytic domain followed by five kringle structures. Within these kringle structures are four low-affinity lysine binding sites and one high-affinity lysine binding site. It is through these lysine binding sites that plasminogen binds to fibrin and to α2-Antiplasmin. Native Plasminogen (Glu-Plasminogen) exists in two variants that differ in their extent of glycosylation, and each variant has up to six isoelectric forms with respect to sialic acid content, for a total of 12 molecular forms. Activation of Glu-Plasminogen by the Plasminogen activators Urokinase (UPA), or tissue Plasminogen Activator (tPA) occurs by cleavage after residue Arg560 to produce the two-chain active serine protease Plasmin. In a positive feedback reaction, the Plasmin generated cleaves an ~8 kDa peptide from Glu-Plasminogen, producing lys77- Plasminogen which has a higher affinity for Fibrin and when bound is a preferred substrate for Plasminogen activators such as Urokinase. -
Substrate Recognition and Mechanism Revealed by Ligand-Bound Polyphosphate Kinase 2 Structures
Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures Alice E. Parnella,1, Silja Mordhorstb,1, Florian Kemperc, Mariacarmela Giurrandinoa, Josh P. Princea, Nikola J. Schwarzerc, Alexandre Hoferd, Daniel Wohlwendc, Henning J. Jessend,e, Stefan Gerhardtc, Oliver Einslec,f, Petra C. F. Oystong,h, Jennifer N. Andexerb,2, and Peter L. Roacha,g,2 aChemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom; bInstitute of Pharmaceutical Sciences, Albert-Ludwigs- University Freiburg, 79104 Freiburg, Germany; cInstitute of Biochemistry, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; dOrganic Chemistry Institute, University of Zürich, 8057 Zürich, Switzerland; eInstitute of Organic Chemistry, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; fBioss Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; gInstitute for Life Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom; and hBiomedical Sciences, Defence Science and Technology Laboratory Porton Down, SP4 0JQ Salisbury, United Kingdom Edited by David Avram Sanders, Purdue University, West Lafayette, IN, and accepted by Editorial Board Member Gregory A. Petsko February 13, 2018 (received for review June 20, 2017) Inorganic polyphosphate is a ubiquitous, linear biopolymer built of mechanism is proposed to proceed via a phosphorylated enzyme up to thousands of phosphate residues that are linked by energy- intermediate (8), which -
Severe Factor XI Deficiency in the Abruzzo Region of Italy Is Associated
Letters to the Editor Severe factor XI deficiency in the Abruzzo region of Table 1. Main phenotypic and genotypic results in the investigated Italy is associated to different FXI gene mutations patients. Patient, FXI:C# FXI :Ag# Reason for Bleeding Mutation Coagulation factor XI (FXI) is a glycoprotein of 160 sex and (%) (%) referral symptoms (exon, kDa, which, upon thrombin-mediated activation, acti- year of nucleotide, vates factor XII or FXI itself, catalyzing the conversion birth amino acid) of factor IX (FIX) to activated FIX in the consolidation phase of blood coagulation.1 FXI deficiency is a rare autosomal recessive bleeding disorder which is howev- 1–F <0.5 10 Pre-surgical Bleeding Ex 5 c.403G>T; er particularly common among Ashkenazi Jews with a 1989 screening after tooth E117X 2 extraction Ex 5 c.419G>A; heterozygote frequency of 9%. C122Y Bleeding tendency in FXI-deficient patients seems to poorly correlate with plasma FXI levels and hemor- 2–M <0.5 4 Routine None Ex 5 c.403G>T; rhagic episodes are usually associated with injury or 1974 laboratory E117X surgery.1,5 However, even patients with severe defi- evaluation Ex 9 c.981C>A; ciency may not suffer from significant bleeding. C309X More than 150 FXI gene mutations have so far been 3–M 0.9 4 Routine Bleeding Ex 5 c.400C>T ; reported and a founder effect has been demonstrated in 1947 laboratory after knee Q116X some populations (see http://www.med.unc.edu/isth/muta- evaluation arthroscopy Ex 5 c.422C>T; tions-databases/FactorXI_2007.html, also T123M http://www.wienkav.at/kav/kar/texte_anzeigen.asp?ID=713 7, and http://www.factorxi.com).