The Rubin–Stark Conjecture for a Special Class of Function Field Extensions
THE RUBIN{STARK CONJECTURE FOR A SPECIAL CLASS OF FUNCTION FIELD EXTENSIONS Cristian D. Popescu1 Abstract. We prove a strong form of the Brumer{Stark Conjecture and, as a conse- quence, a strong form of Rubin's integral re¯nement of the abelian Stark Conjecture, for a large class of abelian extensions of an arbitrary characteristic p global ¯eld k. This class includes all the abelian extensions K=k contained in the composi- tum kp1 := kp ¢ k1 of the maximal pro-p abelian extension kp=k and the maximal constant ¯eld extension k1=k of k, which happens to sit inside the maximal abelian extension kab of k with a quasi{¯nite index. This way, we extend the results obtained by the present author in [P2]. Introduction In [Ru], Rubin formulated an integral re¯nement of Stark's Conjecture (see [St] and [Ta4]), for abelian Artin L{functions of arbitrary order of vanishing at s = 0, in the case of number ¯elds (i.e. characteristic 0 global ¯elds). In [P2] (see also [P1]), we extended the Rubin{Stark Conjecture to the case of function ¯elds over ¯nite ¯elds (i.e. characteristic p global ¯elds). In [P2] (see also [P6]) we show that, in the case of function ¯elds, for every prime number `, the `{primary component of a strong form of the Rubin{Stark Conjecture is a consequence of the `{primary component of a strong form of the Brumer{Stark Conjecture, involving Fitting ideals rather than annihilators of ideal class{groups viewed as modules over the appropriate integral group{rings. In [P2], we proved the `{primary component of the Strong Brumer{Stark Conjecture for all primes ` not dividing the order of the Galois group G(K=k) of the abelian extension K=k in question, thereby proving the Strong Rubin{Stark Conjecture up to primes dividing the order of the Galois group, for arbitrary abelian extensions of characteristic p function ¯elds.
[Show full text]