University of Copenhagen, Copenhagen, Denmark

Total Page:16

File Type:pdf, Size:1020Kb

University of Copenhagen, Copenhagen, Denmark The TriForC database a comprehensive up-to-date resource of plant triterpene biosynthesis Miettinen, Karel Anton; Inigo, Sabrina; Kreft, Lukasz; Pollier, Jacob; De Bo, Christof; Botzki, Alexander; Coppens, Frederik; Bak, Søren; Goossens, Alain Published in: Nucleic Acids Research DOI: 10.1093/nar/gkx925 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Miettinen, K. A., Inigo, S., Kreft, L., Pollier, J., De Bo, C., Botzki, A., ... Goossens, A. (2018). The TriForC database: a comprehensive up-to-date resource of plant triterpene biosynthesis. Nucleic Acids Research, 46(D1), D586-D594. https://doi.org/10.1093/nar/gkx925 Download date: 09. Apr. 2020 D586–D594 Nucleic Acids Research, 2018, Vol. 46, Database issue Published online 17 October 2017 doi: 10.1093/nar/gkx925 The TriForC database: a comprehensive up-to-date resource of plant triterpene biosynthesis Karel Miettinen1,2, Sabrina Inigo˜ 1,2, Lukasz Kreft3, Jacob Pollier1,2,ChristofDeBo3, Alexander Botzki3, Frederik Coppens1,2, Søren Bak4 and Alain Goossens1,2,* 1Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium, 2VIB Center for Plant Systems Biology, 9052 Ghent, Belgium, 3VIB Bioinformatics Core, 9052 Ghent, Belgium and 4Plant Biochemistry Laboratory and Villum Research Center ‘Plant Plasticity’, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark Received August 14, 2017; Revised September 23, 2017; Editorial Decision September 26, 2017; Accepted October 03, 2017 ABSTRACT INTRODUCTION Triterpenes constitute a large and important class of Importance of triterpenes plant natural products with diverse structures and Triterpenes compose a diverse class of plant natural prod- functions. Their biological roles range from mem- ucts, both in structure and function. They comprise (i) pri- brane structural components over plant hormones mary metabolites such as the phytosterols, which are the to specialized plant defence compounds. Further- indispensable structural components of cell membranes, more, triterpenes have great potential for a vari- and hormones, such as brassinosteroids, and (ii) specialized ety of commercial applications such as vaccine ad- (also called secondary) metabolites with diverse biological juvants, anti-cancer drugs, food supplements and functions (1,2). The latter include among others defence agronomic agents. Their biosynthesis is carried out compounds with antimicrobial, antifungal, antiparasitic, through complicated, branched pathways by multiple insecticidal, anti-feedant and allelopathic activities (3)and leaf wax components (4). Primary metabolite triterpenes oc- enzyme types that include oxidosqualene cyclases, cur in all plant species. In contrast, specialized metabolite cytochrome P450s, and UDP-glycosyltransferases. triterpenes are often restricted to a specific species or taxa Given that the number of characterized triterpene although some of them can be quite widespread as a re- biosynthesis enzymes has been growing fast re- sult of convergent evolutionary events. For example, com- cently, the need for a database specifically focusing pounds of the most common type of specialized metabo- on triterpene enzymology became eminent. Here, we lite triterpenes, i.e. the oleananes and their derivatives, are present the TriForC database (http://bioinformatics. present in most flowering plant orders5 ( ). psb.ugent.be/triforc/), encompassing a comprehen- Specialized metabolite triterpenes show a striking diver- sive catalogue of triterpene biosynthesis enzymes. sity of structures from fairly simple unsubstituted triterpene This highly interlinked database serves as a user- backbones, such as the ones in leaf wax components, to friendly access point to versatile data sets of en- complex molecules carrying multiple oxidative decorations, heterocycles, elaborate sugar chains and/or other chemi- zyme and compound features, enabling the scanning cal groups (2). Because these structures represent a wide of a complete catalogue of experimentally validated range of biological activities, triterpenes have received con- triterpene enzymes, their substrates and products, siderable industrial interest as pharmaceuticals, cosmetics, as well as the pathways they constitute in various agronomic agents, etc. Renowned examples are the quinine plant species. The database can be accessed by di- methide celastrol from Tripterygium wilfordii (thunder god rect browsing or through convenient search tools vine), which has powerful antioxidant, anti-inflammatory, including keyword, BLAST, plant species and sub- and anti-cancer activities (6) and QS-21, a soluble triterpene structure options. This database will facilitate gene fraction from Quillaja saponaria, which is used as an adju- mining and creating genetic toolboxes for triterpene vant in vaccine formulations that are currently in clinical tri- synthetic biology. als for anti-HIV, HPV, malaria, melanoma, mycobacterium tuberculosis and varicella zoster virus activities (7). Triterpenes also have uses in the food industry, in which for instance glycyrrhizin from Glycyrrhiza species is used as *To whom correspondence should be addressed. Tel: +32 9 331 38 51; Fax: +32 9 331 38 09; Email: [email protected] C The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] Downloaded from https://academic.oup.com/nar/article-abstract/46/D1/D586/4555231 by Royal Library Copenhagen University user on 24 May 2018 Nucleic Acids Research, 2018, Vol. 46, Database issue D587 a natural sweetener (8)andQ. saponaria extracts are being membranes and act as precursors for the biosynthesis used as foaming agents and emulsifiers (9,10). Furthermore, of the plant brassinosteroid hormones and of specialized plant sterols have been shown to reduce cholesterol serum taxa-specific steroidal triterpenes that include the steroidal levels. Plant sterols are frequently esterified with fatty acids (glyco)alkaloids. Phytosterols are synthesized from 2,3- to increase their lipid solubility when present in a food in- oxidosqualene via cycloartenol, generated by the OSC cy- gredient. Several studies have shown a significant reduction cloartenol synthase (CAS), followed by a 14–17 step enzy- in the LDL-cholesterol levels when people consumed food matic pathway (19,20). This pathway contains many differ- enriched with plant sterol or stanol esters (11). This fact ent types of enzymes and results in the production of sterols highly increased the interest of food manufacturers in using such as stigmasterol, ␤-sitosterol and campesterol, which phytosterols as supplements and food additives and thus in are the most commonly consumed plant sterols provided by phytosterol biosynthesis. vegetable oils (19,21). Using partly the same enzymes, but in a parallel pathway, plants also synthesize cholesterol (22), which in turn can serve as the starting point for the steroidal Biosynthesis of triterpenes glycoalkaloids in Solanaceae species (22,23). Whereas stig- Plants produce triterpenes in long and branched biosyn- masterol and ␤-sitosterol phytosterols are involved in the thetic pathways (Figure 1). Actual, known primary and spe- structure and function of cell membranes, campesterol is cialized triterpenes are all built around a triterpene back- the starting point of brassinosteroid biosynthesis, plant hor- bone based on six isopentenyl pyrophosphate (IPP) build- mones with main roles in plant growth, development and ing blocks originating from the mevalonate (MVA) path- stress responses (24–26). way (2). Part of the generated IPP pool is converted into Enzymes from the phytosterol and brassinosteroid the allylic isomer dimethylallyl pyrophosphate (DMAPP) biosynthesis pathways have been fairly well characterized by IPP isomerase. Two molecules of IPP and one molecule in the model plant Arabidopsis thaliana and to a lesser ex- of DMAPP are assembled to farnesyl pyrophosphate (FPP) tent in rice, pea and tomato (27,28). In contrast, only a by prenyltransferase farnesyl pyrophosphate synthase. FPP small fraction of the specialized metabolism pathway en- is the building block for various MVA-dependent terpene zymes has been characterized to date, mainly because of pathways, including the tri- and sesquiterpenes (12). The their immense variability. Indeed, most plant families have first committed step in triterpene biosynthesis is the conden- their own unique subset of triterpene biosynthesis enzymes sation of two molecules of FPP by squalene synthase (SQS) that contribute to a species-specific compendium of often to produce the first triterpene, squalene. This molecule unique structures with unique bio-activities. The diversity is then activated by epoxidation by a squalene epoxidase of specialized metabolism triterpenes arises from their mod- (SQE), resulting in 2,3-oxidosqualene (2,13,14). ular biosynthesis where a variety of species-, genus-, or The first branching point in triterpene biosynthesis is family-specific OSCs, P450s, UGTs and other decoration the cyclization of 2,3-oxidosqualene
Recommended publications
  • Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
    Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury
    [Show full text]
  • Friedelin Synthase from Maytenus Ilicifolia
    www.nature.com/scientificreports OPEN Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of Received: 09 May 2016 Accepted: 20 October 2016 the Most Rearranged Pentacyclic Published: 22 November 2016 Triterpene Tatiana M. Souza-Moreira1, Thaís B. Alves1, Karina A. Pinheiro1, Lidiane G. Felippe1, Gustavo M. A. De Lima2, Tatiana F. Watanabe1, Cristina C. Barbosa3, Vânia A. F. F. M. Santos1, Norberto P. Lopes4, Sandro R. Valentini3, Rafael V. C. Guido2, Maysa Furlan1 & Cleslei F. Zanelli3 Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65–74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes.
    [Show full text]
  • Identification of Key Amino Acid Residues Determining Product Specificity of 2, 3-Oxidosqualene Cyclase in Siraitia Grosvenorii
    catalysts Article Identification of Key Amino Acid Residues Determining Product Specificity of 2,3-Oxidosqualene Cyclase in Siraitia grosvenorii Jing Qiao, Jiushi Liu, Jingjing Liao, Zuliang Luo, Xiaojun Ma * and Guoxu Ma * Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; [email protected] (J.Q.); [email protected] (J.L.); [email protected] (J.L.); [email protected] (Z.L.) * Correspondence: [email protected] (X.M.); mgxfl[email protected] (G.M.); Tel.: +86-10-5783-3155 (X.M. & G.M.) Received: 25 October 2018; Accepted: 19 November 2018; Published: 22 November 2018 Abstract: Sterols and triterpenes are structurally diverse bioactive molecules generated through cyclization of linear 2,3-oxidosqualene. Based on carbocationic intermediates generated during the initial substrate preorganization step, oxidosqualene cyclases (OSCs) are roughly segregated into a dammarenyl cation group that predominantly catalyzes triterpenoid precursor products and a protosteryl cation group which mostly generates sterol precursor products. The mechanism of conversion between two scaffolds is not well understood. Previously, we have characterized a promiscuous OSC from Siraitia grosvenorii (SgCS) that synthesizes a novel cucurbitane-type triterpene cucurbitadienol as its main product. By integration of homology modeling, molecular docking and site-directed mutagenesis, we discover that five key amino acid residues (Asp486, Cys487, Cys565, Tyr535, and His260) may be responsible for interconversions between chair–boat–chair and chair–chair–chair conformations. The discovery of euphol, dihydrolanosterol, dihydroxyeuphol and tirucallenol unlocks a new path to triterpene diversity in nature. Our findings also reveal mechanistic insights into the cyclization of oxidosqualene into cucurbitane-type and lanostane-type skeletons, and provide a new strategy to identify key residues determining OSC specificity.
    [Show full text]
  • 生物合成薯蓣皂素的途径设计及关键酶分析 Chinese Journal of Biotechnology Apr
    1178 生物工程学报 孙忠义 等/生物合成薯蓣皂素的途径设计及关键酶分析 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn Apr. 25, 2021, 37(4): 1178−1188 DOI: 10.13345/j.cjb.200389 ©2021 Chin J Biotech, All rights reserved ·综 述· 生物合成薯蓣皂素的途径设计及关键酶分析 1 1 2 1 孙忠义 ,赵鹏 ,葛喜珍 ,田平芳 1 北京化工大学 生命科学与技术学院,北京 100029 2 北京联合大学 生物化学工程学院,北京 100023 孙忠义, 赵鹏, 葛喜珍, 等. 生物合成薯蓣皂素的途径设计及关键酶分析. 生物工程学报, 2021, 37(4): 1178-1188. Sun ZY, Zhao P, Ge XZ, et al. Pathway design and key enzyme analysis of diosgenin biosynthesis. Chin J Biotech, 2021, 37(4): 1178–1188. 摘 要: 薯蓣皂素是一种天然甾体皂苷元,可作为数百种类固醇药物的前体,具有重要药用价值。目前工业生产 薯蓣皂素主要依赖化学提取法,因此该法依赖植物材料和耕地且对环境有害。随着代谢工程和合成生物学的发展, 生物合成法受到广泛关注。文中综述了生物合成薯蓣皂素的代谢途径和关键酶,并在酿酒酵母 Saccharomyces cerevisiae 中设计其异源合成途径,提出改造策略,以期为全生物合成薯蓣皂素提供有价值的参考。 关键词: 薯蓣皂素,生物合成途径,关键酶,异源表达 Pathway design and key enzyme analysis of diosgenin biosynthesis Zhongyi Sun1, Peng Zhao1, Xizhen Ge2, and Pingfang Tian1 1 College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China 2 College of Biochemical Engineering, Beijing Union University, Beijing 100023, China Abstract: As a naturally occurring steroid sapogenin, diosgenin acts as the precursor of hundreds of steroid medicines, and thereby has important medicinal value. Currently, industrial production of diosgenin relies primarily on chemical extraction from plant materials. Clearly, this strategy shows drawbacks of excessive reliance on plant materials and farmland as well as environment pollution. Due to development of metabolic engineering and synthetic biology, bio-production of diosgenin has garnered plenty of attention. Although the biosynthetic pathways of diosgenin have not been completely identified, in this review, we outline the identified biosynthetic pathways and key enzymes. In particular, we suggest heterologous biosynthesis of diosgenin in Saccharomyces cerevisiae.
    [Show full text]
  • Proquest Dissertations
    RICE UNIVERSITY Investigation of Triterpene Biosynthesis in Arabidopsis thaliana by Mariya D. Kolesnikova A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE: Seircni P. T. Matsuda, Professor, Department Chair Department of Chemistry Department of Biochemistry and Cell Biology JU- Ronald J. Parry, Professor Department of Chemistry Department of Biochemistry and Cell Biology UL Jonatnan Silberg, ^gs&tant Profasabr Department of Biochemistry and Cell Biology HOUSTON, TEXAS May 2008 UMI Number: 3362344 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI® UMI Microform 3362344 Copyright 2009 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii ABSTRACT Investigation of Triterpene Biosynthesis in Arabidopsis thaliana By Mariya D. Kolesnikova This thesis describes functional characterization of three oxidosqualene cyclase genes (Atlg78955, At3g45130, and At4gl5340) from the model plant Arabidopsis thaliana that encode enzymes with novel catalytic functions. Oxidosqualene cyclases are a family of membrane proteins that convert the acyclic substrate oxidosqualene into polycyclic products with many chiral centers. The complex mechanistic pathways and relevant catalytic motifs can be elucidated through judicious applications of mutagenesis, heterologous expression in combination with a genome mining approach, and protein modeling.
    [Show full text]
  • The Triforc Database: a Comprehensive Up-To-Date Resource
    D586–D594 Nucleic Acids Research, 2018, Vol. 46, Database issue Published online 17 October 2017 doi: 10.1093/nar/gkx925 The TriForC database: a comprehensive up-to-date resource of plant triterpene biosynthesis Karel Miettinen1,2, Sabrina Inigo˜ 1,2, Lukasz Kreft3, Jacob Pollier1,2,ChristofDeBo3, Alexander Botzki3, Frederik Coppens1,2, Søren Bak4 and Alain Goossens1,2,* 1Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium, 2VIB Center for Plant Systems Biology, 9052 Ghent, Belgium, 3VIB Bioinformatics Core, 9052 Ghent, Belgium and 4Plant Biochemistry Laboratory and Villum Research Center ‘Plant Plasticity’, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark Received August 14, 2017; Revised September 23, 2017; Editorial Decision September 26, 2017; Accepted October 03, 2017 ABSTRACT INTRODUCTION Triterpenes constitute a large and important class of Importance of triterpenes plant natural products with diverse structures and Triterpenes compose a diverse class of plant natural prod- functions. Their biological roles range from mem- ucts, both in structure and function. They comprise (i) pri- brane structural components over plant hormones mary metabolites such as the phytosterols, which are the to specialized plant defence compounds. Further- indispensable structural components of cell membranes, more, triterpenes have great potential for a vari- and hormones, such as brassinosteroids, and (ii) specialized ety of commercial applications such as vaccine ad- (also called secondary) metabolites with diverse biological juvants, anti-cancer drugs, food supplements and functions (1,2). The latter include among others defence agronomic agents. Their biosynthesis is carried out compounds with antimicrobial, antifungal, antiparasitic, through complicated, branched pathways by multiple insecticidal, anti-feedant and allelopathic activities (3)and leaf wax components (4).
    [Show full text]
  • Plant Secondary Metabolism Linked Glycosyltransferases: an Update on Expanding Knowledge and Scopes
    JBA-07035; No of Pages 26 Biotechnology Advances xxx (2016) xxx–xxx Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes Pragya Tiwari a, Rajender Singh Sangwan a,b,NeelamS.Sangwana,⁎ a Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015,India b Center of Innovative and Applied Bioprocessing (CIAB), A National Institute under Department of Biotechnology, Government of India, C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali 160071, Punjab, India article info abstract Article history: The multigene family of enzymes known as glycosyltransferases or popularly known as GTs catalyze the addition Received 6 October 2015 of carbohydrate moiety to a variety of synthetic as well as natural compounds. Glycosylation of plant secondary Received in revised form 6 February 2016 metabolites is an emerging area of research in drug designing and development. The unsurpassing complexity Accepted 19 March 2016 and diversity among natural products arising due to glycosylation type of alterations including Available online xxxx glycodiversification and glycorandomization are emerging as the promising approaches in pharmacological stud- ies. While, some GTs with broad spectrum of substrate specificity are promising candidates for glycoengineering Keywords: fi Catalytic mechanism while others with stringent speci city pose limitations in accepting molecules and performing catalysis. With the Drug designing rising trends in diseases and the efficacy/potential of natural products in their treatment, glycosylation of plant Glycoconjugates secondary metabolites constitutes a key mechanism in biogeneration of their glycoconjugates possessing medic- Glycosyltransferases inal properties.
    [Show full text]
  • Universidade De São Paulo Instituto De Química De São Paulo Química Orgânica E Biológica
    UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA DE SÃO PAULO QUÍMICA ORGÂNICA E BIOLÓGICA MARCELO TAVARES DE OLIVEIRA QUANTUM CHEMICAL EXPLORATIONS INTO THE BIOSYNTHESIS OF PENTACYCLIC TRITERPENE FRIEDELIN TESE DE DOUTORADO SÃO CARLOS 2019 MARCELO TAVARES DE OLIVEIRA QUANTUM CHEMICAL EXPLORATIONS INTO THE BIOSYNTHESIS OF PENTACYCLIC TRITERPENE FRIEDELIN Tese apresentada ao Instituto de Química de São Carlos da Universidade de São Paulo como parte dos requisitos para a obtenção do título de doutor em ciências Área de concentração: Química Orgânica e Biológica Orientador: Prof. Dr. Albérico B. F. da Silva SÃO CARLOS 2019 To Sarah. Acknowledgments Firstly, I wish to express my sincere thanks to Prof. Albérico for facilitating “in his very own way” the work described here in the course of the past year and a half. I thank Prof. Ataualpa Braga (IQ/USP) for his most helpful discussions on methods, especially the tweaks of gaussian. Prof. Glaucius Oliva (IFSC/USP) is acknowledged for his precious contribution towards the zeitgeist workstation where most computations were carried out. Mr. Gilmar Bertollo Jr. (IFSC/USP), a very knowledgeable tech guy, for his great assistance with hardware – very appreciated. I express my gratitude to all colleagues (and a few new friends) as well as all members of the community at large in the chemistry institute (IQSC/USP) and the physics institute (IFSC/USP). To all those I came across over the past few years of postgraduate studies who had a share of contribution to make things easier somehow. The Coordination for the Improvement of Higher Education Personnel, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) is acknowledged for an institutional studentship.
    [Show full text]
  • A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid A
    A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid a-Onocerin Aldo Almeida, Lemeng Dong, Bekzod Khakimov, Jean-Etienne Bassard, Tessa Moses, Frederic Lota, Alain Goossens, Giovanni Appendino, Soren Bak To cite this version: Aldo Almeida, Lemeng Dong, Bekzod Khakimov, Jean-Etienne Bassard, Tessa Moses, et al.. A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid a-Onocerin. Plant Physiology, American Society of Plant Biologists, 2018. hal-02885734 HAL Id: hal-02885734 https://hal.archives-ouvertes.fr/hal-02885734 Submitted on 30 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid a-Onocerin1[OPEN] Aldo Almeida,a Lemeng Dong,a Bekzod Khakimov,b Jean-Etienne Bassard,a Tessa Moses,c,d Frederic Lota,e Alain Goossens,c,d Giovanni Appendino,f and Søren Baka,2 aDepartment of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark bDepartment of Food Science, University of Copenhagen, DK-1958 Frederiksberg C, Denmark cGhent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium dVIB Center for Plant Systems Biology, 9052 Ghent, Belgium eAlkion Biopharma SAS, 91000 Evry, France fDipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy ORCID IDs: 0000-0001-5284-8992 (A.A.); 0000-0002-1435-1907 (L.D.); 0000-0001-9366-4727 (T.M.); 0000-0002-9330-5289 (F.L.); 0000-0002-1599-551X (A.G.); 0000-0003-4100-115X (S.B.).
    [Show full text]
  • Type Triterpene Cyclase in Celastrol Biosynthesis from Tripterygium
    MR JIA WEI ZHOU (Orcid ID : 0000-0001-6628-3056) Article type : Regular Article Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast Jiawei Zhou1,2, Tianyuan Hu2, Linhui Gao1, Ping Su4, Yifeng Zhang2, Yujun Zhao4, Shang Chen1, Lichan Tu2, Yadi Song1, Xing Wang1, Luqi Huang4, Wei Gao2, 1, 3* 1School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; 2School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China; 3Advanced Innovation Center for Human Brain Protection, Capital Medical University, Article Beijing 100069, China; 4State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China * Correspondence: [email protected] (W.G.); Tel: +86-10-8391-6572 (W.G.) Received: 19 January 2019 Accepted: 14 March 2019 Summary Celastrol is a promising bioactive compound isolated from Tripterygium wilfordii and has been proven to possess many encouraging preclinical applications. However, the celastrol biosynthetic pathway is poorly understood, especially the key oxidosqualene cyclase (OSC) responsible for cyclization of the main scaffold. Here, we report on the isolation and characterization of three OSCs from T. wilfordii: TwOSC1, TwOSC2 and TwOSC3. Both TwOSC1 and TwOSC3 were multi-product friedelin synthases, while TwOSC2 was a β-amyrin synthase. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may Accepted lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/nph.15809 This article is protected by copyright.
    [Show full text]
  • Engineering of Critical Enzymes and Pathways for Improved Triterpenoid Biosynthesis In
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.03.023150; this version posted April 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Engineering of critical enzymes and pathways for improved triterpenoid biosynthesis in 2 yeast 3 Hao Guo†, Huiyan Wang†, Yi-xin Huo†,* 4 †School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 5 100081 Beijing, China 6 *Corresponding author: mail: [email protected]; Tel: 86-10-68918158 7 8 Abstract 9 Triterpenoids represent a diverse group of phytochemicals, widely distributed in the plant 10 kingdom with many biological activities. Recently, the heterologous production of triterpenoids in 11 Saccharomyces cerevisiae has been successfully implemented by introducing various 12 triterpenoids biosynthetic pathways. By engineering related enzymes as well as yeast metabolism, 13 the yield of various triterpenoids is significantly improved from milligram-scale per liter to 14 gram-scale level per liter. This achievement demonstrates that engineering of critical enzymes is 15 considered as a potential strategy to overcome the main hurdles of translation of these potent 16 natural products into industry. Here, we review strategies for designing enzymes to improve the 17 yield of triterpenoids in S. cerevisiae, which is mainly separated into three aspects: 1. elevating 18 the supply of the precursor—2,3-oxidosqualene, 2. optimizing triterpenoid-involved reactions, 3. 19 lowering the competition of the native sterol pathway. And then we provide challenges and 20 prospects on further enhancing the triterpenoid production in S.
    [Show full text]
  • Remlinger M Me Araiq.Pdf
    1 UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” Instituto de Química Campus de Araraquara ESTUDO DOS RESÍDUOS DE AMINOÁCIDOS DA ENZIMA FRIEDELINA SINTASE DE Maytenus ilicifolia ENVOLVIDOS COM SUA ESPECIFICIDADE BIOSSINTÉTICA MELISSA REMLINGER Orientador: Prof. Dr. Cleslei Fernando Zanelli Co-orientadora: Dra.Tatiana Maria de Souza Moreira Araraquara - SP 2017 2 UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” Instituto de Química Campus de Araraquara ESTUDO DOS RESÍDUOS DE AMINOÁCIDOS DA ENZIMA FRIEDELINA SINTASE DE Maytenus ilicifolia ENVOLVIDOS COM SUA ESPECIFICIDADE BIOSSINTÉTICA MELISSA REMLINGER Dissertação apresentada ao Programa de Pós Graduação em Biotecnologia, do Instituto de Química da Universidade Estadual Paulista “Júlio de Mesquita Filho”, como parte dos requisitos para obtenção do título de Mestre em Biotecnologia. Orientador: Prof. Dr. Cleslei Fernando Zanelli Co-orientadora: Dra.Tatiana Maria de Souza Moreira Araraquara - SP 2017 FICHA CATALOGRÁFICA Remlinger, Melissa R384e Estudo dos resíduos de aminoácidos de friedelina sintase de Maytenus ilicifolia envolvidos com sua especificidade biossintética / Melissa Remlinger. – Araraquara : [s.n.], 2017 78 f. : il. Dissertação (mestrado) – Universidade Estadual Paulista, Instituto de Química Orientador: Cleslei Fernando Zanelli Coorientador: Tatiana Maria de Souza Moreira 1. Espinheira santa. 2. Terpenos. 3. Proteínas-Análise. 4. Mutagênese. 5. Saccharomyces cerevisiae. I. Título. Elaboração: Seção Técnica de Aquisição e Tratamento da Informação Biblioteca
    [Show full text]