Gametophyte Life-History Dominance of Chondrus Crispus (Gigartinaceae

Total Page:16

File Type:pdf, Size:1020Kb

Gametophyte Life-History Dominance of Chondrus Crispus (Gigartinaceae NRC Publications Archive Archives des publications du CNRC Gametophyte life-history dominance of Chondrus crispus (Gigartinaceae, Rhodophyta) along the Atlantic coast of Nova Scotia, Canada McLachlan, Jack L.; Blanchard, Wade; Field, Christopher; Lewis, Nancy I. This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4490/algae.2011.26.1.051 ALGAE, 26, 1, pp. 51-60, 2011-03-15 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=1b199bcd-c661-471d-abb6-d24921df9708 https://publications-cnrc.canada.ca/fra/voir/objet/?id=1b199bcd-c661-471d-abb6-d24921df9708 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected]. Research Article Algae 2011, 26(1): 51-60 DOI: 10.4490/algae.2011.26.1.051 Open Access Gametophyte life-history dominance of Chondrus crispus (Gigartinaceae, Rhodophyta) along the Atlantic coast of Nova Scotia, Canada Jack L. McLachlan1,a, Wade Blanchard2, Christopher Field2 and Nancy I. Lewis1,* 1National Research Council Canada, 1411 Oxford St., Halifax, NS B3H 3Z1, Canada 2Department of Statistics, Dalhousie University, Halifax, NS B3H 4J1, Canada adeceased December 2010 Similar to other species of Gigartinaceae Chondrus crispus has an alternation of perennial, isomorphic gametophytic and sporophytic generations. As these two generations co-exist independently within populations and obtain their re- sources in a similar manner, intraspeciic competition is expected. In populations within the southern Gulf of St. Law- rence, fronds of both generations of C. crispus occur in similar numbers. This equivalency can be related to substratum instability, where the population is dynamic with a high turn-over rate of genets. These observations support a stochas- tic hypothesis to account for distribution of gametophytes and sporophytes in this area. Along the Atlantic coast of Nova Scotia, where the substratum is stable, gametophytes are overwhelmingly predominant. Gametophytic predominance is greatest in the lower littoral zone where C. crispus is abundant and space is limited. Under the fucoid canopy where “free-space” exists, the gametophyte to sporophyte ratio is lower. Gametophytic and sporophytic fronds are distributed equally among different size-classes and size-distribution is not considered a competitive factor. Previous studies have shown that sporophytic fronds of C. crispus are more susceptible to infections by endophytic algae and other pathogens, and are more heavily grazed by herbivores than are gametophytic fronds. Thus, mechanistic factors are strongly implied in the selection of gametophytes in the Atlantic population. Key Words: carrageenan; Chondrus; gametophyte; Geni coeficient; life-history ratio; population structure; size hierar- chy; sporophyte INTRODUCTION A regular alternation of independent generations oc- with other life history patterns evolving (e.g., Dixon 1965); curs in the life histories of many algal species, including indeed, there are many species in which sporophytes are the Rhodophyta. Stebbins and Hill (1980) proposed that apparently the dominant generation. Valero et al. (1992) maintenance of a haploid-diploid life history is an adap- pointed out that it is dificult to rationalize the mainte- tation to seasonally variable environments and that dip- nance of a haploid-diploid life history when the ecologi- loidy is more adaptable than haploidy. This implies that cal niches of the two generations are similar, particularly in populations with distinct, alternate haploid and dip- where the two life-history stages are isomorphic. In such loid generations, the trend is towards diploid dominance, instances, the life-history phases are ecologically inde- This is an Open Access article distributed under the terms of the Received 30 January 2011, Accepted 22 February 2011 Creative Commons Attribution Non-Commercial License (http://cre- Corresponding Author ativecommons.org/licenses/by-nc/3.0/) which permits unrestricted * non-commercial use, distribution, and reproduction in any medium, E-mail: [email protected] provided the original work is properly cited. Tel: +1-902-426-8273 Fax: +1-902-426-9413 Copyright © The Korean Society of Phycology 51 http://e-algae.kr pISSN: 1226-2617 eISSN: 2093-0860 Algae 2011, 26(1): 51-60 pendent and, especially if the two generations are peren- McLachlan 1991). The turnover rate for fronds is relative- nial, they will be ecologically competitive, each genera- ly high (Bhattacharya 1985), and largely relates to size, tion obtaining its resources in a similar manner. In such although individual fronds may persist for several years, intraspeciic competitive situations, it can be queried depending upon physical conditions (Taylor et al. 1981). whether one generation can become predominant in a There is no evidence of seasonality of fronds as may occur population and whether this is predictable. May (1986) in other gigartinacean species (cf. May 1986, De Wreede argued that if the two generations are demographically and Green 1990). Perennation occurs through the basal comparable, over time, the proportion of gametophytes holdfast, which can persist for indeinite periods (Taylor and sporophytes should eventually reach equivalency et al. 1981). Once detached, holdfasts will not reattach, because of stochastic events. However, if the two gen- and detached fronds will not generate holdfasts. Growth erations are not equivalent, one of the generations will of plants occurs through expansion of the holdfast with predominate according to May’s mechanistic hypothesis. a continuous production of new fronds (McLachlan et In those species where one life-history generation al. 1989), whereas recruitment into new space occurs dominates in a population, does this extend to all pop- through spore reproduction. The frequency of reproduc- ulations of the species? Reasons for dominance would tive fronds within a population has been reported to be therefore be inherent rather than the result of unique cir- relatively low (Prince and Kingsbury 1973, Chen and Tay- cumstances. This question has been addressed a number lor 1980, Lazo et al. 1989, McLachlan et al. 1989, Taylor of times with respect to the Gigartinaceae, resulting in and Chen 1994). ambiguous conclusions. Gametophytic and / or sporo- Species with isomorphic alternate generations, such phytic dominance have been reported, both for species as C. crispus, should be ideally suited to study intraspe- of Mazzaella (as Iridaea) and Chondrus (e.g., Mathieson ciic competition. Species of Gigartinaceae are particu- and Burns 1975, Hansen and Doyle 1976, Craigie and larly useful in this regard as sporophytic and gameto- Pringle 1978, Bhattacharya 1985, Dyck et al. 1985, Hann- phytic phases have different carrageenans, lambda type ach and Santelices 1985, May 1986, Luxoro and Santelices and kappa type, respectively (McCandless 1981), which 1989, De Wreede and Green 1990, Fernández and Mené- can be distinguished by a simple, rapid colorimetric test ndez 1991, Piriz 1996), whereas Lazo et al. (1989) noted involving resorcinol. Accordingly, the life history phase of a similar proportion of gametophytes and sporophytes fronds can be identiied in their vegetative state, allow- in populations in their study of Chondrus crispus Stackh. ing large numbers of samples to be assessed easily and Chondrus crispus (Irish moss) is the sole species of quickly (Craigie and Pringle 1978, Dyck et al. 1985, Lazo its genus present along shores of the Atlantic Ocean, et al. 1989, De Wreede and Green 1990). where it is widely distributed and abundant throughout In a previous investigation of C. crispus in the south- northern temperate waters, especially in Maritime Can- eastern Gulf of St. Lawrence along the coast of Prince Ed- ada (McLachlan et al. 1987, McLachlan 1991, Taylor and ward Island, where Irish moss is a commercial resource Chen 1994). In some areas, C. crispus occurs essentially (McLachlan et al. 1987), the gametophytic / (tetra)sporo- as ‘monospeciic’ stands, dominating space in the lower phytic (G/S) ratio of the overall population was found to littoral and upper sublittoral zones, in suficient abun- be essentially
Recommended publications
  • 2004 University of Connecticut Storrs, CT
    Welcome Note and Information from the Co-Conveners We hope you will enjoy the NEAS 2004 meeting at the scenic Avery Point Campus of the University of Connecticut in Groton, CT. The last time that we assembled at The University of Connecticut was during the formative years of NEAS (12th Northeast Algal Symposium in 1973). Both NEAS and The University have come along way. These meetings will offer oral and poster presentations by students and faculty on a wide variety of phycological topics, as well as student poster and paper awards. We extend a warm welcome to all of our student members. The Executive Committee of NEAS has extended dormitory lodging at Project Oceanology gratis to all student members of the Society. We believe this shows NEAS members’ pride in and our commitment to our student members. This year we will be honoring Professor Arthur C. Mathieson as the Honorary Chair of the 43rd Northeast Algal Symposium. Art arrived with his wife, Myla, at the University of New Hampshire in 1965 from California. Art is a Professor of Botany and a Faculty in Residence at the Jackson Estuarine Laboratory of the University of New Hampshire. He received his Bachelor of Science and Master’s Degrees at the University of California, Los Angeles. In 1965 he received his doctoral degree from the University of British Columbia, Vancouver, Canada. Over a 43-year career Art has supervised many undergraduate and graduate students studying the ecology, systematics and mariculture of benthic marine algae. He has been an aquanaut-scientist for the Tektite II and also for the FLARE submersible programs.
    [Show full text]
  • Composition, Seasonal Occurrence, Distribution and Reproductive Periodicity of the Marine Rhodophyceae in New Hampshire
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1969 COMPOSITION, SEASONAL OCCURRENCE, DISTRIBUTION AND REPRODUCTIVE PERIODICITY OF THE MARINE RHODOPHYCEAE IN NEW HAMPSHIRE EDWARD JAMES HEHRE JR. Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation HEHRE, EDWARD JAMES JR., "COMPOSITION, SEASONAL OCCURRENCE, DISTRIBUTION AND REPRODUCTIVE PERIODICITY OF THE MARINE RHODOPHYCEAE IN NEW HAMPSHIRE" (1969). Doctoral Dissertations. 897. https://scholars.unh.edu/dissertation/897 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-2076 HEHRE, J r., Edward Jam es, 1940- COMPOSITION, SEASONAL OCCURRENCE, DISTRIBUTION AND REPRODUCTIVE PERIODICITY OF THE MARINE RHODO- PHYCEAE IN NEW HAMPSHIRE. University of New Hampshire, Ph.D., 1969 Botany University Microfilms, Inc., Ann Arbor, M ichigan COMPOSITION, SEASONAL OCCURRENCE, DISTRIBUTION AND REPRODUCTIVE PERIODICITY OF THE MARINE RHODOPHYCEAE IN NEW HAMPSHIRE TV EDWARD J^HEHRE, JR. B. S., New England College, 1963 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements f o r the Degree of Doctor of Philosophy Graduate School Department of Botany June, 1969 This thesis has been examined and approved. Thesis director, Arthur C. Mathieson, Assoc. Prof. of Botany Thomas E. Furman, Assoc. P rof. of Botany Albion R. Hodgdon, P rof. of Botany Charlotte G.
    [Show full text]
  • Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2017 Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites Eric Salomaki University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Salomaki, Eric, "Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites" (2017). Open Access Dissertations. Paper 614. https://digitalcommons.uri.edu/oa_diss/614 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ORGANELLAR GENOME EVOLUTION IN RED ALGAL PARASITES: DIFFERENCES IN ADELPHO- AND ALLOPARASITES BY ERIC SALOMAKI A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2017 DOCTOR OF PHILOSOPHY DISSERTATION OF ERIC SALOMAKI APPROVED: Dissertation Committee: Major Professor Christopher E. Lane Jason Kolbe Tatiana Rynearson Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. This framework enables direct comparisons between autotrophs and parasites to investigate the early stages of parasite evolution.
    [Show full text]
  • Seaweeds of California Green Algae
    PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.
    [Show full text]
  • Eco-Physiological and Biochemical Study of Two of the Most Contrasting Forms of Chondrus Crispus (Rhodophyta, Gigartinales)
    MARINE ECOLOGY PROGRESS SERIES Vol. 81: 185-195, 1992 Published April 21 Mar. Ecol. Prog. Ser. l Eco-physiological and biochemical study of two of the most contrasting forms of Chondrus crispus (Rhodophyta, Gigartinales) Thierry chopin', Jean-Yves ~loc'h~ ' Marine and Estuarine Research Group, Division of Sciences, University of New Brunswick, PO Box 5050, Saint John. New Brunswick, Canada E2L 4L5 Laboratoire de Physiologie Vegetale, Faculte des Sciences. Universite de Bretagne Occidentale. 6 Avenue V. Le Gorgeu. F-29287 Brest Cedex. France ABSTRACT: Seasonal variations of distribution of the gametophytic and tetrasporophytlc generations, growth, carrageenans, phosphorus and nitrogen nutrition, and dry matter content were studied in 2 of the most contrasting forms of the red alga Chondrus crispus Stackhouse in Britanny. France. Seasonal variations of generations were more pronounced in the infralittoral than in the midlittoral form; the former had more reproductively mature plants and twice as many tetrasporophytes. Growth was greater in the infralittoral than in the midlittoral form. Contents of total carrageenans were comparable in the 2 forms; the K-, L-, and p-carrageenan structures did not vary significantly (qualitatively, quantitatively, during the year, or between the 2 forms). The midlittoral form had a higher total phosphorus content, more marked seasonal variations and an earlier spring decline than the infralittoral form Seasonal variations of total nitrogen content had different patterns in the 2 forins during summer The dry matter content of the infralittoral form was lower than that of the midlittoral form. These eco-physiological and biochemical differences and similarities are discussed in terms of the polymorphism of this alga.
    [Show full text]
  • Sweet and Sour Sugars from the Sea: the Biosynthesis and Remodeling of Sulfated Cell Wall Polysaccharides from Marine Macroalgae
    Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae Elizabeth Ficko-Blean, Cécile Hervé, Gurvan Michel To cite this version: Elizabeth Ficko-Blean, Cécile Hervé, Gurvan Michel. Sweet and sour sugars from the sea: the biosyn- thesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. Perspectives in Phycology, 2015, 2 (1), pp.51 - 64. 10.1127/pip/2015/0028. hal-01597738 HAL Id: hal-01597738 https://hal.archives-ouvertes.fr/hal-01597738 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Perspectives in Phycology, Vol. 2 (2015), Issue 1, p. 51-64 Open Access Article Stuttgart, May 2015 Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae Elizabeth Ficko-Blean1, Cecile Hervé1 & Gurvan Michel1* 1 Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff cedex, Bretagne, France * Corresponding author: [email protected] With 7 figures and 1 table in the text and 1 table as electronic supplement Abstract: The cell walls of green, red and brown seaweeds are dominated by the presence of sulfated polysaccharides.
    [Show full text]
  • Population Studies and Carrageenan Properties in Eight Gigartinales (Rhodophyta) from Western Coast of Portugal
    Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 939830, 11 pages http://dx.doi.org/10.1155/2013/939830 Research Article Population Studies and Carrageenan Properties in Eight Gigartinales (Rhodophyta) from Western Coast of Portugal Leonel Pereira Institute of Marine Research (IMAR-CMA), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-455 Coimbra, Portugal Correspondence should be addressed to Leonel Pereira; [email protected] Received 26 August 2013; Accepted 13 September 2013 Academic Editors: M. Cledon, G.-C. Fang, and R. Moreira Copyright © 2013 Leonel Pereira. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Eight carrageenophytes, representing seven genera and three families of Gigartinales (Florideophyceae), were studied for 15 months. The reproductive status, dry weight, and carrageenan content have been followed by a monthly random sampling. The highest carrageenan yields were found in Chondracanthus acicularis (61.1%), Gigartina pistillata (59.7%), and Chondracanthus teedei var. lusitanicus (58.0%). Species of Cystocloniaceae family produces predominantly iota-carrageenans; Gigartinaceae family produces hybrid kappa-iota carrageenans (gametophytic plants) and lambda-family carrageenans (sporophytic plants); Phyllophoraceae family produces kappa-iota-hybrid carrageenans. Quadrate destructive sampling method was used to determine the biomass and line transect. Quadrate nondestructive sampling method, applied along a perpendicular transect to the shoreline, was used to calculate the carrageenophytes cover in two periods: autumn/winter and spring/summer. The highest cover and biomass were 2 2 found in Chondrus crispus (3.75%–570 g/m ), Chondracanthus acicularis (3.45%–99 g/m ), Chondracanthus teedei var.
    [Show full text]
  • Chondracanthus Teedei</Emphasis>
    Journal of Applied Phycology 16: 369–383, 2004. 369 C 2004 Kluwer Academic Publishers. Printed in the Netherlands. Population studies and carrageenan properties of Chondracanthus teedei var. lusitanicus (Gigartinaceae, Rhodophyta) Leonel Pereira∗ & Jos´eF.Mesquita Laboratory of E.M. and Phycology, Department of Botany, University of Coimbra, 3000 Coimbra, Portugal ∗Author for correspondence; e-mail: [email protected] Received 14 January 2004; revised and accepted 28 May 2004 Key words: carrageenan, Chondracanthus teedei, FTIR, FT-Raman, 1H-, 13C-NMR, Portugal, Rhodophyta, seaweed Abstract Features of an intertidal population of Chondracanthus teedei var. lusitanicus, which occurs in sandy basins on rocky shores of part of the Portuguese coast (Buarcos, Figueira da Foz), were studied over one year. Biomass and plant size showed a small increase in early spring (April), a marked increase in early summer (June/July) and were at a minimum in late summer. There was generally more tetrasporophytes (4–32.5%) than female gametophytes (3– 29%), which contrasts with other geographical regions where C. teedei populations have been studied, such as Brazil and France. However, non-fructified thalli predominated throughout the year. Phycocolloid extracts were compared for the various stages using spectroscopic methods (FTIR, FT-Raman, 1H- and 13C-NMR). These showed a hybrid carrageenan belonging to the lambda family in the tetrasporophyte and a hybrid kappa-iota-mu-nu carrageenan in the female gametophyte and non-fructified thalli. The average phycocolloid content was 34.9% dry weight, with a maximum of 43.6% in July. The combination of high available biomass and phycocolloid content makes this species a potentially important source of kappa/iota hybrid carrageenan in Portugal additional to the traditionally harvested carrageenophytes.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Craig William Schneider July 20, 2020 __________________________ Department of Biology, Trinity College, Hartford, Connecticut 06106-3100 USA Email: [email protected] Tel.: (860) 297-2233 www: http://commons.trincoll.edu/cschneider/ Education __________________________ Gettysburg College 1966–1970. B.A.with Distinction in Biology (minor, Chemistry), 1970. Gettysburg, Pennsylvania, USA Research: “A survey study of the filamentous algae of Adams County, Pennsylvania, September–October 1969” Gettysburg College 1971. Post-graduate coursework (Biological illustration) Duke University 1970–1975. Ph.D. Botany (focus, Phycology/Systematics; minor, Durham, North Carolina, USA Geology), 1975. Dissertation: “Spatial and temporal distributions of the benthic marine algae on the continental shelf of the Carolinas” Academic Appointments __________________________ 1971–1975 Graduate Teaching Assistant, Department of Botany, Duke University 1971 Graduate Teaching Assistant, Department of Zoology, Duke University 1975–1981 Assistant Professor of Biology, Trinity College 1981–1987 Associate Professor of Biology, Trinity College 1982–1984 Visiting Associate Professor of Botany, Summer Session, Duke Univ. Marine Lab 1987–1998 Professor of Biology, Trinity College 1993–2011 Organizer/Coordinator, Environment & Human Values Minor, Trinity College 1995–1997 Charles A. Dana Research Professor, Trinity College 1997–2019 Coordinator, Marine Studies Minor, Trinity College 1997–2002 Chair, Department of Biology, Trinity College 1998–2020 Charles A. Dana Professor of Biology, Trinity College 2010–2015 Graduate Faculty Appointment, Dept. of Biological Sciences, Univ. Rhode Island 2011 Acting Chair, Department of Biology, Trinity College 2020 Charles A. Dana Professor of Biology Emeritus, Trinity College Teaching Experience __________________________ 1971–1975 Teaching Assistant, Duke University Courses: General biology, Plant diversity, Biological oceanography, Marine microbiology, Oceanography, Bacteriology.
    [Show full text]
  • A Chronology of Middle Missouri Plains Village Sites
    Smithsonian Institution Scholarly Press smithsonian contributions to botany • number 106 Smithsonian Institution Scholarly Press ConspectusA Chronology of the Benthic of MiddleMarine AlgaeMissouri of the Plains Gulf of California:Village Rhodophyta, Sites Phaeophyceae, and ChlorophytaBy Craig M. Johnson with contributions by StanleyJames A. N. Ahler, Norris, Herbert Luis Haas, E. and Aguilar-Rosas, Georges Bonani and Francisco F. Pedroche SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Smithsonian Institution Scholarly Press (SISP) publishes small papers and
    [Show full text]
  • Global Seaweed Network
    Global Seaweed Network A GLOBAL SEAWEED STRATEGY by Juliet Brodie and Members of the Global Seaweed Strategy Workshop June 2010 Natural History Museum 2 CONTENTS 1.0 EXECUTIVE SUMMARY……………………………………………………………. 5 2.0 VISION………………………………………………………………………………… 5 3.0 INTRODUCTION………………………………………………………………………5 4.0 THE WORKSHOP…………………………………………………………………….. 6 5.0 OUTCOMES…………………………………………………………………………....6 6.0 MAJOR TOPICS………………………………………………………………………. 7 1. IDENTIFICATION, TAXONOMY AND PHYLOGENY……………………... 7 Needs identified……………………………………………………………. 7 Strengths and weaknesses………………………………………………….. 8 Projects……………………………………………………………………... 8 2. AQUACULTURE AND PRODUCTS…………………………………………...10 Needs identified……………………………………………………………. 10 Strengths and weaknesses…………………………………………………. 11 Projects…………………………………………………………………….. 11 3. COMMUNICATION AND OUTREACH……………………………………… 13 Needs identified……………………………………………………………. 13 Strengths and weaknesses………………………………………………….. 13 Projects……………………………………………………………………... 14 4. ETHNOPHYCOLOGY…………………………………………………………..15 Needs identified……………………………………………………………. 15 Strengths and weaknesses………………………………………………….. 15 Projects……………………………………………………………………... 15 5. BIODIVERSITY AND CONSERVATION……………………………………...16 Needs identified……………………………………………………………. 16 Strengths and weaknesses………………………………………………….. 17 Projects……………………………………………………………………... 17 6. ECONOMICS AND SOCIETY………………………………………………… 18 3 Needs identified……………………………………………………………. 18 Strengths and weaknesses………………………………………………….. 18 Projects……………………………………………………………………... 18 7. INTEGRATION AND POLICY………………………………………………..
    [Show full text]
  • Variation in Gametophyte Dominance in Populations of Chondrus Verrucosus (Gigartinaceae, Rhodophyta)
    Phycological Research 2008; 56: 246–254 Variation in gametophyte dominance in populations of Chondrus verrucosus (Gigartinaceae, Rhodophyta) Alecia Bellgrove,1,2* and Masakazu N. Aoki1 1Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan, and 2School of Life & Environmental Sciences, Deakin University, Warrnambool, Victoria 3280, Australia 1996) and Sweden (Lindgren & Åberg 1996). More- SUMMARY over, studies have found that the pattern of gameto- phyte dominance for Chondrus crispus Stackhouse on We describe the abundance, including spatial and tem- rocky substrata is generally temporally stable over short poral variability, of phases of the isomorphic Chondrus (monthly) and long (annual to decadal) time-scales verrucosus Mikami from Japan. Chondrus verrucosus (May 1986; Scrosati et al. 1994; Scrosati & Mudge occurred in a dense (~90% cover) and temporally stable 2004a,b). In Japan, seasonal variation in the number of bed on a small, isolated rocky outcrop (Oyakoiwa) in fertile gametophytic and tetrasporophytic thalli has Shizuoka Prefecture. Small vegetative fronds were been examined for Chondrus yendoi Yamada et Mikami always much more abundant than large vegetative and (as Iridophycus cornucopia (Postels et Ruprecht) Set- fertile fronds over the spring to late summer periods in chell et Gardner – Hasegawa and Fukuhara 1952; 1999 and 2000. Over the same period, fertile car- Hasegawa and Fukuhara 1955), but no estimates of the posporophytic fronds were generally more abundant total proportions (including fertile and non-fertile thalli) than fertile tetrasporophytic fronds, and fertile male of gametophytes and tetrasporophytes in a population fronds appeared infrequently at low densities. Using have been made, despite the relatively high species the resorcinol-acetal test, we determined the proportion diversity within the Gigartinaceae in Japan.
    [Show full text]