Warkah Berita Persama

Total Page:16

File Type:pdf, Size:1020Kb

Warkah Berita Persama 1 WARKAH BERITA PERSAMA Bil 22 (2), 2017/1438 H/1939 S (Untuk Ahli Sahaja) Terbitan Julai 2018 PERSATUAN SAINS MATEMATIK MALAYSIA (PERSAMA) (Dimapankan pada 1970 sebagai “Malayisan Mathematical Society” , tetapi dinamai semula sebagai “Persatuan Matematik Malaysia (PERSAMA) ” pada 1995 dan diperluaskan kepada “Persatuan Sains Matematik Malaysia (PERSAMA)” mulai Ogos 1998) Terbitan “Newsletter” persatuan ini yang dahulunya tidak berkala mulai dijenamakan semula sebagai “Warkah Berita” mulai 1994/1995 (lalu dikira Bil. 1 (1&2) 1995) dan diterbitkan dalam bentuk cetakan liat tetapi sejak isu 2008 (terbitan 2010) dibuat dalam bentuk salinan lembut di laman PERSAMA. Warkah Berita PERSAMA 22(2): Jul-Dis, 2017/1438 H/1939 S 2 KANDUNGAN WB 2017, 22(2) (Julai-Dis) BARISAN PENYELENGGARA WB PERSAMA 3 MANTAN PRESIDEN & SUA PERSAMA 4 BARISAN PIMPINAN PERSAMA 2017/18-2018/19 5-6 MELENTUR BULUH ( OMK, IMO DSBNYA) 2016 7-12 BULAT AIR KERANA PEMBETUNG 12-23 STATISTIK AHLI PERSAMA SPT PADA DIS 2016 12 MINIT MESYUARAT AGUNG PERSAMA 2016/17 12-15 LAPORAN TAHUNAN PERSAMA 2016/17 16-19 PENYATA KEWANGAN PERSAMA 2016/17 20-23 BERITA PERSATUAN SN MATEMA ASEAN 23-26 DI MENARA GADING 26-27 GELANGGANG AKADEMIAWAN 27-50 SEM & KOLOKUIUM UKM, UM, UPM, USM & UTM Julai-Dis 2016) 27-30 LAPORAN SEMINAR 30 PENERBITAN USM (PPSM), UTM (JM) dan Fakulti Sn Kom dsbnya di UKM, UM, UPM, USM & UTM 2013 31-50 SEM DSBNYA KELAK: DALAM & LUAR NEGARA 2017-2018 51-107 ANUGERAH (NOBEL, PINGAT DAN SEBAGAINYA) 2016 107-110 KEMBALINYA SARJANA KE ALAM BAQA 110 MAKALAH UMUM YANG MENARIK 110 BUKU PILIHAN 111-180 ANUGERAH BUKU NEGARA 2016 111 LARIS JUALAN di amazon.com 2016 111-119 (10 buah buku agrasana setiap bidang) SN MATEMA 2016 119-180 KE ARAH MEMPERTAUTKAN KIAMBANG 181-182 PENGELASAN SAINS MATEMATIK PERSAMA 2000 183 PENGELASAN SAINS MATEMATIK MASTIC 2003 184-187 BORANG PEMBAHARUAN KEAHLIAN PERSAMA 188 BORANG MENJADI AHLI PERSAMA 189-190 %%%%%%%%%%%%%%%%%%%% Warkah Berita PERSAMA 22(2): Jul-Dis, 2017/1438 H/1939 S 3 BARISAN PENYELENGGARA WB PERSAMA PERSATUAN SAINS MATEMATIK MALAYSIA (Dimapankan pada 1970 sebagai “Malaysian Mathematical Society”, tetapi dinamai semula sebagai “Persatuan Matematik Malaysia (PERSAMA)” mulai 1995 dan berubah lagi kepada nama baru ini bermula Ogos 1998) Penyunting Pengurusan Penolong Penyunting Pengurusan Shaharir bin Mohamad Zain Sharifah Kartini binti Said Husain PhD, FIMA, FIFM, FIA, JSP, FASc. Ph.D [email protected] [email protected] Presiden (mulai Julai 2013) Setiausaha Kehormat (mulai Julai 2013) Prof. Maslina binti Darus [email protected] Dr. Sakhnah Abu Bakar [email protected] Pengutus Pengutus Khas Dr. Leong Choong Yeun Prof. Arsmah bt Ibrahim Prof. Nor Haniza bt Sarmin PPSM, UKM FSKSM/FTMSM, UiTM JM, UTM [email protected] [email protected] ######################## Warkah Berita PERSAMA 22(2): Jul-Dis, 2017/1438 H/1939 S 4 Penerbit: Mantan Presiden : Persatuan Matematik Malaysia 2002-2013: Prof. Mohd Salmi bin Md Noorani (PERSAMA) 1994-2002: Prof. Dr. Shaharir bin Mohamad Zain d/a Jabatan Matematik 1991-93: Dr. Tan Sin Ling Fakulti Sains Matematik 1989-90: Dr. Seah Sek Wui Universiti Kebangsaan Malaysia 1988: Dr. Tan Keng Teh 1987: Dr. Abu Osman Md. Tap 43600 UKM Bangi, Selangor DE, Malaysia 1986: Dr. Wong Peng Choon Tel.: 03-8292728 1985: Dr. Tan Sin Ling Faks: 03-8293289 1984: Dr. Ng Boon Yian http://www.tmsk.itm.edu/~persama 1971, 1983: Prof. Cheng Mei Choi 1982: Dr. Lim Ming Huat 1973, 1975, 1981: Dr. Lim Chong Keang Pendapat yang terkandung di dalam Warkah Berita ini tidak 1979: Dr. Tan Keng Teh semestinya mencerminkan pandangan PERSAMA 1977-78; 1980: Dr. Seah Sek Wui 1974, 1976: Dr. Chee Pak Soon 1970, 1972: Dr. Cheong Chong Kong Mantan Setiausaha: 1997-2013: Prof. Maslina binti Darus 1994-97: Dr. Mohd. Salmi Md. Noorani 1990-93: Dr. Kurunathan Ratnavelu 1986-90: Dr. Chia Gek Leng 1985: Dr. Ng Boon Yian 1984: Dr. Tan Sin Ling 1983: Dr. Lim Meng Huat 1972, 1974, 1981-1982: Dr. Seah Sek Wui 1979-1980: Dr. Lee Choo Seng 1978: Dr. Ng Boon Yian 1977: Dr.Tan Keng Teh 1976: Dr. Ang Beng Tong 1975: Dr. Fon Wai Choo 1973: Dr. Chee Pak Soon 1971: Dr. Cheong Hock Aun 1970: Dr. Cheng Mee Choi &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ################################################################ Peringatan Kepada Ahli-Ahli PERSAMA Bagi mengelakkan daripada gugurnya keahlian anda kerana tidak menjelaskan yuran 3 tahun berturut- turut, silalah lunaskan yuran anda dengan segera menerusi borang yang disediakan di bahagian akhir Warkah Berita ini. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Dengan ini dimaklumkan bahawa Mesyuarat Agung Tahunan Penggal 2016/2017 Persatuan Sains Matematik Malaysia (PERSAMA) akan diadakan pada 29 Ogos 2017, jam 4:30 petang, bertempat di Hotel MS Garden, Kuantan. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Warkah Berita PERSAMA 22(2): Jul-Dis, 2017/1438 H/1939 S 5 BARISAN PIMPINAN PERSAMA 2017/18 – 2018/19 PERSATUAN SAINS MATEMATIK MALAYSIA (Yang dipilih dlm Mesyuarat Agung Tahunan Penggal 2016/2017 Persatuan Sains Matematik Malaysia (PERSAMA) yang diadakan pada 29 Ogos 2017) Presiden Prof. Maslina Darus Mel-e: [email protected] Timbalan Dekan FST, TP: +603-89215713 UKM (anggota PPSM, TG : +6013-3339444 UKM) Naib Presiden Prof. Dr. Daud Mel-e: [email protected] Mohamad TP: +603-55435346 Pusat Pengajian TG: +6013-9800880 Matematik Fakulti Sains Komputer dan Matematik UiTM 40450 Shah Alam Selangor Naib Presiden Prof Dr. Nor Haniza Mel-e: [email protected] Sarmin Jabatan Matematik UTM Setiausaha Dr Sakhinah Abu Bakar Mel-e: [email protected] Kehormat Pusat Pengajian Sains TP: +603-8921 3425 Matematik TG: +6019-2231282 Fakulti Sains & Teknologi UKM 43600 UKM Bangi, Selangor Penolong Dr. Nor Muhainiah [email protected] Setiausaha Mohd Ali , Jabatan [email protected] Kehormat Sains Matematik, Tel: +607-5534275 Fakulti Sains, UTM Warkah Berita PERSAMA 22(2): Jul-Dis, 2017/1438 H/1939 S 6 Bendahari Dr. Saiful Hafizah Mel-e: [email protected] Kehormat Jaaman (PM) TP: +603-89213422 Pusat Pengajian Sains TG: +6019-2114906 Matematik Fakulti Sains & Teknologi UKM 43600 UKM Bangi, Selangor Penolong Dr Humaida Banu Mel-e: [email protected] Bendahari Samsudin TP: +603-89215723 Pusat Pengajian Sains TG: +6017-3623463 Matematik Fakulti Sains & Teknologi UKM 43600 UKM Bangi, Selangor Ahli Prof. Dr. Norihan Md. Mel-e : norihanarifin@ yahoo. Jawatankuasa Arifin com; [email protected] Jabatan Matematik TP: +603-89467939 Fakulti Sains TG: +6012-3928108 UPM 43400 UPM Serdang, Selangor Mel-e: [email protected] Dr. Mohd Tahir Ismail Pusat Pengajian Sans Matematik, USM. Dr. Nurfadhlina Abdul Halim Mel-e: [email protected] Pusat Pengajian TP: +6096683383 Informatik dan TG: +60133525861 Matematik Gunaan Universiti Malaysia Terengganu 21030 Kuala Terengganu,Terengganu Mel-e: [email protected] Prof. Dr. Suzeini Abdul TP: +603-7967 4101 Halim TG: +6012- 2780768 Institut Sains Matematik Fakulti Sains UM 50603 Kuala Lumpur Warkah Berita PERSAMA 22(2): Jul-Dis, 2017/1438 H/1939 S 7 %%%%%%%%%%%%%%%%%%%% KALENDAR/TAQWIM MALAYONESIA Tahun orang Malayonesia bermula pada tahun 78 M dan dinamai tahun Saka. Oleh itu setiap T Masehi = (T -78) Saka. Tahun Saka dipakai oleh orang Malayonesia hingga abad ke-15 M, walaupun tahun Hijrah telah mulai digunakan sekurang-kurangnya sejak akhir abad ke-13 M. Nama bulan orang Malayonesia ketika itu ialah mengikut bulan Hindu dalam bahasa Sanskrit seperti berikut: Bulan satu dinamai Caitya/Chaitra/Caitra (30 / 31* hari) mulai Mac/Maret 22 / 21*, Bulan dua dinamai Waisyaka/Vaisakha (31 hari) mulai April 21, Bulan tiga dinamai Jesta/Yaistha (31 hari) mulai Mei 22, Bulan empat dinamai Asadha (31 hari) mulai Jun/Juni 22, Bulan lima dinamai Syrawana/Shravana (31 hari) mulai Julai/Juli 23, Bulan enam dinamai Badra/Bhadra (31 hari) mulai Ogos/Augustus 23, Bulan tujuh dinamai Aswina/Asvina (30 hari) mulai September 23, Bulan lapan dinamai Kartika/Karttika (30 hari) mulai Oktober 23, Bulan Sembilan dinamai Agrahayana (30 hari) mulai November 22, Bulan sepuluh dinamai Pausa (30 hari) mulai Disember/Desember 22, Bulan sebelas dinamai Margasirsya/Margasirsha/Magha (30 hari) mulai Januari/Januarius 21, dan Bulan dua belas dinamai Falgana/Phalgana/Phalguna (30 hari) mulai Februari/Februarius 20. (* menandaklan bulan untuk tahun lompat). Nama bulan yang dijumpai dirakamkan pada prasasti (batu bersurat atau inskripsi) dalam bahasa Malayu/Melayu sejak abad ke-7 Masehi; tetapi yang dijumpai setakat ini, ialah Caitya (Chaitya), Caitra (Chaitra), Waisyaka (Vaisakha), Jesta, Kartika (Karttika), Margasirsya (Margasirsha), dan Falgana (Phalgana) sahaja. Yang lain itu diambil daripada bulan Hindu dalam bahasa Sanskrit kerana yang dijumpai pada prasasti itu memang sama dengan bulan Hindu itu. MELENTUR BULUH ( OMK, IMO DSBNYA) Keputusan OMK 2017 (Sila lihat perinciannya di laman PERSAMA) Pemenang Individu Kategori Bongsu; Pemenang Kumpulan Kategori Bongsu; Pemenang Individu Kategori Muda; Pemenang Kumpulan Kategori Muda; Pemenang Individu Kategori Sulong; Pemenang Kumpulan Kategori Sulong Keputusan Olimpiad Matematik Antarabangsa (OMA/IMO) 2017 IMO (International Mathematical Olimpiad/Olimpiad Matematik Antarabangsa) 2017 The first IMO was held in 1959 in Romania, with 7 countries participating. Nowadays, there are over 100 countries participating from 5 continents. IMO 2017 ialah yang ke-58 dan diadakan di Rio de Janeiro, Brazil, pada 12. Julai hingga 23 Julai 2017 Bilangan peserta 2017: 111 buah negara 10 agrasana 2017: Korea
Recommended publications
  • Acm Names Fellows for Innovations in Computing
    CONTACT: Virginia Gold 212-626-0505 [email protected] ACM NAMES FELLOWS FOR INNOVATIONS IN COMPUTING 2014 Fellows Made Computing Contributions to Enterprise, Entertainment, and Education NEW YORK, January 8, 2015—ACM has recognized 47 of its members for their contributions to computing that are driving innovations across multiple domains and disciplines. The 2014 ACM Fellows, who hail from some of the world’s leading universities, corporations, and research labs, have achieved advances in computing research and development that are driving innovation and sustaining economic development around the world. ACM President Alexander L. Wolf acknowledged the advances made by this year’s ACM Fellows. “Our world has been immeasurably improved by the impact of their innovations. We recognize their contributions to the dynamic computing technologies that are making a difference to the study of computer science, the community of computing professionals, and the countless consumers and citizens who are benefiting from their creativity and commitment.” The 2014 ACM Fellows have been cited for contributions to key computing fields including database mining and design; artificial intelligence and machine learning; cryptography and verification; Internet security and privacy; computer vision and medical imaging; electronic design automation; and human-computer interaction. ACM will formally recognize the 2014 Fellows at its annual Awards Banquet in June in San Francisco. Additional information about the ACM 2014 Fellows, the awards event, as well as previous
    [Show full text]
  • Journal of Applied Logic
    JOURNAL OF APPLIED LOGIC AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Impact Factor p.1 • Abstracting and Indexing p.1 • Editorial Board p.1 • Guide for Authors p.5 ISSN: 1570-8683 DESCRIPTION . This journal welcomes papers in the areas of logic which can be applied in other disciplines as well as application papers in those disciplines, the unifying theme being logics arising from modelling the human agent. For a list of areas covered see the Editorial Board. The editors keep close contact with the various application areas, with The International Federation of Compuational Logic and with the book series Studies in Logic and Practical Reasoning. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license. If you require any further information or help, please visit our Support Center IMPACT FACTOR . 2016: 0.838 © Clarivate Analytics Journal Citation Reports 2017 ABSTRACTING AND INDEXING . Zentralblatt MATH Scopus EDITORIAL BOARD . Executive Editors Dov M. Gabbay, King's College London, London, UK Sarit Kraus, Bar-llan University,
    [Show full text]
  • Ζ−1 Using Theorem 1.2
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Ihara zeta functions of irregular graphs Permalink https://escholarship.org/uc/item/3ws358jm Author Horton, Matthew D. Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Ihara zeta functions of irregular graphs A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Matthew D. Horton Committee in charge: Professor Audrey Terras, Chair Professor Mihir Bellare Professor Ron Evans Professor Herbert Levine Professor Harold Stark 2006 Copyright Matthew D. Horton, 2006 All rights reserved. The dissertation of Matthew D. Horton is ap- proved, and it is acceptable in quality and form for publication on micro¯lm: Chair University of California, San Diego 2006 iii To my wife and family Never hold discussions with the monkey when the organ grinder is in the room. |Sir Winston Churchill iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . vii List of Tables . viii Acknowledgements . ix Vita ...................................... x Abstract of the Dissertation . xi 1 Introduction . 1 1.1 Preliminaries . 1 1.2 Ihara zeta function of a graph . 4 1.3 Simplifying assumptions . 8 2 Poles of the Ihara zeta function . 10 2.1 Bounds on the poles . 10 2.2 Relations among the poles . 13 3 Recovering information . 17 3.1 The hope . 17 3.2 Recovering Girth . 18 3.3 Chromatic polynomials and Ihara zeta functions . 20 4 Relations among Ihara zeta functions .
    [Show full text]
  • Knowledge Representation in Bicategories of Relations
    Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR).
    [Show full text]
  • Ihara Zeta Functions
    Audrey Terras 2/16/2004 fun with zeta and L- functions of graphs Audrey Terras U.C.S.D. February, 2004 IPAM Workshop on Automorphic Forms, Group Theory and Graph Expansion Introduction The Riemann zeta function for Re(s)>1 ∞ 1 −1 ζ ()sp== 1 −−s . ∑ s ∏ () n=1 n pprime= Riemann extended to all complex s with pole at s=1. Functional equation relates value at s and 1-s Riemann hypothesis duality between primes and complex zeros of zeta See Davenport, Multiplicative Number Theory. 1 Audrey Terras 2/16/2004 Graph of |Zeta| Graph of z=| z(x+iy) | showing the pole at x+iy=1 and the first 6 zeros which are on the line x=1/2, of course. The picture was made by D. Asimov and S. Wagon to accompany their article on the evidence for the Riemann hypothesis as of 1986. A. Odlyzko’s Comparison of Spacings of Zeros of Zeta and Eigenvalues of Random Hermitian Matrix. See B. Cipra, What’s Happening in Math. Sciences, 1998-1999. 2 Audrey Terras 2/16/2004 Dedekind zeta of an We’ll algebraic number field F, say where primes become prime more ideals p and infinite product of about number terms field (1-Np-s)-1, zetas Many Kinds of Zeta Np = norm of p = #(O/p), soon O=ring of integers in F but not Selberg zeta Selberg zeta associated to a compact Riemannian manifold M=G\H, H = upper half plane with arc length ds2=(dx2+dy2)y-2 , G=discrete group of real fractional linear transformations primes = primitive closed geodesics C in M of length −+()()sjν C ν(C), Selberg Zs()=− 1 e (primitive means only go Zeta = ∏ ∏( ) around once) []Cj≥ 0 Reference: A.T., Harmonic Analysis on Symmetric Duality between spectrum ∆ on M & lengths closed geodesics in M Spaces and Applications, I.
    [Show full text]
  • Renormalization and Effective Field Theory
    Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA.
    [Show full text]
  • Notices of the American Mathematical Society
    • ISSN 0002-9920 March 2003 Volume 50, Number 3 Disks That Are Double Spiral Staircases page 327 The RieITlann Hypothesis page 341 San Francisco Meeting page 423 Primitive curve painting (see page 356) Education is no longer just about classrooms and labs. With the growing diversity and complexity of educational programs, you need a software system that lets you efficiently deliver effective learning tools to literally, the world. Maple® now offers you a choice to address the reality of today's mathematics education. Maple® 8 - the standard Perfect for students in mathematics, sciences, and engineering. Maple® 8 offers all the power, flexibility, and resources your technical students need to manage even the most complex mathematical concepts. MapleNET™ -- online education ,.u A complete standards-based solution for authoring, nv3a~ _r.~ .::..,-;.-:.- delivering, and managing interactive learning modules \~.:...br *'r¥'''' S\l!t"AaITI(!\pU;; ,"", <If through browsers. Derived from the legendary Maple® .Att~~ .. <:t~~::,/, engine, MapleNefM is the only comprehensive solution "f'I!hlislJer~l!'Ct"\ :5 -~~~~~:--r---, for distance education in mathematics. Give your institution and your students cornpetitive edge. For a FREE 3D-day Maple® 8 Trial CD for Windows®, or to register for a FREE MapleNefM Online Seminar call 1/800 R67.6583 or e-mail [email protected]. ADVANCING MATHEMATICS WWW.MAPLESOFT.COM I [email protected]\I I WWW.MAPLEAPPS.COM I NORTH AMERICAN SALES 1/800 267. 6583 © 2003 Woter1oo Ma')Ir~ Inc Maple IS (J y<?glsterc() crademork of Woterloo Maple he Mar)leNet so troc1ema'k of Woter1oc' fV'lop'e Inr PII other trcde,nork$ (ye property o~ their respective ('wners Generic Polynomials Constructive Aspects of the Inverse Galois Problem Christian U.
    [Show full text]
  • Inside the Perimeter Is Published by Perimeter Institute for Theoretical Physics
    the Perimeter fall/winter 2014 Skateboarding Physicist Seeks a Unified Theory of Self The Black Hole that Birthed the Big Bang The Beauty of Truth: A Chat with Savas Dimopoulos Subir Sachdev's Superconductivity Puzzles Editor Natasha Waxman [email protected] Contributing Authors Graphic Design Niayesh Afshordi Gabriela Secara Erin Bow Mike Brown Photographers & Artists Phil Froklage Tibra Ali Colin Hunter Justin Bishop Robert B. Mann Amanda Ferneyhough Razieh Pourhasan Liz Goheen Natasha Waxman Alioscia Hamma Jim McDonnell Copy Editors Gabriela Secara Tenille Bonoguore Tegan Sitler Erin Bow Mike Brown Colin Hunter Inside the Perimeter is published by Perimeter Institute for Theoretical Physics. www.perimeterinstitute.ca To subscribe, email us at [email protected]. 31 Caroline Street North, Waterloo, Ontario, Canada p: 519.569.7600 f: 519.569.7611 02 IN THIS ISSUE 04/ Young at Heart, Neil Turok 06/ Skateboarding Physicist Seeks a Unified Theory of Self,Colin Hunter 10/ Inspired by the Beauty of Math: A Chat with Kevin Costello, Colin Hunter 12/ The Black Hole that Birthed the Big Bang, Niayesh Afshordi, Robert B. Mann, and Razieh Pourhasan 14/ Is the Universe a Bubble?, Colin Hunter 15/ Probing Nature’s Building Blocks, Phil Froklage 16/ The Beauty of Truth: A Chat with Savas Dimopoulos, Colin Hunter 18/ Conference Reports 22/ Back to the Classroom, Erin Bow 24/ Finding the Door, Erin Bow 26/ "Bright Minds in Their Life’s Prime", Colin Hunter 28/ Anthology: The Portraits of Alioscia Hamma, Natasha Waxman 34/ Superconductivity Puzzles, Colin Hunter 36/ Particles 39/ Donor Profile: Amy Doofenbaker, Colin Hunter 40/ From the Black Hole Bistro, Erin Bow 42/ PI Kids are Asking, Erin Bow 03 neil’s notes Young at Heart n the cover of this issue, on the initial singularity from which everything the lip of a halfpipe, teeters emerged.
    [Show full text]
  • Contextuality, Cohomology and Paradox
    The Sheaf Team Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield Samson Abramsky Joint work with Rui Soares Barbosa, KoheiContextuality, Kishida, Ray LalCohomology and Shane and Mansfield Paradox (Department of Computer Science, University of Oxford)2 / 37 Contextuality. Key to the \magic" of quantum computation. Experimentally verified, highly non-classical feature of physical reality. And pervasive in logic, computation, and beyond. In a nutshell: data which is locally consistent, but globally inconsistent. We find a direct connection between the structure of quantum contextuality and classic semantic paradoxes such as \Liar cycles". Conversely, contextuality offers a novel perspective on these paradoxes. Cohomology. Sheaf theory provides the natural mathematical setting for our analysis, since it is directly concerned with the passage from local to global. In this setting, it is furthermore natural to use sheaf cohomology to characterise contextuality. Cohomology is one of the major tools of modern mathematics, which has until now largely been conspicuous by its absence, in logic, theoretical computer science, and quantum information. Our results show that cohomological obstructions to the extension of local sections to global ones witness a large class of contextuality arguments. Contextual Semantics Samson Abramsky Joint work with Rui Soares Barbosa, KoheiContextuality, Kishida, Ray LalCohomology and Shane and Mansfield Paradox (Department of Computer Science, University of Oxford)3 / 37 In a nutshell: data which is locally consistent, but globally inconsistent. We find a direct connection between the structure of quantum contextuality and classic semantic paradoxes such as \Liar cycles". Conversely, contextuality offers a novel perspective on these paradoxes. Cohomology. Sheaf theory provides the natural mathematical setting for our analysis, since it is directly concerned with the passage from local to global.
    [Show full text]
  • Graphs: Random, Chaos, and Quantum
    Graphs: Random, Chaos, and Quantum Matilde Marcolli Fields Institute Program on Geometry and Neuroscience and MAT1845HS: Introduction to Fractal Geometry and Chaos University of Toronto, March 2020 Matilde Marcolli Graphs: Random, Chaos, and Quantum Some References Alex Fornito, Andrew Zalesky, Edward Bullmore, Fundamentals of Brain Network Analysis, Elsevier, 2016 Olaf Sporns, Networks of the Brain, MIT Press, 2010 Olaf Sporns, Discovering the Human Connectome, MIT Press, 2012 Fan Chung, Linyuan Lu, Complex Graphs and Networks, American Mathematical Society, 2004 L´aszl´oLov´asz, Large Networks and Graph Limits, American Mathematical Society, 2012 Matilde Marcolli Graphs: Random, Chaos, and Quantum Graphs G = (V ; E;@) • V = V (G) set of vertices (nodes) • E = E(G) set of edges (connections) • boundary map @ : E(G) ! V (G) × V (G), boundary vertices @(e) = fv; v 0g • directed graph (oriented edges): source and target maps s : E(G) ! V (G); t : E(G) ! V (G);@(e) = fs(e); t(e)g • looping edge: s(e) = t(e) starts and ends at same vertex; parallel edges: e 6= e0 with @(e) = @(e0) • simplifying assumption: graphs G with no parallel edges and no looping edges (sometimes assume one or the other) • additional data: label functions fV : V (G) ! LV and fE : E(G) ! LE to sets of vertex and edge labels LV and LE Matilde Marcolli Graphs: Random, Chaos, and Quantum Examples of Graphs Matilde Marcolli Graphs: Random, Chaos, and Quantum Network Graphs (Example from Facebook) Matilde Marcolli Graphs: Random, Chaos, and Quantum Increasing Randomness rewiring
    [Show full text]
  • Current Issue of FACS FACTS
    Issue 2021-2 July 2021 FACS A C T S The Newsletter of the Formal Aspects of Computing Science (FACS) Specialist Group ISSN 0950-1231 FACS FACTS Issue 2021-2 July 2021 About FACS FACTS FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on Formal Aspects of Computing Science (FACS). FACS FACTS is distributed in electronic form to all FACS members. Submissions to FACS FACTS are always welcome. Please visit the newsletter area of the BCS FACS website for further details at: https://www.bcs.org/membership/member-communities/facs-formal-aspects- of-computing-science-group/newsletters/ Back issues of FACS FACTS are available for download from: https://www.bcs.org/membership/member-communities/facs-formal-aspects- of-computing-science-group/newsletters/back-issues-of-facs-facts/ The FACS FACTS Team Newsletter Editors Tim Denvir [email protected] Brian Monahan [email protected] Editorial Team: Jonathan Bowen, John Cooke, Tim Denvir, Brian Monahan, Margaret West. Contributors to this issue: Jonathan Bowen, Andrew Johnstone, Keith Lines, Brian Monahan, John Tucker, Glynn Winskel BCS-FACS websites BCS: http://www.bcs-facs.org LinkedIn: https://www.linkedin.com/groups/2427579/ Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255 Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS If you have any questions about BCS-FACS, please send these to Jonathan Bowen at [email protected]. 2 FACS FACTS Issue 2021-2 July 2021 Editorial Dear readers, Welcome to the 2021-2 issue of the FACS FACTS Newsletter. A theme for this issue is suggested by the thought that it is just over 50 years since the birth of Domain Theory1.
    [Show full text]
  • Finite Models for Arithmetical Quantum Chaos
    Finite Models for Arithmetical Quantum Chaos Audrey Terras Math. Dept., U.C.S.D., San Diego, Ca 92093-0112 Abstract. Physicists have long studied spectra of Schrödinger operators and random matrices thanks to the implications for quantum mechanics. Analo- gously number theorists and geometers have investigated the statistics of spec- tra of Laplacians on Riemannian manifolds. This has been termed by Sarnak “arithmetic quantum chaos” when the manifolds are quotients of a symmet- ric space modulo an arithmetic group such as the modular group SL(2, Z). Equivalently one seeks the statistics of the zeros of Selberg zeta functions. Parallels with the statistics of the zeros of the Riemann zeta function have been evident to physicists for some time. Here we survey what may be called “finite quantum chaos” seeking connections with the continuous theory. We will also discuss discrete analogue of Selberg’s trace formula as well as Ihara zeta functions of graphs. Part 1 Lecture 1. Finite Models 1. Introduction This is a story of a tree related to the spectral theory of operators on Hilbert spaces. The tree has three branches as in Figure 1. The left branch is that of quantum physics: the statistics of energy levels of quantum mechanical systems; i.e. the eigenvalues of the Schrödinger operator φn = λnφn. The middle branch is that of geometry and number theory. In the middleL we see the spectrum of the Laplace operator = ∆ on a Riemannian manifold M such as the fundamental L domain of the modular group SL(2, Z) of 2 2 integer matrices with determinant 1.
    [Show full text]