Warkah Berita Persama
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acm Names Fellows for Innovations in Computing
CONTACT: Virginia Gold 212-626-0505 [email protected] ACM NAMES FELLOWS FOR INNOVATIONS IN COMPUTING 2014 Fellows Made Computing Contributions to Enterprise, Entertainment, and Education NEW YORK, January 8, 2015—ACM has recognized 47 of its members for their contributions to computing that are driving innovations across multiple domains and disciplines. The 2014 ACM Fellows, who hail from some of the world’s leading universities, corporations, and research labs, have achieved advances in computing research and development that are driving innovation and sustaining economic development around the world. ACM President Alexander L. Wolf acknowledged the advances made by this year’s ACM Fellows. “Our world has been immeasurably improved by the impact of their innovations. We recognize their contributions to the dynamic computing technologies that are making a difference to the study of computer science, the community of computing professionals, and the countless consumers and citizens who are benefiting from their creativity and commitment.” The 2014 ACM Fellows have been cited for contributions to key computing fields including database mining and design; artificial intelligence and machine learning; cryptography and verification; Internet security and privacy; computer vision and medical imaging; electronic design automation; and human-computer interaction. ACM will formally recognize the 2014 Fellows at its annual Awards Banquet in June in San Francisco. Additional information about the ACM 2014 Fellows, the awards event, as well as previous -
Journal of Applied Logic
JOURNAL OF APPLIED LOGIC AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Impact Factor p.1 • Abstracting and Indexing p.1 • Editorial Board p.1 • Guide for Authors p.5 ISSN: 1570-8683 DESCRIPTION . This journal welcomes papers in the areas of logic which can be applied in other disciplines as well as application papers in those disciplines, the unifying theme being logics arising from modelling the human agent. For a list of areas covered see the Editorial Board. The editors keep close contact with the various application areas, with The International Federation of Compuational Logic and with the book series Studies in Logic and Practical Reasoning. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license. If you require any further information or help, please visit our Support Center IMPACT FACTOR . 2016: 0.838 © Clarivate Analytics Journal Citation Reports 2017 ABSTRACTING AND INDEXING . Zentralblatt MATH Scopus EDITORIAL BOARD . Executive Editors Dov M. Gabbay, King's College London, London, UK Sarit Kraus, Bar-llan University, -
Ζ−1 Using Theorem 1.2
UC San Diego UC San Diego Electronic Theses and Dissertations Title Ihara zeta functions of irregular graphs Permalink https://escholarship.org/uc/item/3ws358jm Author Horton, Matthew D. Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Ihara zeta functions of irregular graphs A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Matthew D. Horton Committee in charge: Professor Audrey Terras, Chair Professor Mihir Bellare Professor Ron Evans Professor Herbert Levine Professor Harold Stark 2006 Copyright Matthew D. Horton, 2006 All rights reserved. The dissertation of Matthew D. Horton is ap- proved, and it is acceptable in quality and form for publication on micro¯lm: Chair University of California, San Diego 2006 iii To my wife and family Never hold discussions with the monkey when the organ grinder is in the room. |Sir Winston Churchill iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . vii List of Tables . viii Acknowledgements . ix Vita ...................................... x Abstract of the Dissertation . xi 1 Introduction . 1 1.1 Preliminaries . 1 1.2 Ihara zeta function of a graph . 4 1.3 Simplifying assumptions . 8 2 Poles of the Ihara zeta function . 10 2.1 Bounds on the poles . 10 2.2 Relations among the poles . 13 3 Recovering information . 17 3.1 The hope . 17 3.2 Recovering Girth . 18 3.3 Chromatic polynomials and Ihara zeta functions . 20 4 Relations among Ihara zeta functions . -
Knowledge Representation in Bicategories of Relations
Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR). -
Ihara Zeta Functions
Audrey Terras 2/16/2004 fun with zeta and L- functions of graphs Audrey Terras U.C.S.D. February, 2004 IPAM Workshop on Automorphic Forms, Group Theory and Graph Expansion Introduction The Riemann zeta function for Re(s)>1 ∞ 1 −1 ζ ()sp== 1 −−s . ∑ s ∏ () n=1 n pprime= Riemann extended to all complex s with pole at s=1. Functional equation relates value at s and 1-s Riemann hypothesis duality between primes and complex zeros of zeta See Davenport, Multiplicative Number Theory. 1 Audrey Terras 2/16/2004 Graph of |Zeta| Graph of z=| z(x+iy) | showing the pole at x+iy=1 and the first 6 zeros which are on the line x=1/2, of course. The picture was made by D. Asimov and S. Wagon to accompany their article on the evidence for the Riemann hypothesis as of 1986. A. Odlyzko’s Comparison of Spacings of Zeros of Zeta and Eigenvalues of Random Hermitian Matrix. See B. Cipra, What’s Happening in Math. Sciences, 1998-1999. 2 Audrey Terras 2/16/2004 Dedekind zeta of an We’ll algebraic number field F, say where primes become prime more ideals p and infinite product of about number terms field (1-Np-s)-1, zetas Many Kinds of Zeta Np = norm of p = #(O/p), soon O=ring of integers in F but not Selberg zeta Selberg zeta associated to a compact Riemannian manifold M=G\H, H = upper half plane with arc length ds2=(dx2+dy2)y-2 , G=discrete group of real fractional linear transformations primes = primitive closed geodesics C in M of length −+()()sjν C ν(C), Selberg Zs()=− 1 e (primitive means only go Zeta = ∏ ∏( ) around once) []Cj≥ 0 Reference: A.T., Harmonic Analysis on Symmetric Duality between spectrum ∆ on M & lengths closed geodesics in M Spaces and Applications, I. -
Renormalization and Effective Field Theory
Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. -
Notices of the American Mathematical Society
• ISSN 0002-9920 March 2003 Volume 50, Number 3 Disks That Are Double Spiral Staircases page 327 The RieITlann Hypothesis page 341 San Francisco Meeting page 423 Primitive curve painting (see page 356) Education is no longer just about classrooms and labs. With the growing diversity and complexity of educational programs, you need a software system that lets you efficiently deliver effective learning tools to literally, the world. Maple® now offers you a choice to address the reality of today's mathematics education. Maple® 8 - the standard Perfect for students in mathematics, sciences, and engineering. Maple® 8 offers all the power, flexibility, and resources your technical students need to manage even the most complex mathematical concepts. MapleNET™ -- online education ,.u A complete standards-based solution for authoring, nv3a~ _r.~ .::..,-;.-:.- delivering, and managing interactive learning modules \~.:...br *'r¥'''' S\l!t"AaITI(!\pU;; ,"", <If through browsers. Derived from the legendary Maple® .Att~~ .. <:t~~::,/, engine, MapleNefM is the only comprehensive solution "f'I!hlislJer~l!'Ct"\ :5 -~~~~~:--r---, for distance education in mathematics. Give your institution and your students cornpetitive edge. For a FREE 3D-day Maple® 8 Trial CD for Windows®, or to register for a FREE MapleNefM Online Seminar call 1/800 R67.6583 or e-mail [email protected]. ADVANCING MATHEMATICS WWW.MAPLESOFT.COM I [email protected]\I I WWW.MAPLEAPPS.COM I NORTH AMERICAN SALES 1/800 267. 6583 © 2003 Woter1oo Ma')Ir~ Inc Maple IS (J y<?glsterc() crademork of Woterloo Maple he Mar)leNet so troc1ema'k of Woter1oc' fV'lop'e Inr PII other trcde,nork$ (ye property o~ their respective ('wners Generic Polynomials Constructive Aspects of the Inverse Galois Problem Christian U. -
Inside the Perimeter Is Published by Perimeter Institute for Theoretical Physics
the Perimeter fall/winter 2014 Skateboarding Physicist Seeks a Unified Theory of Self The Black Hole that Birthed the Big Bang The Beauty of Truth: A Chat with Savas Dimopoulos Subir Sachdev's Superconductivity Puzzles Editor Natasha Waxman [email protected] Contributing Authors Graphic Design Niayesh Afshordi Gabriela Secara Erin Bow Mike Brown Photographers & Artists Phil Froklage Tibra Ali Colin Hunter Justin Bishop Robert B. Mann Amanda Ferneyhough Razieh Pourhasan Liz Goheen Natasha Waxman Alioscia Hamma Jim McDonnell Copy Editors Gabriela Secara Tenille Bonoguore Tegan Sitler Erin Bow Mike Brown Colin Hunter Inside the Perimeter is published by Perimeter Institute for Theoretical Physics. www.perimeterinstitute.ca To subscribe, email us at [email protected]. 31 Caroline Street North, Waterloo, Ontario, Canada p: 519.569.7600 f: 519.569.7611 02 IN THIS ISSUE 04/ Young at Heart, Neil Turok 06/ Skateboarding Physicist Seeks a Unified Theory of Self,Colin Hunter 10/ Inspired by the Beauty of Math: A Chat with Kevin Costello, Colin Hunter 12/ The Black Hole that Birthed the Big Bang, Niayesh Afshordi, Robert B. Mann, and Razieh Pourhasan 14/ Is the Universe a Bubble?, Colin Hunter 15/ Probing Nature’s Building Blocks, Phil Froklage 16/ The Beauty of Truth: A Chat with Savas Dimopoulos, Colin Hunter 18/ Conference Reports 22/ Back to the Classroom, Erin Bow 24/ Finding the Door, Erin Bow 26/ "Bright Minds in Their Life’s Prime", Colin Hunter 28/ Anthology: The Portraits of Alioscia Hamma, Natasha Waxman 34/ Superconductivity Puzzles, Colin Hunter 36/ Particles 39/ Donor Profile: Amy Doofenbaker, Colin Hunter 40/ From the Black Hole Bistro, Erin Bow 42/ PI Kids are Asking, Erin Bow 03 neil’s notes Young at Heart n the cover of this issue, on the initial singularity from which everything the lip of a halfpipe, teeters emerged. -
Contextuality, Cohomology and Paradox
The Sheaf Team Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield Samson Abramsky Joint work with Rui Soares Barbosa, KoheiContextuality, Kishida, Ray LalCohomology and Shane and Mansfield Paradox (Department of Computer Science, University of Oxford)2 / 37 Contextuality. Key to the \magic" of quantum computation. Experimentally verified, highly non-classical feature of physical reality. And pervasive in logic, computation, and beyond. In a nutshell: data which is locally consistent, but globally inconsistent. We find a direct connection between the structure of quantum contextuality and classic semantic paradoxes such as \Liar cycles". Conversely, contextuality offers a novel perspective on these paradoxes. Cohomology. Sheaf theory provides the natural mathematical setting for our analysis, since it is directly concerned with the passage from local to global. In this setting, it is furthermore natural to use sheaf cohomology to characterise contextuality. Cohomology is one of the major tools of modern mathematics, which has until now largely been conspicuous by its absence, in logic, theoretical computer science, and quantum information. Our results show that cohomological obstructions to the extension of local sections to global ones witness a large class of contextuality arguments. Contextual Semantics Samson Abramsky Joint work with Rui Soares Barbosa, KoheiContextuality, Kishida, Ray LalCohomology and Shane and Mansfield Paradox (Department of Computer Science, University of Oxford)3 / 37 In a nutshell: data which is locally consistent, but globally inconsistent. We find a direct connection between the structure of quantum contextuality and classic semantic paradoxes such as \Liar cycles". Conversely, contextuality offers a novel perspective on these paradoxes. Cohomology. Sheaf theory provides the natural mathematical setting for our analysis, since it is directly concerned with the passage from local to global. -
Graphs: Random, Chaos, and Quantum
Graphs: Random, Chaos, and Quantum Matilde Marcolli Fields Institute Program on Geometry and Neuroscience and MAT1845HS: Introduction to Fractal Geometry and Chaos University of Toronto, March 2020 Matilde Marcolli Graphs: Random, Chaos, and Quantum Some References Alex Fornito, Andrew Zalesky, Edward Bullmore, Fundamentals of Brain Network Analysis, Elsevier, 2016 Olaf Sporns, Networks of the Brain, MIT Press, 2010 Olaf Sporns, Discovering the Human Connectome, MIT Press, 2012 Fan Chung, Linyuan Lu, Complex Graphs and Networks, American Mathematical Society, 2004 L´aszl´oLov´asz, Large Networks and Graph Limits, American Mathematical Society, 2012 Matilde Marcolli Graphs: Random, Chaos, and Quantum Graphs G = (V ; E;@) • V = V (G) set of vertices (nodes) • E = E(G) set of edges (connections) • boundary map @ : E(G) ! V (G) × V (G), boundary vertices @(e) = fv; v 0g • directed graph (oriented edges): source and target maps s : E(G) ! V (G); t : E(G) ! V (G);@(e) = fs(e); t(e)g • looping edge: s(e) = t(e) starts and ends at same vertex; parallel edges: e 6= e0 with @(e) = @(e0) • simplifying assumption: graphs G with no parallel edges and no looping edges (sometimes assume one or the other) • additional data: label functions fV : V (G) ! LV and fE : E(G) ! LE to sets of vertex and edge labels LV and LE Matilde Marcolli Graphs: Random, Chaos, and Quantum Examples of Graphs Matilde Marcolli Graphs: Random, Chaos, and Quantum Network Graphs (Example from Facebook) Matilde Marcolli Graphs: Random, Chaos, and Quantum Increasing Randomness rewiring -
Current Issue of FACS FACTS
Issue 2021-2 July 2021 FACS A C T S The Newsletter of the Formal Aspects of Computing Science (FACS) Specialist Group ISSN 0950-1231 FACS FACTS Issue 2021-2 July 2021 About FACS FACTS FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on Formal Aspects of Computing Science (FACS). FACS FACTS is distributed in electronic form to all FACS members. Submissions to FACS FACTS are always welcome. Please visit the newsletter area of the BCS FACS website for further details at: https://www.bcs.org/membership/member-communities/facs-formal-aspects- of-computing-science-group/newsletters/ Back issues of FACS FACTS are available for download from: https://www.bcs.org/membership/member-communities/facs-formal-aspects- of-computing-science-group/newsletters/back-issues-of-facs-facts/ The FACS FACTS Team Newsletter Editors Tim Denvir [email protected] Brian Monahan [email protected] Editorial Team: Jonathan Bowen, John Cooke, Tim Denvir, Brian Monahan, Margaret West. Contributors to this issue: Jonathan Bowen, Andrew Johnstone, Keith Lines, Brian Monahan, John Tucker, Glynn Winskel BCS-FACS websites BCS: http://www.bcs-facs.org LinkedIn: https://www.linkedin.com/groups/2427579/ Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255 Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS If you have any questions about BCS-FACS, please send these to Jonathan Bowen at [email protected]. 2 FACS FACTS Issue 2021-2 July 2021 Editorial Dear readers, Welcome to the 2021-2 issue of the FACS FACTS Newsletter. A theme for this issue is suggested by the thought that it is just over 50 years since the birth of Domain Theory1. -
Finite Models for Arithmetical Quantum Chaos
Finite Models for Arithmetical Quantum Chaos Audrey Terras Math. Dept., U.C.S.D., San Diego, Ca 92093-0112 Abstract. Physicists have long studied spectra of Schrödinger operators and random matrices thanks to the implications for quantum mechanics. Analo- gously number theorists and geometers have investigated the statistics of spec- tra of Laplacians on Riemannian manifolds. This has been termed by Sarnak “arithmetic quantum chaos” when the manifolds are quotients of a symmet- ric space modulo an arithmetic group such as the modular group SL(2, Z). Equivalently one seeks the statistics of the zeros of Selberg zeta functions. Parallels with the statistics of the zeros of the Riemann zeta function have been evident to physicists for some time. Here we survey what may be called “finite quantum chaos” seeking connections with the continuous theory. We will also discuss discrete analogue of Selberg’s trace formula as well as Ihara zeta functions of graphs. Part 1 Lecture 1. Finite Models 1. Introduction This is a story of a tree related to the spectral theory of operators on Hilbert spaces. The tree has three branches as in Figure 1. The left branch is that of quantum physics: the statistics of energy levels of quantum mechanical systems; i.e. the eigenvalues of the Schrödinger operator φn = λnφn. The middle branch is that of geometry and number theory. In the middleL we see the spectrum of the Laplace operator = ∆ on a Riemannian manifold M such as the fundamental L domain of the modular group SL(2, Z) of 2 2 integer matrices with determinant 1.