2 Low-Pass Filter Design

Total Page:16

File Type:pdf, Size:1020Kb

2 Low-Pass Filter Design MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.161 Signal Processing – Continuous and Discrete 1 Introduction to Continuous Time Filter Design 1 Introduction The design techniques described here are based on the creation of a prototype low-pass filter, with subsequent transformation to other filter forms (high-pass, band-pass, band-stop) if necessary. 2 Low-Pass Filter Design The prototype low-pass filter is based upon the magnitude-squared of the frequency response 2 function |H(jΩ)| , or the frequency response power function. The phase response of the filter is not considered. We begin by defining tolerance regions on the power frequency response plot, as shown in Fig. 1. |H( jW ) |2 1 1 1 + e 2 1 1 + l 2 0 W W W ( 0 c r ra d / sec ) pa s s ba n d tran s ition ba n d stop ba n d Figure 1: Tolerance regions in the frequency response plot. The filter specifications are that ≥|H j |2 > 1 | | < 1 ( Ω) 2 for Ω Ωc (1) 1+ 1D. Rowell, October 2, 2008 1 2 1 and |H(jΩ)| < for |Ω| > Ωr, (2) 2 1+ λ where Ωc is the cut-off frequency, Ωr is the rejection frequency, and and λ are design parameters that select the filter attenuation at the two critical frequencies. For example, if 2 =1, atΩc the power response response |H(jΩc)| =0.5, the -3 dB response frequency. In general we expect the response function to be monotonically decreasing in the transition band. The filter functions examined in this document will be of the form |H j |2 1 . ( Ω) = 2 (3) 1+ f (Ω) where f(Ω) → 0asΩ→ 0, and f(Ω) →∞as Ω →∞to generate a low-pass filter action. 2.1 The Butterworth Filter The Butterworth filter is defined by the power gain 2 1 |H(jΩ)| = 2N (4) 2 1+ (Ω/Ωc) where N is a positive integer defining the filter order. Note that λ does not appear in this formulation, but clearly N and λ are interrelated, since at Ω = Ωr 1 1 ≥ (5) 2 2 2N 1+ λ 1+ (Ωr/Ωc) which may be solved to show log(λ/) N ≥ (6) log(Ωr/Ωc) The power response function of Butterworth filters for N =1... 5 is shown in Fig. 2. Butterworth filters are also known as “maximally flat” filters because the response has the maximum number of vanishing derivatives at Ω = 0 and Ω = ∞ for filters of the form of Eq. 3. 2.1.1 The Transfer Function of the Butterworth Filter The poles of the power gain transfer function may be found from the characteristic equation � � s 2N 2 1+ = 0 (7) jΩc which yields 2N roots (poles) that lie on a circle: −1/N jπ(2n+N −1)/2N pn =Ωc e n =1... 2N (8) −1/N with radius r =Ωc , and angular separation of π/N rad. Notice that if N is odd a pair −1/N of poles will lie on the real axis at s = ±Ωc , while if N is even the roots will form complex conjugate pairs. 2 |H(jω )| 2 1 0.9 0.8 0.7 Power response 0.6 0.5 0.4 0.3 N increasing 0.2 N=1 0.1 N=5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Normalized frequency ω/ω c Figure 2: Power response of Butterworth filters for N =1... 5( = 1). 2 Figure 3a shows the six poles of |H(s)| for a third-order (N = 3) Butterworth filter. For a causal system we must have |H j |2 H j H j H s H −s | ( Ω) = ( Ω) ( Ω) = ( ) ( ) s=jΩ 2 which allows us to take take the N poles of |H(jΩ)| in the left half-plane as the poles of the filter H(s), that is the poles specified by (n =1...N ) in Eq. (8) above, −1/N jπ(2n+N −1)/2N pn =Ωc e n =1...N (9) as is shown in Fig. 3b. If the filter is to have unity gain at low frequencies lim |H(jΩ)| =1 Ω→0 we require the complete Butterworth transfer function to be (−p1)(−p2) ...(−pN ) H(s)= (s − p1)(s − p2) ...(s − pN ) N (−1) p1p2 ...pN = , (s − p1)(s − p2) ...(s − pN ) where only the N stable left-half-plane poles are included. 3 W W j j s - plane s - pla n e n= 1 n= 1 n= 6 W e - 1 /N x x W e-1/ N x r = c r = c 2p / 6 p/ 3 s n=2 x x x s n= 2 n= 5 x x n= 3 x n= 3 n=4 (a) (b) 2 Figure 3: The poles of (a) |H(s)| , and (b) H(s) for a third-order (N = 3) Butterworth filter. jW W r = c x s - plane p/ 4 s x Figure 4: Poles of a second-order Butterworth filter (N =2,= 1). 4 Example Consider a second-order (N =2, = 1) Butterworth filter with cut-off frequency Ωc. Equation (9) generates a pole pair as shown shown in the pole-zero of Fig. 4. The transfer function is that of a second-order system with damping ratio ζ =0.707 and undamped natural frequency Ωn =Ωc. Show that the power frequency response satisfies the Butterworth specification of Eq. (4). The transfer function for the second-order filter is 2 Ωc H(s)= √ (10) s2 s 2 + 2Ωc +Ωc and the frequency response is 2 Ωc √ H(jΩ) = H(s)|s =jΩ = (11) 2 − 2 j (Ωc Ω )+ 2ΩcΩ 4 2 Ωc 1 | H(jΩ)| = H(jΩ)H(jΩ) = = (12) 4 4 / 4 (Ωc +Ω ) 1+(Ω Ωc) which is of the Butterworth form of Eq. (4). Example Design a Butterworth low-pass filter to meet the power gain specifications shown in Fig. 5. Comparing Figs. 1 and 5 1 =0.9 −→ =0.3333 1+ 2 1 =0.05 −→ λ =4.358 1+ λ2 Then log(λ/) N ≥ =3.70 log(Ωr/Ωc) we therefore select N=4. The 4 poles (p1 ...p4) lie on a circle of radius r = −1/N Ωc =13.16 and are given by | pn| =13.16 pn = π(2n +3)/8 for n =1... 4, giving a pair of complex conjugate pole pairs p1,4 = − 5.04 ± j12.16 p2,3 = − 12.16 ± j5.04 5 |H( jW ) |2 1 0. 9 0. 0 5 0 0 10 20 W pa s s ba n d tran s ition ba n d stop ba n d Figure 5: Filter specification for Butterworth design. Bode Diagram 50 0 −50 Magnitude (dB) −100 −1500 −90 −180 Phase (deg) −270 −360 −1 0 1 2 3 10 10 10 10 10 Frequency (rad/sec) Figure 6: Bode plots for fourth-order Butterworth design example. 6 The transfer function, normalized to unity gain, is 29993 H(s) = (s2 + 10:07s + 173:2)(s2 + 24:32s + 173:2) and the filter Bode plots are shown in Fig. 6. 2.2 Chebyshev Filters The order of a filter required to met a low-pass specification may often be reduced by relaxing the requirement of a monotonically decreasing power gain with frequency, and allowing “ripple” to occur in either the pass-band or the stop-band. The Chebyshev filters allow these conditions: 2 1 Type 1 jH(jΩ)j = 2 2 (13) 1 + ² TN (Ω=Ωc) 1 Type 2 jH(jΩ)j2 = (14) 2 2 2 1 + ² (TN (Ωr=Ωc)=TN (Ωr=Ω)) Where TN (x) is the Chebyshev polynomial of degree N. Note the similarity of the form of the Type 1 power gain (Eq. (13)) to that of the Butterworth filter, where the function N TN (Ω=Ωc) has replaced (Ω=Ωc) . The Type 1 filter produces an all-pole design with slightly different pole placement from the Butterworth filters, allowing resonant peaks in the pass­ band to introduce ripple, while the Type 2 filter introduces a set of zeros on the imaginary axis above Ωr, causing a ripple in the stop-band. The Chebyshev polynomials are defined recursively as follows T0(x) = 1 T1(x) = x 2 T2(x) = 2x ¡ 1 3 T3(x) = 4x ¡ 3x . TN (x) = 2xTN¡1(x) ¡ TN¡2(x); N > 1 (15) with alternate definitions ¡1 TN (x) = cos(N cos (x)) (16) ¡1 = cosh(N cosh (x)) (17) The Chebyshev polynomials have the min-max property: Of all polynomials of degree N with leading coe±cient equal to one, the polynomial N¡1 TN (x)=2 has the smallest magnitude in the interval jxj · 1. This \minimum maximum" amplitude is 21¡N . 7 In low-pass filters given by Eqs. (13) and (14), this property translates to the following characteristics: Filter Pass-Band Characteristic Stop-Band Characteristic Butterworth Maximally flat Maximally flat 2 Chebyshev Type 1 Ripple between 1 and 1=(1 + ² ) Maximally flat 2 Chebyshev Type 2 Maximally flat Ripple between 1 and 1=(1 + ¸ ) 2.2.1 The Chebyshev Type 1 Filter With the power response from Eq. (13) 2 1 jH(jΩ)j = 2 2 1 + ² TN (Ω=Ωc) and the filter specification from Fig. 1, the required filter order may be found as follows. At the edge of the stop-band Ω = Ωr 1 1 jH(jΩ j2 = · r 2 2 2 1 + ² TN (Ωr=Ωc) 1 + ¸ so that ³ ´ ¡1 ¸ · ²TN (Ωr=Ωc) = ² cosh N cosh (Ωr=Ωc) and solving for N cosh¡1 (¸=²) N ¸ ¡1 (18) cosh (Ωr=Ωc) The characteristic equation of the power transfer function is à ! à ! 2 2 s s j 1 + ² TN = 0 or TN = § jΩc jΩc ² ¡1 Now TN (x) = cos(N cos (x)), so that à à !! ¡1 s j cos N cos = § (19) jΩc ² ¡1 If we write cos (s=jΩc) = γ + j®, then s = Ωc (j cos (γ + j®)) = Ωc (sinh ® sin γ + j cosh ® cos γ) (20) which defines an ellipse of width 2Ωc sinh(®) and height 2Ωc cosh(®) in the s-plane.
Recommended publications
  • Lesson 22: Determining Control Stability Using Bode Plots
    11/30/2015 Lesson 22: Determining Control Stability Using Bode Plots 1 ET 438A AUTOMATIC CONTROL SYSTEMS TECHNOLOGY lesson22et438a.pptx Learning Objectives 2 After this presentation you will be able to: List the control stability criteria for open loop frequency response. Identify the gain and phase margins necessary for a stable control system. Use a Bode plot to determine if a control system is stable or unstable. Generate Bode plots of control systems the include dead-time delay and determine system stability. lesson22et438a.pptx 1 11/30/2015 Bode Plot Stability Criteria 3 Open loop gain of less than 1 (G<1 or G<0dB) at Stable Control open loop phase angle of -180 degrees System Oscillatory Open loop gain of exactly 1 (G=1 or G= 0dB) at Control System open loop phase angle of -180 degrees Marginally Stable Unstable Control Open loop gain of greater than 1 (G>1 or G>0dB) System at open loop phase angle of -180 degrees lesson22et438a.pptx Phase and Gain Margins 4 Inherent error and inaccuracies require ranges of phase shift and gain to insure stability. Gain Margin – Safe level below 1 required for stability Minimum level : G=0.5 or -6 dB at phase shift of 180 degrees Phase Margin – Safe level above -180 degrees required for stability Minimum level : f=40 degree or -180+ 40=-140 degrees at gain level of 0.5 or 0 dB. lesson22et438a.pptx 2 11/30/2015 Determining Phase and Gain Margins 5 Define two frequencies: wodB = frequency of 0 dB gain w180 = frequency of -180 degree phase shift Open Loop Gain 0 dB Gain Margin -m180 bodB Phase Margin -180+b0dB -180o Open Loop w w Phase odB 180 lesson22et438a.pptx Determining Phase and Gain Margins 6 Procedure: 1) Draw vertical lines through 0 dB on gain and -180 on phase plots.
    [Show full text]
  • EE C128 Chapter 10
    Lecture abstract EE C128 / ME C134 – Feedback Control Systems Topics covered in this presentation Lecture – Chapter 10 – Frequency Response Techniques I Advantages of FR techniques over RL I Define FR Alexandre Bayen I Define Bode & Nyquist plots I Relation between poles & zeros to Bode plots (slope, etc.) Department of Electrical Engineering & Computer Science st nd University of California Berkeley I Features of 1 -&2 -order system Bode plots I Define Nyquist criterion I Method of dealing with OL poles & zeros on imaginary axis I Simple method of dealing with OL stable & unstable systems I Determining gain & phase margins from Bode & Nyquist plots I Define static error constants September 10, 2013 I Determining static error constants from Bode & Nyquist plots I Determining TF from experimental FR data Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 1 / 64 Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 2 / 64 10 FR techniques 10.1 Intro Chapter outline 1 10 Frequency response techniques 1 10 Frequency response techniques 10.1 Introduction 10.1 Introduction 10.2 Asymptotic approximations: Bode plots 10.2 Asymptotic approximations: Bode plots 10.3 Introduction to Nyquist criterion 10.3 Introduction to Nyquist criterion 10.4 Sketching the Nyquist diagram 10.4 Sketching the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.7 Stability, gain margin, and
    [Show full text]
  • IIR Filterdesign
    UNIVERSITY OF OSLO IIR filterdesign Sverre Holm INF34700 Digital signalbehandling DEPARTMENT OF INFORMATICS UNIVERSITY OF OSLO Filterdesign 1. Spesifikasjon • Kjenne anven de lsen • Kjenne designmetoder (hva som er mulig, FIR/IIR) 2. Apppproksimas jon • Fokus her 3. Analyse • Filtre er som rege l spes ifiser t i fre kvens domene t • Også analysere i tid (fase, forsinkelse, ...) 4. Realisering • DSP, FPGA, PC: Matlab, C, Java ... DEPARTMENT OF INFORMATICS 2 UNIVERSITY OF OSLO Sources • The slides about Digital Filter Specifications have been a dap te d from s lides by S. Mitra, 2001 • Butterworth, Chebychev, etc filters are based on Wikipedia • Builds on Oppenheim & Schafer with Buck: Discrete-Time Signal Processing, 1999. DEPARTMENT OF INFORMATICS 3 UNIVERSITY OF OSLO IIR kontra FIR • IIR filtre er mer effektive enn FIR – færre koe ffisi en ter f or samme magnitu de- spesifikasjon • Men bare FIR kan gi eksakt lineær fase – Lineær fase symmetrisk h[n] ⇒ Nullpunkter symmetrisk om |z|=1 – Lineær fase IIR? ⇒ Poler utenfor enhetssirkelen ⇒ ustabilt • IIR kan også bli ustabile pga avrunding i aritme tikken, de t kan ikke FIR DEPARTMENT OF INFORMATICS 4 UNIVERSITY OF OSLO Ideal filters • Lavpass, høypass, båndpass, båndstopp j j HLP(e ) HHP(e ) 1 1 – 0 c c – c 0 c j j HBS(e ) HBP (e ) –1 1 – –c1 – – c2 c2 c1 c2 c2 c1 c1 DEPARTMENT OF INFORMATICS 5 UNIVERSITY OF OSLO Prototype low-pass filter • All filter design methods are specificed for low-pass only • It can be transformed into a high-pass filter • OiOr it can be p lace
    [Show full text]
  • I Introduction and Background
    Final Design Report Platform Motion Measurement System ELEC 492 A Senior Design Project, 2005 Between University of San Diego And Trex Enterprises Submitted to: Dr. Lord at USD Prepared by: YAZ Zlatko Filipovic Yoshitaka Yano August 12, 2005 University of San Diego Final Design Report USD August 12, 2005 Platform Motion Measurement System Table of Contents I. Acknowledgments…………...…………………………………………………………4 II. Executive Summary……..…………………………………………………………….5 III. Introduction and Background…...………………………...………………………….6 IV. Project Requirements…………….................................................................................8 V. Methodology of Design Plan……….…..……………..…….………….…..…….…..11 VI. Testing….……………………………………..…..…………………….……...........21 VII. Deliverables and Project Results………...…………...…………..…….…………...24 VIII. Budget………………………………………...……..……………………………..25 IX. Personnel…………………..………………………………………....….……….......28 X. Design Schedule………….…...……………………………….……...…………........29 XI. Reference and Bibliography…………..…………..…………………...…………….31 XII. Summary…………………………………………………………………………....32 Appendices Appendix 1. Simulink Simulations…..………………………….…….33 Appendix 2. VisSim Simulations..........……………………………….34 Appendix 3. Frequency Response and VisSim results……………......36 Appendix 4. Vibration Measurements…………..………………….….38 Appendix 5. PCB Layout and Schematic……………………………..39 Appendix 6. User’s Manual…………………………………………..41 Appendix 7. PSpice Simulations of Hfilter…………………………….46 1 Final Design Report USD August 12, 2005 Platform Motion Measurement System
    [Show full text]
  • Meeting Design Specifications
    NDSU Meeting Design Specs using Bode Plots ECE 461 Meeting Design Specs using Bode Plots When designing a compensator to meet design specs including: Steady-state error for a step input Phase Margin 0dB gain frequency the procedure using Bode plots is about the same as it was for root-locus plots. Add a pole at s = 0 if needed (making the system type-1) Start cancelling zeros until the system is too fast For every zero you added, add a pole. Place these poles so that the phase adds up. When using root-locus techniques, the phase adds up to 180 degrees at some spot on the s-plane. When using Bode plot techniques, the phase adds up to give you your phase margin at some spot on the jw axis. Example 1: Problem: Given the following system 1000 G(s) = (s+1)(s+3)(s+6)(s+10) Design a compensator which result in No error for a step input 20% overshoot for a step input, and A settling time of 4 second Solution: First, convert to Bode Plot terminology No overshoot means make this a type-1 system. Add a pole at s = 0. 20% overshoot means ζ = 0.4559 Mm = 1.2322 GK = 1∠ − 132.120 Phase Margin = 47.88 degrees A settling time of 4 seconds means s = -1 + j X s = -1 + j2 (from the damping ratio) The 0dB gain frequency is 2.00 rad/sec In short, design K(s) so that the system is type-1 and 0 (GK)s=j2 = 1∠ − 132.12 JSG 1 rev June 22, 2016 NDSU Meeting Design Specs using Bode Plots ECE 461 Start with s+1 K(s) = s At 4 rad/sec 1000 0 GK = s(s+3)(s+6)(s+10) = 2.1508∠ − 153.43 s=j2 There is too much phase shift, so start cancelling zeros.
    [Show full text]
  • 13.2 Analog Elliptic Filter Design
    CHAPTER 13 IIR FILTER DESIGN 13.2 Analog Elliptic Filter Design This document carries out design of an elliptic IIR lowpass analog filter. You define the following parameters: fp, the passband edge fs, the stopband edge frequency , the maximum ripple Mathcad then calculates the filter order and finds the zeros, poles, and coefficients for the filter transfer function. Background Elliptic filters, so called because they employ elliptic functions to generate the filter function, are useful because they have equiripple characteristics in the pass and stopband regions. This ensures that the lowest order filter can be used to meet design constraints. For information on how to transform a continuous-time IIR filter to a discrete-time IIR filter, see Section 13.1: Analog/Digital Lowpass Butterworth Filter. For information on the lowest order polynomial (as opposed to elliptic) filters, see Section 14: Chebyshev Polynomials. Mathcad Implementation This document implements an analog elliptic lowpass filter design. The definitions below of elliptic functions are used throughout the document to calculate filter characteristics. Elliptic Function Definitions TOL ≡10−5 Im (ϕ) Re (ϕ) ⌠ 1 ⌠ 1 U(ϕ,k)≡1i⋅ ⎮――――――dy+ ⎮―――――――――dy ‾‾‾‾‾‾‾‾‾‾‾‾2‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾2‾ ⎮ 2 ⎮ 2 ⌡ 1−k ⋅sin(1j⋅y) ⌡ 1−k ⋅sin(1j⋅ Im(ϕ)+y) 0 0 ϕ≡1i sn(uk, )≡sin(root(U(ϕ,k)−u,ϕ)) π ― 2 ⌠ 1 L(k)≡⎮――――――dy ‾‾‾‾‾‾‾‾‾‾2‾ ⎮ 2 ⌡ 1−k ⋅sin(y) 0 ⎛⎛ ⎞⎞ 2 1− ‾1‾−‾k‾2‾ V(k)≡――――⋅L⎜⎜――――⎟⎟ 1+ ‾1‾−‾k‾2‾ ⎝⎜⎝⎜ 1+ ‾1‾−‾k‾2‾⎠⎟⎠⎟ K(k)≡if(k<.9999,L(k),V(k)) Design Specifications First, the passband edge is normalized to 1 and the maximum passband response is set at one.
    [Show full text]
  • Applications Academic Program Distributing Vissim Models
    VISSIM VisSim is a visual block diagram language for simulation of dynamical systems and Model Based Design of embedded systems. It is developed by Visual Solutions of Westford, Massachusetts. Applications VisSim is widely used in control system design and digital signal processing for multidomain simulation and design. It includes blocks for arithmetic, Boolean, and transcendental functions, as well as digital filters, transfer functions, numerical integration and interactive plotting. The most commonly modeled systems are aeronautical, biological/medical, digital power, electric motor, electrical, hydraulic, mechanical, process, thermal/HVAC and econometric. Academic program The VisSim Free Academic Program allows accredited educational institutions to site license VisSim v3.0 for no cost. The latest versions of VisSim and addons are also available to students and academic institutions at greatly reduced pricing. Distributing VisSim models VisSim viewer screenshot with sample model. The free Vis Sim Viewer is a convenient way to share VisSim models with colleagues and clients not licensed to use VisSim. The VisSim Viewer will execute any VisSim model, and allows changes to block and simulation parameters to illustrate different design scenarios. Sliders and buttons may be activated if included in the model. Code generation The VisSim/C-Code add-on generates efficient, readable ANSI C code for algorithm acceleration and real-time implementation of embedded systems. The code is more efficient and readable than most other code generators. VisSim's author served on the X3J11 ANSI C committee and wrote several C compilers, in addition to co-authoring a book on C. [2] This deep understanding of ANSI C, and the nature of the resulting machine code when compiled, is the key to the code generator's efficiency.
    [Show full text]
  • Advanced Electronic Systems Damien Prêle
    Advanced Electronic Systems Damien Prêle To cite this version: Damien Prêle. Advanced Electronic Systems . Master. Advanced Electronic Systems, Hanoi, Vietnam. 2016, pp.140. cel-00843641v5 HAL Id: cel-00843641 https://cel.archives-ouvertes.fr/cel-00843641v5 Submitted on 18 Nov 2016 (v5), last revised 26 May 2021 (v8) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. advanced electronic systems ST 11.7 - Master SPACE & AERONAUTICS University of Science and Technology of Hanoi Paris Diderot University Lectures, tutorials and labs 2016-2017 Damien PRÊLE [email protected] Contents I Filters 7 1 Filters 9 1.1 Introduction . .9 1.2 Filter parameters . .9 1.2.1 Voltage transfer function . .9 1.2.2 S plane (Laplace domain) . 11 1.2.3 Bode plot (Fourier domain) . 12 1.3 Cascading filter stages . 16 1.3.1 Polynomial equations . 17 1.3.2 Filter Tables . 20 1.3.3 The use of filter tables . 22 1.3.4 Conversion from low-pass filter . 23 1.4 Filter synthesis . 25 1.4.1 Sallen-Key topology . 25 1.5 Amplitude responses . 28 1.5.1 Filter specifications . 28 1.5.2 Amplitude response curves .
    [Show full text]
  • Frequency Response and Bode Plots
    1 Frequency Response and Bode Plots 1.1 Preliminaries The steady-state sinusoidal frequency-response of a circuit is described by the phasor transfer function Hj( ) . A Bode plot is a graph of the magnitude (in dB) or phase of the transfer function versus frequency. Of course we can easily program the transfer function into a computer to make such plots, and for very complicated transfer functions this may be our only recourse. But in many cases the key features of the plot can be quickly sketched by hand using some simple rules that identify the impact of the poles and zeroes in shaping the frequency response. The advantage of this approach is the insight it provides on how the circuit elements influence the frequency response. This is especially important in the design of frequency-selective circuits. We will first consider how to generate Bode plots for simple poles, and then discuss how to handle the general second-order response. Before doing this, however, it may be helpful to review some properties of transfer functions, the decibel scale, and properties of the log function. Poles, Zeroes, and Stability The s-domain transfer function is always a rational polynomial function of the form Ns() smm as12 a s m asa Hs() K K mm12 10 (1.1) nn12 n Ds() s bsnn12 b s bsb 10 As we have seen already, the polynomials in the numerator and denominator are factored to find the poles and zeroes; these are the values of s that make the numerator or denominator zero. If we write the zeroes as zz123,, zetc., and similarly write the poles as pp123,, p , then Hs( ) can be written in factored form as ()()()s zsz sz Hs() K 12 m (1.2) ()()()s psp12 sp n 1 © Bob York 2009 2 Frequency Response and Bode Plots The pole and zero locations can be real or complex.
    [Show full text]
  • Classic Filters There Are 4 Classic Analogue Filter Types: Butterworth, Chebyshev, Elliptic and Bessel. There Is No Ideal Filter
    Classic Filters There are 4 classic analogue filter types: Butterworth, Chebyshev, Elliptic and Bessel. There is no ideal filter; each filter is good in some areas but poor in others. • Butterworth: Flattest pass-band but a poor roll-off rate. • Chebyshev: Some pass-band ripple but a better (steeper) roll-off rate. • Elliptic: Some pass- and stop-band ripple but with the steepest roll-off rate. • Bessel: Worst roll-off rate of all four filters but the best phase response. Filters with a poor phase response will react poorly to a change in signal level. Butterworth The first, and probably best-known filter approximation is the Butterworth or maximally-flat response. It exhibits a nearly flat passband with no ripple. The rolloff is smooth and monotonic, with a low-pass or high- pass rolloff rate of 20 dB/decade (6 dB/octave) for every pole. Thus, a 5th-order Butterworth low-pass filter would have an attenuation rate of 100 dB for every factor of ten increase in frequency beyond the cutoff frequency. It has a reasonably good phase response. Figure 1 Butterworth Filter Chebyshev The Chebyshev response is a mathematical strategy for achieving a faster roll-off by allowing ripple in the frequency response. As the ripple increases (bad), the roll-off becomes sharper (good). The Chebyshev response is an optimal trade-off between these two parameters. Chebyshev filters where the ripple is only allowed in the passband are called type 1 filters. Chebyshev filters that have ripple only in the stopband are called type 2 filters , but are are seldom used.
    [Show full text]
  • MT-033: Voltage Feedback Op Amp Gain and Bandwidth
    MT-033 TUTORIAL Voltage Feedback Op Amp Gain and Bandwidth INTRODUCTION This tutorial examines the common ways to specify op amp gain and bandwidth. It should be noted that this discussion applies to voltage feedback (VFB) op amps—current feedback (CFB) op amps are discussed in a later tutorial (MT-034). OPEN-LOOP GAIN Unlike the ideal op amp, a practical op amp has a finite gain. The open-loop dc gain (usually referred to as AVOL) is the gain of the amplifier without the feedback loop being closed, hence the name “open-loop.” For a precision op amp this gain can be vary high, on the order of 160 dB (100 million) or more. This gain is flat from dc to what is referred to as the dominant pole corner frequency. From there the gain falls off at 6 dB/octave (20 dB/decade). An octave is a doubling in frequency and a decade is ×10 in frequency). If the op amp has a single pole, the open-loop gain will continue to fall at this rate as shown in Figure 1A. A practical op amp will have more than one pole as shown in Figure 1B. The second pole will double the rate at which the open- loop gain falls to 12 dB/octave (40 dB/decade). If the open-loop gain has dropped below 0 dB (unity gain) before it reaches the frequency of the second pole, the op amp will be unconditionally stable at any gain. This will be typically referred to as unity gain stable on the data sheet.
    [Show full text]
  • A Note on Stability Analysis Using Bode Plots
    ChE classroom A NOTE ON STABILITY ANALYSIS USING BODE PLOTS JUERGEN HAHN, THOMAS EDISON, THOMAS F. E DGAR The University of Texas at Austin • Austin, TX 78712-1062 he Bode plot is an important tool for stability analysis amplitude ratio greater than unity for frequencies where f = of closed-loop systems. It is based on calculating the -180∞-n*360∞, where n is an integer. These conditions can T amplitude and phase angle for the transfer function occur when the process includes time delays, as shown in the following example. GsGsGs 1 OL( ) = C( ) P ( ) ( ) for s = jw Juergen Hahn was born in Grevenbroich, Ger- many, in 1971. He received his diploma degree where GC(s) is the controller and GP(s) is the process. The in engineering from RWTH Aachen, Germany, Bode stability criterion presented in most process control text- in 1997, and his MS degree in chemical engi- neering from the University of Texas, Austin, in books is a sufficient, but not necessary, condition for insta- 1998. He is currently a PhD candidate working bility of a closed-loop process.[1-4] Therefore, it is not pos- as a research assistant in chemical engineer- sible to use this criterion to make definitive statements about ing at the University of Texas, Austin. His re- search interests include process modeling, non- the stability of a given process. linear model reduction, and nonlinearity quanti- fication. Other textbooks[5,6] state that this sufficient condition is a necessary condition as well. That statement is not correct, as Thomas Edison is a lecturer at the University of Texas, Austin.
    [Show full text]