Eutardigrada: Parachela) from Antarctica That Reveals an Intraspecifc Variation in Tardigrade Egg Morphology Ji-Hoon Kihm1,2, Sanghee Kim 3, Sandra J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diapause in Tardigrades: a Study of Factors Involved in Encystment
2296 The Journal of Experimental Biology 211, 2296-2302 Published by The Company of Biologists 2008 doi:10.1242/jeb.015131 Diapause in tardigrades: a study of factors involved in encystment Roberto Guidetti1,*, Deborah Boschini2, Tiziana Altiero2, Roberto Bertolani2 and Lorena Rebecchi2 1Department of the Museum of Paleobiology and Botanical Garden, Via Università 4, 41100, Modena, Italy and 2Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41100, Modena, Italy *Author for correspondence (e-mail: [email protected]) Accepted 12 May 2008 SUMMARY Stressful environmental conditions limit survival, growth and reproduction, or these conditions induce resting stages indicated as dormancy. Tardigrades represent one of the few animal phyla able to perform both forms of dormancy: quiescence and diapause. Different forms of cryptobiosis (quiescence) are widespread and well studied, while little attention has been devoted to the adaptive meaning of encystment (diapause). Our goal was to determine the environmental factors and token stimuli involved in the encystment process of tardigrades. The eutardigrade Amphibolus volubilis, a species able to produce two types of cyst (type 1 and type 2), was considered. Laboratory experiments and long-term studies on cyst dynamics of a natural population were conducted. Laboratory experiments demonstrated that active tardigrades collected in April produced mainly type 2 cysts, whereas animals collected in November produced mainly type 1 cysts, indicating that the different responses are functions of the physiological state at the time they were collected. The dynamics of the two types of cyst show opposite seasonal trends: type 2 cysts are present only during the warm season and type 1 cysts are present during the cold season. -
BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK
BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK T.C. ULUDA Ğ ÜN İVERS İTES İ FEN B İLİMLER İ ENST İTÜSÜ BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK Yrd. Doç. Dr. Rah şen S. KAYA (Danı şman) YÜKSEK L İSANS TEZ İ BİYOLOJ İ ANAB İLİM DALI BURSA-2017 ÖZET Yüksek Lisans Tezi BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK Uluda ğ Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Danı şman: Yrd. Doç. Dr. Rah şen S. KAYA Bu çalı şmada, Bursa ili limnokarasal Tardigrada faunası ara ştırılmı ş, 6 familyaya ait 9 cins içerisinde yer alan 12 takson tespit edilmi ştir. Arazi çalı şmaları 09.06.2016 ile 22.02.2017 tarihleri arasında gerçekle ştirilmi ştir. Arazi çalı şmaları sonucunda 35 lokaliteden toplanan kara yosunu ve liken materyallerinden toplam 606 örnek elde edilmi ştir. Çalı şma sonucunda tespit edilen Cornechiniscus sp., Echiniscus testudo (Doyere, 1840), Echiniscus trisetosus Cuenot, 1932, Milnesium sp., Isohypsibius prosostomus prosostomus Thulin, 1928, Macrobiotus sp., Paramacrobiotus areolatus (Murray, 1907), Paramacrobiotus richtersi (Murray, 1911), Ramazzottius oberhaeuseri (Doyere, 1840) ve Richtersius coronifer (Richters, 1903) Bursa ilinden ilk kez kayıt edilmi ştir. Anahtar kelimeler: Tardigrada, Sistematik, Fauna, Bursa, Türkiye 2017, ix+ 85 sayfa i ABSTRACT MSc Thesis THE LIMNO-TERRESTRIAL TARDIGRADA FAUNA OF BURSA PROVINCE Tufan ÇALIK Uludag University Graduate School of Natural andAppliedSciences Department of Biology Supervisor: Asst. Prof. Dr. Rah şen S. KAYA In this study, the limno-terrestrial Tardigrada fauna of Bursa province was studied and 12 taxa in 9 genera which belongs to 6 families were identified. Field trips were conducted between 09.06.2016 and 22.02.2017. -
A New Addition to the Tardigrada of Iceland with an Updated Checklist of Icelandic Species (Eohypsibiidae, Eutardigrada)
University of Plymouth PEARL https://pearl.plymouth.ac.uk 01 University of Plymouth Research Outputs University of Plymouth Research Outputs 1996-11-01 Amphibolous weglarskae Dastych, a new addition to the Tardigrada of Iceland with an updated checklist of Icelandic species (Eohypsibiidae, Eutardigrada). Marley, NJ http://hdl.handle.net/10026.1/12098 Quekett Journal of Microscopy All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Quekett Journal of Microscopy, 1996, 37, 541-545 541 Amphibolus weglarskae (Dastych), a new addition to the Tardigrada of Iceland with an updated checklist of Icelandic species. (Eohypsibiidae, Eutardigrada) N. J. MARLEY & D. E. WRIGHT Department of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, England. Summary slides in the Morgan collection held at the During the examination of the extensive Tardigrada National Museums of Scotland, Edinburgh. collections held at the Royal Museums of Scotland, Due to the very sparse number of records specimens and sculptured eggs belonging to Amphibolus available on the Tardigrada from Iceland it weglarskae (Dastych) were identified in the Morgan was considered a significant find. An updated Icelandic collection. This species had not previously taxonomic checklist to Iceland's tardigrada been reported from Iceland. A checklist of Icelandic species has been included because of the Tardigrada species is also provided. -
Phylum Tardigrada Doyère, 1840. In: Zhang, Z.-Q
Phylum Tardigrada Doyère, 1840 (3 classes)1 Class Heterotardigrada Marcus, 1927 (2 orders) Order Arthrotardigrada Marcus, 1927 (8 families) Family Archechiniscidae Binda, 1978 (1 genus, 3 species) Family Batillipedidae Ramazzotti, 1962 (1 genus, 26 species) Family Coronarctidae Renaud-Mornant, 1974 (2 genera, 8 species) Family Halechiniscidae Thulin, 1928 (7 subfamilies, 28 genera, 88 species) Family Neoarctidae de Zio Grimaldi, D'Addabbo Gallo & Morone De Lucia, 1992 (1 genus, 1 species) Family Neostygarctidae de Zio Grimaldi, D’Addabbo Gallo & De Lucia Morone, 1987 (1 genus, 1 species) Family Renaudarctidae Kristensen & Higgins, 1984 (1 genus, 1 species) Family Stygarctidae Schulz, 1951 (2 subfamilies, 4 genera, 21 species) Order Echiniscoidea Richters, 1926 (4 families) Family Echiniscoididae Kristensen & Hallas, 1980 (2 genera, 11 species) Family Carphaniidae Binda & Kristensen, 1986 (1 genus, 1 species) Family Oreellidae Ramazzotti, 1962 (1 genus, 2 species) Family Echiniscidae Thulin, 1928 (12 genera, 281 species) Class Mesotardigrada Rahm, 1937 (1 order)2 Order Thermozodia Ramazzotti & Maucci, 1983 (1 family) Family Thermozodiidae Rahm, 1937 (1 genus, 1 species) Class Eutardigrada Richters 1926 (2 orders) Order Apochela Schuster, Nelson, Grigarick & Christenberry, 1980 (1 family) Family Milnesiidae Ramazzotti, 1962 (3 genera, 19+1† species)3 Order Parachela Schuster, Nelson Grigarick & Christenberry, 1980 (4 superfamilies, 9 families) Family Necopinatidae Ramazzotti & Maucci, 1983 (1 genus, 1 species)4 incertae sedis (1 genus: Apodibius, -
Classification Scheme of Freshwater Aquatic Organisms Freshwater Keys: Classification
Compendium of Recommended Keys for British Columbia Freshwater Organisms: Part 3 Classification Scheme of Freshwater Aquatic Organisms Freshwater Keys: Classification Table of Contents TABLE OF CONTENTS.............................................................................................................................. 2 INTRODUCTION......................................................................................................................................... 4 KINGDOM MONERA................................................................................................................................. 5 KINGDOM PROTISTA............................................................................................................................... 5 KINGDOM FUNGI ...................................................................................................................................... 5 KINGDOM PLANTAE ................................................................................................................................ 6 KINGDOM ANIMALIA .............................................................................................................................. 8 SUBKINGDOM PARAZOA ........................................................................................................................ 8 SUBKINGDOM EUMETAZOA.................................................................................................................. 8 2 Freshwater Keys: Classification 3 Freshwater Keys: Classification -
Global Diversity of Tardigrades (Tardigrada) in Freshwater
Hydrobiologia (2008) 595:101–106 DOI 10.1007/s10750-007-9123-0 FRESHWATER ANIMAL DIVERSITY ASSESSMENT Global diversity of tardigrades (Tardigrada) in freshwater James R. Garey Æ Sandra J. McInnes Æ P. Brent Nichols Ó Springer Science+Business Media B.V. 2007 Abstract Tardigrada is a phylum closely allied with Keywords Tardigrada Á Biogeography Á the arthropods. They are usually less than 0.5 mm in Phylogeny Á Distribution Á Diversity length, have four pairs of lobe-like legs and are either carnivorous or feed on plant material. Most of the 900+ described tardigrade species are limnoterrestrial Introduction and live in the thin film of water on the surface of moss, lichens, algae, and other plants and depend on Tardigrada is a phylum allied with arthropods. water to remain active and complete their life cycle. Tardigrades are generally less than 0.5 mm in size, In this review of 910 tardigrade species, only 62 bilaterally symmetrical, and have four pairs of legs. species representing13 genera are truly aquatic and Their biology has been reviewed by Kinchin (1994), not found in limnoterrestrial habitats although many Nelson & Marley (2000), and Nelson (2002). other genera contain limnoterrestrial species occa- Tardigrades are found in freshwater habitats, terres- sionally found in freshwater. trial environments, and marine sediments. The tardigrades living in terrestrial environments are the most well-known, where they live in the thin film of water found on mosses, lichens, algae, other plants, leaf litter, and in the soil and are active when Guest editors: E.V. Balian, C. Le´veˆque, H. Segers & at least a thin film of water is present on the K. -
A Case Study with Tardigrades, Rotifers and Nematodes
Hydrobiologia (2020) 847:2779–2799 https://doi.org/10.1007/s10750-019-04144-6 (0123456789().,-volV)( 0123456789().,-volV) MEIOFAUNA IN FRESHWATER ECOSYSTEMS Review Paper Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes Lorena Rebecchi . Chiara Boschetti . Diane R. Nelson Received: 1 August 2019 / Revised: 20 November 2019 / Accepted: 27 November 2019 / Published online: 16 December 2019 Ó Springer Nature Switzerland AG 2019 Abstract To persist in extreme environments, some environmental conditions. Because of their unique meiofaunal taxa have adopted outstanding resistance resistance, tardigrades and rotifers have been proposed strategies. Recent years have seen increased enthusi- as model organisms in the fields of exobiology and asm for understanding extreme-resistance mecha- space research. They are also increasingly considered nisms evolved by tardigrades, nematodes and in medical research with the hope that their resistance rotifers, such as the capability to tolerate complete mechanisms could be used to improve the tolerance of desiccation and freezing by entering a state of human cells to extreme stress. This review will reversible suspension of metabolism called anhydro- analyse the dormancy strategies in tardigrades, rotifers biosis and cryobiosis, respectively. In contrast, the less and nematodes with emphasis on mechanisms of common phenomenon of diapause, which includes extreme stress tolerance to identify convergent and encystment and cyclomorphosis, is defined by a unique strategies occurring in these distinct groups. suspension of growth and development with a reduc- We also examine the ecological and evolutionary tion in metabolic activity induced by stressful consequences of extreme tolerance by summarizing recent advances in this field. Guest editors: Nabil Majdi, Jenny M. -
Analysis of Encystment, Excystment, and Cyst Structure in Freshwater Eutardigrade Thulinius Ruffoi
diversity Article Analysis of Encystment, Excystment, and Cyst Structure in Freshwater Eutardigrade Thulinius ruffoi (Tardigrada, Isohypsibioidea: Doryphoribiidae) Kamil Janelt * and Izabela Poprawa * Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland * [email protected] (K.J.); [email protected] (I.P.) Received: 20 December 2019; Accepted: 2 February 2020; Published: 4 February 2020 Abstract: Encystment in tardigrades is relatively poorly understood. It is seen as an adaptive strategy evolved to withstand unfavorable environmental conditions. This process is an example of the epigenetic, phenotypic plasticity which is closely linked to the molting process. Thulinius ruffoi is a freshwater eutardigrade and a representative of one of the biggest eutardigrade orders. This species is able to form cysts. The ovoid-shaped cysts of this species are known from nature, but cysts may also be obtained under laboratory conditions. During encystment, the animals undergo profound morphological changes that result in cyst formation. The animals surround their bodies with cuticles that isolate them from the environment. These cuticles form a cuticular capsule (cyst wall) which is composed of three cuticles. Each cuticle is morphologically distinct. The cuticles that form the cuticular capsule are increasingly simplified. During encystment, only one, unmodified and possibly functional buccal-pharyngeal apparatus was found to be formed. Apart from the feeding apparatus, the encysted specimens also possess a set of claws, and their body is covered with its own cuticle. As a consequence, the encysted animals are fully adapted to the active life after leaving the cyst capsule. -
Hydrobiologia Springer Science and Business Media LLC
University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Biological and Marine Sciences Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes Rebecchi, L http://hdl.handle.net/10026.1/15359 10.1007/s10750-019-04144-6 Hydrobiologia Springer Science and Business Media LLC All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Hydrobiologia 14. Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers, and nematodes --Manuscript Draft-- Manuscript Number: HYDR-D-19-00549R2 Full Title: 14. Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers, and nematodes Article Type: S.I. : Meiofauna in Freshwater Ecosystems (Majdi et al.) Keywords: anhydrobiosis; cryptobiosis; desiccation; diapause; dormancy; encystment Corresponding Author: Lorena Rebecchi, PhD ITALY Corresponding Author Secondary Information: Corresponding Author's Institution: Corresponding Author's Secondary Institution: First Author: Lorena Rebecchi, PhD First Author Secondary Information: Order of Authors: Lorena Rebecchi, PhD Chiara Boschetti Diane Nelson Order of Authors Secondary Information: Funding Information: Abstract: To persist in extreme environments, some meiofaunal taxa have adopted outstanding resistance strategies. Recent years have seen increased enthusiasm for understanding extreme-resistance mechanisms evolved by tardigrades, nematodes and rotifers, such as the capability to tolerate complete desiccation and freezing by entering a state of reversible suspension of metabolism called anhydrobiosis and cryobiosis, respectively. -
Phylum Tardigrada: a Re-Evaluation of the Parachela
Zootaxa 2819: 51–64 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Phylum Tardigrada: A re-evaluation of the Parachela NIGEL J. MARLEY1,3, SANDRA J. MCINNES2 & CHESTER J. SANDS2 1Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom 2British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, United King- dom 3Corresponding author. E-mail: [email protected] Abstract We assessed the available morphological evidence to see if this corroborates the paraphyly in the Parachela (Tardigrada) as suggested by recent molecular data. We reconcile molecular phylogenetics with alpha morphology, focusing on claw and apophysis for the insertion of the stylet muscles (AISM). We combine molecular and morphological evidence to de- fine six new taxa within the Parachela Schuster et al 1980. These include two new families of Isohypsibiidae fam. nov. and Ramazzottidae fam. nov. along with four new superfamilies of Eohypsibioidea superfam. nov., Hypsibioidea super- fam. nov., Isohypsibioidea superfam. nov., and Macrobiotoidea superfam. nov. Key words: Tardigrade, Eohypsibioidea superfam. nov., Hypsibioidea superfam. nov., Isohypsibioidea superfam. nov., Macrobiotoidea superfam. nov., Isohypsibiidae fam. nov., Ramazzottidae fam. nov., Morphology, Molecular, Systemat- ics Introduction Familial level taxa that have separated into distinct lineages over many millions of years are usually clearly identi- fiable via a unique suite of morphological characters. In some groups, particularly the “lesser-known” or “minor” phyla, basic morphology may be so strongly conserved that deep divergences are often difficult to detect or resolve. -
First Record of Cysts in the Tidal Tardigrade Echiniscoides Sigismundi
Helgol Mar Res (2014) 68:531–537 DOI 10.1007/s10152-014-0409-0 ORIGINAL ARTICLE First record of cysts in the tidal tardigrade Echiniscoides sigismundi Lykke K. B. Clausen • Kasper N. Andersen • Thomas L. Hygum • Aslak Jørgensen • Nadja Møbjerg Received: 14 February 2014 / Revised: 14 July 2014 / Accepted: 15 July 2014 / Published online: 14 August 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Tardigrades are microscopic metazoans that Keywords Diapause Á Ecdysozoa Á Extreme withstand environmental extremes by entering dormant environments Á Intertidal Á Marine Á Osmotic stress states, such as cryptobiosis (latent life). In addition, they may also form cysts. Here, we present the first report of cyst formation in a marine heterotardigrade, i.e., Echini- Introduction scoides sigismundi, which constitutes a cryptic species complex present worldwide in tidal zones. The cysts were Tardigrades are microscopic metazoans that colonize eco- initially discovered during experimental series constructed systems worldwide and show great tolerance of environ- to investigate osmotic stress tolerance. The animals, which mental stress (e.g., Goldstein and Blaxter 2002; Nelson eventually formed cysts, showed signs of an imminent molt 2002; Møbjerg et al. 2011). Three major evolutionary lin- at the beginning of experimentation. We use the term eages are currently recognized: (1) eutardigrades and (2) ‘‘cyst’’ for stages, where a total of three or more cuticles mesotardigrades, which are predominantly semiterrestrial/ have been synthesized. Our observations show that limnic, and (3) heterotardigrades that split into the semi- encystment in E. sigismundi involves synthesizing of at terrestrial/tidal echiniscoideans and the marine arthrotar- least two new cuticle layers. -
Abstracts PROGRAMME of SPEAKERS and POSTERS
British Antarctic Survey (B.A.S) SIXTH INTERNATIONAL S\:'MPOSIUM ON TARDIGRADA Selwyn College, Cambridge August 22nd - August 26th 1994 Abstracts PROGRAMME OF SPEAKERS AND POSTERS. TUESDAY. TARDIGRADE ANATOMY AND PHYSIOLOGY 09.00 Sexual dimorphism amongst Australian Echiniscus (Tardigrada, Echiniscidae) species. S. K Claxton 09.20 The brain of Echiniscus viridissilllus (Heterotardigrada). R. A. Dewel and W, C. Dewel. 09.40 Development, ultrastructure and function ofthe tardigrade pharynx. J. Eib)"e-Jaeobsen. 10.00 Spermatozoon morphology is a character for Tardigrada systematics. Alessandra Guidi and Lorena Rebecchi. 10.20 TEA/COFFEE TARDIGRADE ANATOMY AND PHYSIOLOGY 10.40 Studies on the morphology and ultrastructure ofthe malpighian tubules of lin/ohio/us crispoe Kristensen, 1982. N. M<I>bjerg Kristensen and C. Dahl. 11.00 Thrcc-dimensional tomography oftardigrades using coufocallascr microscopy. B. S. Maekness, J. Gross and R. Walis. 11.20 The anatomy and histology ofAlIlphiholus weglarskae Dastyeh. (Eohypsibiidae, Parachela, Eutardigrada, Tardigrada). N. J. Marley and D. E. Wight. 11.40 The cerebral ganglion ofMilnesiulll tardigradum Doyere (Apochela, Tardigrada): three dimensional reconstmction and notes on its ultrastructure. H. Wiederhoft and H. Greven. 12.00 Close of session 12.10 LUNCH TARDIGRADE DISTRIBUTION 13.20 An ecological survey oftardigrades from Greene Mountain, Tennessee. R G. Adkins and D.R Nelson. 13.40 Two ncw species of tardigrades from Short Mountain Tennessee. K. L. Kendall-Fite and D. R Nelson. 14.00 A preliminary report on the Tardigrada of the Inside Passage, Alaska. D. R Nelson and Gilbert Hale. 14.20 TardigTades from southern Yunnan Province, People's Republic of China. Clark W.