Figure S1. Relationship Between Ethane Or Acetylene and SO2 for Sampling Period

Total Page:16

File Type:pdf, Size:1020Kb

Figure S1. Relationship Between Ethane Or Acetylene and SO2 for Sampling Period 8 7 7 6 6 5 5 4 4 3 3 2 Ethane ppbv Acetylene ppbvAcetylene 2 1 2 R2=0.417 R =0.3304 1 0 0.51.01.52.02.53.03.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 SO2 (μg/m3) SO (μg/m3) 2 Figure S1. Relationship between ethane or acetylene and SO2 for sampling period. (a) Percentage % 0 20406080100 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene o-Ethyltoluene 1,3,5-Trimethylbenzene p-Ethyltoluene m-Ethyltoluene n-Propylbenzene Isopropylbenzene o-Xylene Styrene m/p-Xylene Ethylbenzene Toluene Benzene 1-Hexene 4-Methyl-1-pentene 2-Methyl-2-butene cis-2-Pentene trans-2-Pentene 2-Methyl-1-butene 1-Pentene 3-Methyl-1-butene cis-2-Butene trans-2-Butene 1,3-Butadiene 1-Butene Propene Ethylene Acetylene n-Decane n-Nonane n-Octane 3-Methylheptane 2-Methylheptane 2,3,4-Trimethylpentane n-Heptane 2,2,4-Trimethylpentane 3-Methylhexane 2,3-Dimethylpentane 2-Methylhexane 2,4-Dimethylpentane Methylcyclopentane n-Hexane 3-Methylpentane 2-Methylpentane 2,3-Dimethylbutane 2,2-Dimethylbutane n-Pentane i-Pentane n-Butane i-Butane Propane Ethane Oil volatilization Industrial processes Coal combustion Vehicle exhaust Industrial solvent (b) Percentage % 0 20406080100 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene o-Ethyltoluene 1,3,5-Trimethylbenzene p-Ethyltoluene m-Ethyltoluene n-Propylbenzene Isopropylbenzene o-Xylene Styrene m/p-Xylene Ethylbenzene Toluene Benzene 1-Hexene 4-Methyl-1-pentene 2-Methyl-2-butene cis-2-Pentene trans-2-Pentene 2-Methyl-1-butene 1-Pentene 3-Methyl-1-butene cis-2-Butene trans-2-Butene 1,3-Butadiene 1-Butene Propene Ethylene Acetylene n-Decane n-Nonane n-Octane 3-Methylheptane 2-Methylheptane 2,3,4-Trimethylpentane n-Heptane 2,2,4-Trimethylpentane 3-Methylhexane 2,3-Dimethylpentane 2-Methylhexane 2,4-Dimethylpentane Methylcyclopentane n-Hexane 3-Methylpentane 2-Methylpentane 2,3-Dimethylbutane 2,2-Dimethylbutane n-Pentane i-Pentane n-Butane i-Butane Propane Ethane Industrial solvent Coal combustion Vehicle exhaust Oil volatilization Industrial processes (c) Percentage % 0 20406080100 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene o-Ethyltoluene 1,3,5-Trimethylbenzene p-Ethyltoluene m-Ethyltoluene n-Propylbenzene Isopropylbenzene o-Xylene Styrene m/p-Xylene Ethylbenzene Toluene Benzene 1-Hexene 4-Methyl-1-pentene 2-Methyl-2-butene cis-2-Pentene trans-2-Pentene 2-Methyl-1-butene 1-Pentene 3-Methyl-1-butene cis-2-Butene trans-2-Butene 1,3-Butadiene 1-Butene Propene Ethylene Acetylene n-Decane n-Nonane n-Octane 3-Methylheptane 2-Methylheptane 2,3,4-Trimethylpentane n-Heptane 2,2,4-Trimethylpentane 3-Methylhexane 2,3-Dimethylpentane 2-Methylhexane 2,4-Dimethylpentane Methylcyclopentane n-Hexane 3-Methylpentane 2-Methylpentane 2,3-Dimethylbutane 2,2-Dimethylbutane n-Pentane i-Pentane n-Butane i-Butane Propane Ethane Industrial processes Oil volatilization Coal combustion Industrial solvent Vehicle exhaust Figure S2. apportionment of VOCs in the non-heating (a), heating (b) and sandstorm (c) sampling periods. .
Recommended publications
  • Part I: Carbonyl-Olefin Metathesis of Norbornene
    Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 1 © 2016 Zara Maxine Seibel All Rights Reserved 2 ABSTRACT Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel This thesis details progress towards the development of an organocatalytic carbonyl- olefin metathesis of norbornene. This transformation has not previously been done catalytically and has not been done in practical manner with stepwise or stoichiometric processes. Building on the previous work of the Lambert lab on the metathesis of cyclopropene and an aldehyde using a hydrazine catalyst, this work discusses efforts to expand to the less stained norbornene. Computational and experimental studies on the catalytic cycle are discussed, including detailed experimental work on how various factors affect the difficult cycloreversion step. The second portion of this thesis details the use of chiral cyclopropenimine bases as catalysts for asymmetric Michael reactions. The Lambert lab has previously developed chiral cyclopropenimine bases for glycine imine nucleophiles. The scope of these catalysts was expanded to include glycine imine derivatives in which the nitrogen atom was replaced with a carbon atom, and to include imines derived from other amino acids. i Table of Contents List of Abbreviations…………………………………………………………………………..iv Part I: Carbonyl-Olefin Metathesis…………………………………………………………… 1 Chapter 1 – Metathesis Reactions of Double Bonds………………………………………….. 1 Introduction………………………………………………………………………………. 1 Olefin Metathesis………………………………………………………………………… 2 Wittig Reaction…………………………………………………………………………... 6 Tebbe Olefination………………………………………………………………………... 9 Carbonyl-Olefin Metathesis…………………………………………………………….
    [Show full text]
  • Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Supplementary Information for “Oligomeric Models for Estimation of Polydimethylsiloxane
    Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2016 Supplementary Information for “Oligomeric models for estimation of polydimethylsiloxane- water partition ratios with COSMO-RS theory: Impact of the combinatorial term on absolute error” by J. Mark Parnis and Donald Mackay. Contents: 1) The complete set of chemicals, with the published values of log K(PDMS-w), and the abbreviated reference, corresponding to references given in the principle text. 1) The complete set of chemicals, with the published values of log KPDMS-w. Hsieh 2011 CHAO 2014 PCB18 4.91 PCB203 7.09 PCB16 5.12 PCB195 6.89 PCB32 5.12 PCB194 6.79 PCB28,31 5.17 Benzyl alcohol -0.35 PCB33,53 5.18 4-Fluorophenol -0.28 PCB22 5.30 m-Cresol -0.03 PCB52 5.48 Phenethyl alcohol 0.12 PCB47,48 5.49 3-Methylbenzyl alcohol 0.17 PCB44 5.44 3-Chlorophenol 0.31 PCB71 5.49 3,5-Dimethylphenol 0.42 PCB41 5.49 3-Bromophenol 0.46 PCB70 5.79 4-Ethylphenol 0.60 PCB66 5.70 4-Chloroaniline 0.84 PCB95 5.77 Phenyl acetate 0.86 PCB56,60 5.86 Benzonitrile 1.04 PCB101 6.01 Acetophenone 1.04 PCB99 6.17 4-Chloroacetophenone 1.64 PCB83 6.02 Methyl benzoate 1.65 PCB97 6.05 Benzene 1.76 PCB87 6.19 Ethylbenzoate 2.12 PCB85 6.38 Toluene 2.28 PCB110 6.03 4-Chloroanisole 2.37 PCB151 6.31 Chlorobenzene 2.40 PCB135 6.48 Bromobenzene 2.51 PCB149 6.42 o-Xylene 2.69 PCB118 6.23 m-Xylene 2.73 PCB146 6.66 Iodobenzene 2.73 PCB153 6.62 p-Xylene 2.75 PCB105,132 6.40 Ethylbenzene 2.75 PCB179 6.73 Phenol -0.18 PCB141 6.73 Naphthalene 2.83 PCB138 6.61 Cyclopentane 2.85 PCB163 6.56 4-Chlorotoluene 2.87 PCB158 6.83 Methylcyclopentane 3.13 PCB187 6.96 Propylbenzene 3.14 PCB182 6.96 Isopropylbenzene 3.15 PCB183 6.26 1,3,5-Trimethylbenzene 3.16 PCB128 6.61 1-Methyl-4-Ethylbenzene 3.20 PCB185 6.86 Cyclohexane 3.20 PCB174 7.04 1-Methylnaphthalene 3.26 PCB177 7.02 1,2,4-Trimethylbenzene 3.34 PCB171,202 6.78 tert-Butylbenzene 3.34 PCB180 6.89 Biphenyl 3.37 PCB170 6.82 2,3-Dimethylbutane 3.37 PCB201 7.06 2-Methylpentane 3.51 CHAO 2014 Kang et al.
    [Show full text]
  • Butenes Separation, Supp. A
    PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California 94025 Abstract Process Economics Program Report No. 71A BUTTLENES (October 1982) Demand is fast increasing for lsobutylene, especially that used in manufacturing methyl tertiary-butyl ether, and for high purity butene-1 to use as a copolymer in linear low density polyethylene. Because of their wide availability, mixed butane-butylene streams from oleflns plants and petroleum refineries are being increasingly fed to plants to separate butylenes for use in chemicals. This first supplement to Report No. 71 updates demand projections, production capacities, and separation techniques for high purity butene-1 and lsobutylene. The processes that are now available for separating and purifying both butene-1 and lsobutylene from mixed butyl- ene streams are evaluated and compared. Other procedures for obtaining butylenes, such as dehydrogenatlon, lsomerleatlon, and disproportion&ion, are not updated in this report. PEP’81 JLC Report No. 71A - BUTYLENES SUPPLEMENT A by JOHN L. CHADWICK I I October 1982 f-F0 0 A private report by the m PROCESS ECONOMICS PROGRAM 0 Menlo Park, California 94025 0 For detailed marketing data and information, the reader is referred to one of the SRI programs specializing in marketing research. The CHEMICALECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLDPETROCHEMICALS Program covers major hkdrocarbons and their derivatives on a worldwide basis. In addition, the SRI DIRECTORYOF CHEMICALPRODUCERS services provide detailed lists of chemical producers by company, prod- uct, and plant for the United States and Western Europe. ii CONTENTS 1 INTRODUCTION . 1 2 SUMMARY .
    [Show full text]
  • Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002
    Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002 Members Present: Dr Stephen Heller, Prof Herbert Kaesz, Prof Dr Alexander Lawson, Prof G. Jeffrey Leigh, Dr Alan McNaught (President), Dr. Gerard Moss, Prof Bruce Novak, Dr Warren Powell (Secretary), Dr William Town, Dr Antony Williams Members Absent: Dr. Michael Dennis, Prof Michael Hess National representatives Present: Prof Roberto de Barros Faria (Brazil) The second meeting of the Division Committee of the IUPAC Division of Chemical Nomenclature and Structure Representation held in the Great Republic Room of the Westin Hotel in Boston, Massachusetts, USA was convened by President Alan McNaught at 9:00 a.m. on Sunday, August 18, 2002. 1.0 President McNaught welcomed the members to this meeting in Boston and offered a special welcome to the National Representative from Brazil, Prof Roberto de Barros Faria. He also noted that Dr Michael Dennis and Prof Michael Hess were unable to be with us. Each of the attendees introduced himself and provided a brief bit of background information. Housekeeping details regarding breaks and lunch were announced and an invitation to a reception from the U. S. National Committee for IUPAC on Tuesday, August 20 was noted. 2.0 The agenda as circulated was approved with the addition of a report from Dr Moss on the activity on his website. 3.0 The minutes of the Division Committee Meeting in Cambridge, UK, January 25, 2002 as posted on the Webboard (http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.rtf and http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.pdf) were approved with the following corrections: 3.1 The name Dr Gerard Moss should be added to the members present listing.
    [Show full text]
  • Title Crystallization of Stereospecific Olefin Copolymers (Special Issue on Physical Chemistry) Author(S) Sakaguchi, Fumio; Kita
    Crystallization of Stereospecific Olefin Copolymers (Special Title Issue on Physical Chemistry) Author(s) Sakaguchi, Fumio; Kitamaru, Ryozo; Tsuji, Waichiro Bulletin of the Institute for Chemical Research, Kyoto Citation University (1966), 44(4): 295-315 Issue Date 1966-10-31 URL http://hdl.handle.net/2433/76134 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Crystallization of Stereospecifie Olefin Copolymers Fumio SAKAGUCHI,Ryozo KITAMARU and Waichiro TSUJI* (Tsuji Laboratory) Received August 13, 1966 The stereoregularity of isotactic poly(4-methyl-1-pentene) was characterized and isomorphism phenomena were examined for the copolymeric systems of 4-methyl-1-pentene with several olefins in order to study the crystallization phenomena in these olefin copoly- mers polymerized with stereospecific catalysts. The structural heterogeneity or the fine crystalline structure of poly(4-methyl-1-pentene) could be correlated with its molecular structure by viewing this stereoregular homopolymer as if it were a copolymer. Cocrystallization or isomorphism phenomenon was recognized for the copolymeric systems of 4-methyl-1-pentene with butene-1, pentene-1, decene-1 and 3-methyl-1-butene, while no evidence of the phenomenon was obtained for the copolymeric systems with styrene and propylene. The degree of the isomorphism of those copolymers was discussed with the informations on the crystalline phases obtained from the X-ray study, on the constitution of the copolymeric chains in the amorphous phases obtained from the viscoelastic studies and on the other thermodynamical properties of these systems. INTRODUCTION Many works have been made with regard to the homopolymerization of olefins with stereospecific catalysts, i. e. complex catalysts composed of the combination of organometallic compound and transitional metallic compound.
    [Show full text]
  • Combined PIANO Standard
    Combined PIANO Standard Product #: VHG-PIANO-COM-0.1 Lot #: 711069047B Concentration Concentration Component Component (Wt.%) (Wt.%) Isoparaffins Isopentane 0.3371 4-Methylheptane 0.4939 2,3-Dimethylbutane 0.0691 3-Methylheptane 0.8406 2-Methylpentane 0.5031 3-Ethylhexane 0.1097 3-Methylpentane 0.8271 3,3-Dimethylheptane 0.2590 2,2-Dimethylpentane 0.2746 2,5-Dimethylheptane 0.8678 2,4-Dimethylpentane 0.5679 3,5-Dimethylheptane 0.1169 2,2,3-Trimethylbutane 0.6042 2,3-Dimethylheptane 0.2288 3,3-Dimethylpentane 0.2873 3,4-Dimethylheptane 0.5668 2-Methylhexane 0.3643 2-Methyloctane 0.5791 2,3-Dimethylpentane 0.2751 3-Methyloctane 0.8645 3-Methylhexane 0.2475 3,3-Diethylpentane 0.2424 3-Ethylpentane 0.0813 2,2-Dimethyloctane 0.5024 2,2-Dimethylhexane 0.2027 3,3-Dimethyloctane 0.4902 2,5-Dimethylhexane 0.5727 2,3-Dimethyloctane 0.5927 2,2,3-Trimethylpentane 0.2658 3-Ethyloctane 0.5694 2,4-Dimethylhexane 0.2542 2-Methylnonane 0.5727 2,3-Dimethylhexane 0.2492 3-Methylnonane 0.8889 2-Methylheptane 0.6744 Aromatics Benzene 1.6808 1-Methyl-3-n-propylbenzene 0.4972 Toluene 1.0772 1-Methyl-4-n-propylbenzene 0.5237 Ethylbenzene 1.5918 n-Butylbenzene 0.5198 m-Xylene 0.5341 1,2-Diethylbenzene 0.2577 p-Xylene 1.1328 1-Methyl-2-n-propylbenzene 0.5282 o-Xylene 0.5315 1,4-Dimethyl-2-ethylbenzene 0.5379 Isopropylbenzene 0.5235 1,3-Dimethyl-5-ethylbenzene 0.5176 n-Propylbenzene 1.0731 1,2-Dimethyl-4-ethylbenzene 0.5310 1-Methyl-3-ethylbenzene 0.5181 1,3-Dimethyl-2-ethylbenzene 0.2695 1-Methyl-4-ethylbenzene 0.5104 1,2-Dimethyl-3-ethylbenzene 0.5151 1,3,5-Trimethylbenzene
    [Show full text]
  • Process Synthesis
    PROCESS SYNTHESIS DALE F. RUDD University of Wisconsin Madison, Wisconsin 53706 INTRODUCTION In the words of Webster, synthesis is "the proper way to approach process development. In combining of often diverse conceptions into a co­ these theories of process development, each syn­ herent whole" and analysis is "an examination thesis step defines an analysis problem the solu­ of a complex, its elements and their relations." tion of which provides data required for further Synthesis refers to the more inventive aspects of synthesis steps. Further, it became apparent that engineering and analysis to the more scientific. this organization of alternating synthesis and Both are required in the development of industrial analysis steps begs the development of educational processes. material for the early stages of engineering edu­ Since World War II engineering education has cation. moved strongly towards analysis, with the intro­ In this report we examine the development of duction of courses which analyse individual pro­ a first course in engineering in which synthesis cess operations and phenome,na. rransport phe­ and analysis are taught simultaneously. Elemen­ nomena, unit operations, process control, thermo­ tary new principles of process synthesis are com­ dynamics and other engineering science courses bined with the classic analysis techniques of greatly strengthened engineering education by material and energy balancing. Emphasis is on showing how things are and how they work. the development of process technology rather than Unfortunately, there was not a parallel de­ on the analysis of existing processes. velopment in the teaching of synthesis. The teach­ ing of how things ought to be rather than how RESEARCH IN PROCESS SYNTHESIS they are.
    [Show full text]
  • A Low Temperature Structure of Nonane-1,9-Diaminium Chloride Chloroacetate: Hydroxyacetic Acid (1:1)
    J Chem Crystallogr (2011) 41:703–707 DOI 10.1007/s10870-010-9957-6 ORIGINAL PAPER A Low Temperature Structure of Nonane-1,9-Diaminium Chloride Chloroacetate: Hydroxyacetic Acid (1:1) Agnieszka Paul • Maciej Kubicki Received: 24 February 2010 / Accepted: 31 December 2010 / Published online: 14 January 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract The crystal structure of nonane-1,9-diaminium protons and to form salts with both, organic and inorganic chloride chloroacetate–hydroxyacetic acid (1:1) was deter- acids, together with a significant flexibility of the chain mined by X-ray diffraction at 100(1)K. The asymmetric fragment and tendency towards creation of the highly unit is composed of diaminium dication, chloroacetate and symmetric networks, can be used in so-called crystal chloride anions, and neutral hydroxyacetic acid molecule. engineering [2], i.e. in designing new materials with The aliphatic chain of 1,9-diamine is fully extended and it expected features. Such a predictable motifs in the crystal deviates only slightly from the perfect all-trans confor- structures, giving rise to a layer structure, were already mation. The two acidic residues are also nearly planar. The investigated in the series of hexane-1,6-diamine and layer structure is obtained as a consequence of hydrogen butane-1,4-diamine salts [3, 4]. bond interactions of a different lengths, with N–H and O–H Only five structures deposited in the Cambridge Struc- groups playing the role of donors and oxygen atoms and tural Database [5] (no multiple determinations, herein and chloride cations as acceptors.
    [Show full text]
  • SAFETY DATA SHEET 1,9-Dibromo-Nonane-2,8-Dione According to Regulation (EC) No 1907/2006, Annex II, As Amended
    Revision date: 03/01/2020 Revision: 1 SAFETY DATA SHEET 1,9-Dibromo-nonane-2,8-dione According to Regulation (EC) No 1907/2006, Annex II, as amended. Commission Regulation (EU) No 2015/830 of 28 May 2015. SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product name 1,9-Dibromo-nonane-2,8-dione Product number FD173289 CAS number 91492-76-1 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Laboratory reagent. Manufacture of substances. Research and development. 1.3. Details of the supplier of the safety data sheet Supplier Carbosynth Ltd 8&9 Old Station Business Park Compton Berkshire RG20 6NE UK +44 1635 578444 +44 1635 579444 [email protected] 1.4. Emergency telephone number Emergency telephone +44 7887 998634 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (EC 1272/2008) Physical hazards Not Classified Health hazards Not Classified Environmental hazards Not Classified Additional information Caution. Not fully tested. 2.2. Label elements Hazard statements NC Not Classified 2.3. Other hazards No data available. SECTION 3: Composition/information on ingredients 3.1. Substances Product name 1,9-Dibromo-nonane-2,8-dione 1/8 Revision date: 03/01/2020 Revision: 1 1,9-Dibromo-nonane-2,8-dione CAS number 91492-76-1 Chemical formula C₉H₁₄Br₂O₂ SECTION 4: First aid measures 4.1. Description of first aid measures General information Get medical advice/attention if you feel unwell. Inhalation Remove person to fresh air and keep comfortable for breathing.
    [Show full text]
  • Supporting Information of Polycyclic Aromatic Hydrocarbons (Pahs) In
    Supporting Information of Polycyclic aromatic hydrocarbons (PAHs) in aerosols over the central Himalayas along two south-north transects Peng Fei Chen1,5, Chao Liu Li1, Shi Chang Kang2,3*, Maheswar Rupakheti4, Arnico K Panday6, Fang Ping Yan2,5, Quan Lian Li2, Qiang Gong Zhang1,3, Jun Ming Guo1,5, Dipesh Rupakheti1,5, Wei Luo7 1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China 2State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou 730000, China 3Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China; 4Institute for Advanced Sustainability Studies, Potsdam 14467, Germany 5University of Chinese Academy of Sciences, Beijing 100039, China 6International Centre for Integrated Mountain Development, Kathmandu, Nepal 7State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Correspondence to: S. Kang ([email protected]) Text SI-1 Sample extraction and analysis Text SI-2 Quality control Table SI-1 Percentage contribution (%) of each species to total PAHs in the atmosphere over the Himalayas. Text SI-1 Sample extraction and analysis A quarter of each filter was cut into pieces, placed into a glass tube, and immersed in 20 mL of dichloromethane (DCM) and n-hexane (1:1). The extraction was performed by sonication twice for 30 min at 27 °C. Every single sample was spiked with deuterated PAHs (naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12) as recovery surrogates.
    [Show full text]
  • Syntheses and Eliminations of Cyclopentyl Derivatives David John Rausch Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 Syntheses and eliminations of cyclopentyl derivatives David John Rausch Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Rausch, David John, "Syntheses and eliminations of cyclopentyl derivatives " (1966). Retrospective Theses and Dissertations. 2875. https://lib.dr.iastate.edu/rtd/2875 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 66—6996 RAUSCH, David John, 1940- SYNTHESES AND ELIMINATIONS OF CYCLOPENTYL DERIVATIVES. Iowa State University of Science and Technology Ph.D., 1966 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan SYNTHESES AND ELIMINATIONS OF CYCLOPENTYL DERIVATIVES by David John Rausch A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved : Signature was redacted for privacy. Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1966 ii TABLE OF CONTENTS VITA INTRODUCTION HISTORICAL Conformation of Cyclopentanes Elimination Reactions RESULTS AND DISCUSSION Synthetic Elimination Reactions EXPERIMENTAL Preparation and Purification of Materials Procedures and Data for Beta Elimination Reactions SUMMARY LITERATURE CITED ACKNOWLEDGEMENTS iii VITA The author was born in Aurora, Illinois, on October 24, 1940, to Mr.
    [Show full text]