MCEC Feasibility Study

Total Page:16

File Type:pdf, Size:1020Kb

MCEC Feasibility Study Economic Development Potential of Clean Energy Technology in Maryland and Feasibility Study for a Maryland Clean Energy Center Prepared for Baltimore Development Corporation With Funding By: Maryland Department of Business and Economic Development Maryland Energy Administration Abell Foundation By: John W. Spears and Andre W. Van Rest International Center for Sustainable Development 111 South Calvert St. Suite 2201 Baltimore, MD 21202 December 31, 2006 Page 1 of 283 Page 2 of 283 Table of Contents Acknowledgments ......................................................................................................................... 4 Executive Summary...................................................................................................................... 5 Summary of Feasisibility Study Results ..................................................................................... 7 1. Scope of the Study................................................................................................................... 31 2. Energy Use in Maryland ........................................................................................................ 33 3. Clean Energy Technologies.................................................................................................... 57 4. Clean Energy Policy…………...……………………………………………………..……..114 5. Economic Development Potential of a Maryland Clean Energy Center ......................... 135 6. Maryland Clean Energy Center- Buisness Plan ................................................................ 167 7. Conclusions............................................................................................................................ 183 Appendix 1 Energy Data .......................................................................................................... 189 Appendix 2 National Renewable Energy Laboratory Report .............................................. 203 Appendix 3 University of Baltimore Report........................................................................... 223 Appendix 4 Towson University Study..................................................................................... 243 Appendix 5 MCEC/ ICSD/ ETC MOU................................................................................... 273 Appendix 6 Documents Reviewed ........................................................................................... 277 Appendix 7 Summary of Recent Reports on Potential Technical, Economic and Achievable Energy Savings.......................................................................................................................... 281 Page 3 of 283 Acknowledgments This study was written by John W. Spears and Andre Van Rest of the International Center for Sustainable Development (ICSD) under contract to The Baltimore Development Corporation. Funding was provided by the Maryland Department of Business and Economic Development, Aris Melissaratos, Secretary, Maryland Energy Administration, Frederick Davis, Director, and the Abell Foundation, Robert Embry, President. The project was administered and managed by the Baltimore Development Corporation. Additional economic and job potential research and analysis were done by RESI Research and Consulting of Towson University and the University of Baltimore Merrick School Of Business. The National Renewable Energy Laboratory conducted a renewable energy resource and cost assessment for Maryland and Peter Lowenthal of the Solar Energy Industries Foundation provided input to the policy section. The project team consisted of Kathy Magruder, DBED, Larisa Salamacha, BDC, Michael Li, MEA, Beth Harber, Abell Foundation, John Fini and Niel Davis with the Emerging Technology Center, John Spears and Andre Van Rest with ICSD. The International Center for Sustainable Development is a non-profit 501c3 organization located at 111 South Calvert St., Suite 2201, Baltimore, MD. ICSD was established in 2001 with funding from the Abell Foundation and the US Department of Energy. ICSD’s mission is to promote sustainable development world wide by undertaking practical development projects around the world that are based on sustainability principles, meet local needs, and are community focused, environment-friendly, financially-healthy, and replicable. Page 4 of 283 Executive Summary The International Center for Sustainable Development was contracted by the Baltimore Development Corporation (BDC) with funding provided by DBED, MEA and the Abell Foundation to conduct a study of the economic development potential of clean energy technology in Maryland and the creation of a Maryland Clean Energy Center (MCEC) to act as a focal point for development in the clean energy technology sector. The purpose of the MCEC is to promote economic development and jobs in the clean energy industry sector in Maryland. The study examined the past and future energy use profile in Maryland, the renewable and energy efficiency resource potential, domestic and international clean energy policies, and the economic impacts of energy efficiency improvements and developing the State’s renewable energy resources. In summary, we found that: • The Clean Energy industry is a $50 billion a year industry world wide, growing at a rate of 30% per year and one of the hottest investment opportunities on Wall Street today. • A growing number of States are investing aggressively in the Clean Energy industry (over $500 million per year). Maryland, however, is lagging in this sector and is missing out on huge economic development and job growth potentials that the other States are realizing. • Maryland has vast untapped renewable energy resources that could produce from 30% to 137% of all the State’s electricity from solar photovoltaics and on-shore and off-shore wind power at costs often competitive with conventional sources. • Energy efficiency can significantly reduce energy costs to homeowners, businesses, institutions and government at a cost 60% to 70% cheaper than new generating capacity in Maryland. • Ethanol can be produced in Maryland at a price competitive with today’s gasoline prices. • Given Maryland’s excellent research laboratories and expertise in biotechnology, it is in an excellent position to become a leader in biofuels research and development. • However, Maryland seems to be moving in the opposite direction by cutting the already slim funding for the Maryland Energy Administration by over 67% in the past two years. ($3.96 million in 2004 to $1.29 million in 2006) • Over the next 20 years, at the lowest level of effort (20% energy-efficiency improvement, 10% renewable-energy increase, and 10% ethanol production increase), 144,000 jobs will be created (67,000 in Baltimore), wages & salaries will go up by $5.7 billion ($2.4 billion in Baltimore); state & local tax revenues will increase by $973 million ($412 million in Baltimore); and gross state product (GSP) will increase by $16 billion ($7 billion in Baltimore). • At the highest level of effort (40% energy-efficiency improvement, 30% renewable-energy increase, and 30% ethanol production increase), the economic impacts more than double. Given this tremendous potential, the report, therefore, lays out a plan for Maryland to become a national leader in the clean energy industry sector and realize the tremendous economic, social and environmental benefits of clean energy. The proposed plan creates a Maryland Clean Energy Center (MCEC) that can act as a focal point for clean energy industry development in Maryland. MCEC will lead a collaborative effort of all of Maryland’s existing resources to advocate and promote the clean energy industry in the State and drive development of the State’s abundant energy efficiency and renewable energy resources. MCEC will also help identify funding sources Page 5 of 283 to meet the State’s needs and tie together all the State institutions- industry, universities, research and State agencies- around a common goal. The MCEC’s mission is to promote the growth of the clean energy industry in Maryland. With most industries, the majority of the economic benefits come from the investment in the companies and the jobs they create. While corporate investment and job creation are also important benefits of the clean energy industry, we found in our study that the vast majority of the economic benefits come from the services the industry provides in Maryland (energy savings and reduction of energy imports). Therefore, in order for us to reap the maximum benefit, Maryland needs to develop a strong clean energy industry and infrastructure that can effectively deliver energy efficiency and renewable energy goods and services that maximize the energy efficiency and renewable energy utilization in the State. This means we need to not only build a strong industry in Maryland, but also build a strong market for energy efficiency and renewable energy goods and services. Energy efficiency and renewable energy are great investments for Maryland. According to our analysis, an investment of $1 million per year by the State in the MCEC over the next 20 years ($20 million) would return $973 million in State and local tax revenues and 144,000 new jobs in the low scenario, and $2,166 million and 327,000 new jobs in the high scenario. If Maryland imposed a very small public benefit tax on consumer’s utility bills ($0.0004 cents per kilowatt- hour or less than $0.50 per household per month), as 14 states currently do, and raised $25 million per year (average of the 14
Recommended publications
  • A Guide to Residential Solar Installation in Carroll County
    A Guide to Residential Solar Installation in Carroll County Dear Carroll County Resident, The Environmental Advisory Council (EAC) created this document to help start Zoning Requirements ................... 2 you on your way as you consider installing solar power on your residential Permitting & Inspections .............. 3 property. Solar panels are appearing in neighborhoods all over the county, and technology is improving each year. Now, more options are available than ever. Process ..................................... 4-5 Calculating Solar Needs ............. 6-9 Solar panels for accessory residential use are being marketed by over 100 companies in the State of Maryland. Residents need to be savvy and selective Commonly Used Terms .............. 10 when beginning the process. Recent changes to Carroll County regulations have expanded the opportunity for residential solar use, including both roof- and Finding a Certified Installer ........ 10 ground-mounted units. Questions to Ask ........................ 11 This booklet is designed to assist you in finding helpful resources and to Frequently Asked Questions ...... 12 encourage you to think about the questions you want to ask. It is not intended to Buying vs. Leasing ...................... 13 be a comprehensive manual containing everything you need to know. Rather, it is a consumer resource which is not produced in favor of any particular company Financing Options ....................... 14 or choice. While some of the information is more general, much of the Grants & Incentives ................... 15 information is specific to residents of the unincorporated areas of Carroll County. Always consult local zoning, development, and permitting codes and regulations Add’l Online Resources .............. 16 to ensure that you have the most up-to-date information. Talk with the Contact Info ...............................
    [Show full text]
  • Estimating the Quantity of Wind and Solar Required to Displace Storage-Induced Emissions † ‡ Eric Hittinger*, and Ineŝ M
    Article Cite This: Environ. Sci. Technol. 2017, 51, 12988-12997 pubs.acs.org/est Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions † ‡ Eric Hittinger*, and Ineŝ M. L. Azevedo † Department of Public Policy, Rochester Institute of Technology, Rochester, New York 14623, United States ‡ Department of Engineering & Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States *S Supporting Information ABSTRACT: The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy ff fi required to o set the CO2 emissions resulting from operation of new energy storage. We nd that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • US Solar Industry Year in Review 2009
    US Solar Industry Year in Review 2009 Thursday, April 15, 2010 575 7th Street NW Suite 400 Washington DC 20004 | www.seia.org Executive Summary U.S. Cumulative Solar Capacity Growth Despite the Great Recession of 2009, the U.S. solar energy 2,500 25,000 23,835 industry grew— both in new installations and 2,000 20,000 employment. Total U.S. solar electric capacity from 15,870 2,108 photovoltaic (PV) and concentrating solar power (CSP) 1,500 15,000 technologies climbed past 2,000 MW, enough to serve -th MW more than 350,000 homes. Total U.S. solar thermal 1,000 10,000 MW 1 capacity approached 24,000 MWth. Solar industry 494 revenues also surged despite the economy, climbing 500 5,000 36 percent in 2009. - - A doubling in size of the residential PV market and three new CSP plants helped lift the U.S. solar electric market 37 percent in annual installations over 2008 from 351 MW in 2008 to 481 MW in 2009. Solar water heating (SWH) Electricity Capacity (MW) Thermal Capacity (MW-Th) installations managed 10 percent year-over-year growth, while the solar pool heating (SPH) market suffered along Annual U.S. Solar Energy Capacity Growth with the broader construction industry, dropping 10 1,200 1,099 percent. 1,036 1,000 918 894 928 Another sign of continued optimism in solar energy: 865 -th 725 758 742 venture capitalists invested more in solar technologies than 800 542 any other clean technology in 2009. In total, $1.4 billion in 600 481 2 351 venture capital flowed to solar companies in 2009.
    [Show full text]
  • Background Report Prepared by Arizona State University NINETY-NINTH ARIZONA TOWN HALL
    Arizona’s Energy Future 99th Arizona Town Hall November 6 - 9, 2011 Background Report Prepared by Arizona State University NINETY-NINTH ARIZONA TOWN HALL PREMIER PARTNER CONTRIBUTING PARTNER COLLABORATING PARTNERS SUPPORTING PARTNERS CIVIC PARTNERS CORE Construction Kennedy Partners Ryley, Carlock & Applewhite Sundt Construction One East Camelback, Suite 530, Phoenix, Arizona 85012 Phone: 602.252.9600 Fax: 602.252.6189 Website: www.aztownhall.org Email: [email protected] ARIZONA’S ENERGY FUTURE September 2011 We thank you for making the commitment to participate in the 99th Arizona Town Hall to be held at the Grand Canyon on November 6-9, 2011. You will be discussing and developing consensus with fellow Arizonans on the future of energy in Arizona. An essential element to the success of these consensus-driven discussions is this background report that is provided to all participants before the Town Hall convenes. As they have so often done for past Arizona Town Halls, Arizona State University has prepared a detailed and informative report that will provide a unique and unparalleled resource for your Town Hall panel sessions. Special thanks go to editors Clark Miller and Sharlissa Moore of the Consortium for Science, Policy, and Outcomes at ASU for spearheading this effort and marshaling many talented professionals to write individual chapters. For sharing their wealth of knowledge and professional talents, our thanks go to the many authors who contributed to the report. Our deepest gratitude also goes to University Vice President and Dean of the College of Public Programs for ASU, Debra Friedman, and Director of the School of Public Affairs for ASU, Jonathan Koppell, who made great efforts to ensure that ASU could provide this type of resource to Arizona.
    [Show full text]
  • Exhibit I Implementing Solar Technologies at Airports
    Exhibit I Implementing Solar Technologies at Airports Implementing Solar Technologies at Airports A. Kandt and R. Romero NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-7A40-62349 July 2014 Contract No. DE-AC36-08GO28308 Implementing Solar Technologies at Airports A. Kandt and R. Romero Prepared under Task No. WFG4.1010 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-7A40-62349 Golden, CO 80401 July 2014 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • 2021 Fairfax to Zero Advocating for a Just, Tree Canopy Sustainable Future
    Housing Justice 2021 Fairfax to Zero Advocating for a just, Tree Canopy sustainable future Transportation Waste Stream Net Zero Schools Green Bank Climate Planning Table of Contents www.faithforclimate.org Introduction 1 Decreasing the Energy Burden for Low-Income Housing 2 - 4 Reducing the Waste Stream 5 - 7 Protecting and Increasing Our Tree Canopy 8 - 9 Modernizing Our Building Codes 10 - 12 Transitioning to Clean and Equitable Transportation 13 - 15 Accelerating EV Adoption 16 - 17 Converting to Electric School Buses 18 - 20 Attaining Net Zero Schools 21 - 22 Creating a Strong Climate Resilience Plan 23 - 24 Establishing a Green Bank 25 - 27 Breaking Down Barriers to Small-Scale Solar 28 - 29 Acknowledgments: FACS wishes to acknowledge the work of its volunteer researchers and writers, including John Cartmill, John Clewett, Rick Galliher, Eric Goplerud, Robert Jordan, Scott Peterson, Cindy Speas, Jean Wintemute, and Jean Wright. We also want to acknowledge the work done on some of the topics covered here by the member organizations of the Virginia Conservation Network (VCN), especially the Sierra Club Virginia Chapter, the Southern Environmental Law Center, Environment Virginia, Generation 180, and Mothers Out Front. Introduction Dear Friends, Since we began meeting as a discussion group in my congregation’s basement seven years ago, Faith Alliance for Climate Solutions has grown into a strong and respected nonprofit based in Fairfax County, Virginia. We count over 2,400 supporters from more than 75 churches, temples, and mosques, and we continue to grow. This booklet represents another advance. It is the first time that we have compiled our advocacy platform in a single document.
    [Show full text]
  • Overview of Environmental Impacts of Offshore Wind Energy
    Concerted action for offshore wind energy deployment (COD) Overview of Environmental Impacts of Offshore Wind energy Authors: E.M. Roth L.A. Verhoef M.W.L. Dingenouts EC Contract: NNE5-2001-00633 Novem contract number: 2002-03-01-03-002 New-Energy-works Project number: N0335 September 2004 Neither the Consortium of the Concerted Action for Offshore Wind Energy Deployment, nor any person acting on its behalf: a. makes any warranty or representation, express or implied with respect to the information contained in this publication; b. assumes any liability with respect to the use of, or damages resulting from this information. COD Overview of Environmental Impacts of Offshore Wind energy NNE5-2001-00633 Index 1 INTRODUCTION AND METHODOLOGY ........................................................................... 3 1.1 BACKGROUND ..................................................................................................................... 3 1.2 QUESTIONS ADDRESSED ..................................................................................................... 3 1.3 STRUCTURE OF THE DATABASE ............................................................................................ 3 1.4 METHODOLOGY OF ENVIRONMENTAL IMPACT ASSESSMENT APPLIED TO OFFSHORE PROJECTS 6 1.5 LIMITATIONS ....................................................................................................................... 7 2 WHAT KINDS OF STUDIES HAVE BEEN UNDERTAKEN AND WHICH ISSUES HAVE BEEN STUDIED? .................................................................................................................
    [Show full text]
  • For a Better World of Energy
    FOR A BETTER WORLD OF ENERGY ARKLOW BANK WIND PARK PHASE 2 PUBLIC CONSULTATION ABOUT SSE RENEWABLES ABOUT THE PROJECT FOR A We’re SSE Renewables, a leading developer, owner and operator Arklow Bank Wind Park Phase 2 will be located off the coast of of renewable energy across Ireland and the UK. Arklow, Co. Wicklow. The 520MW project is the next phase of wind BETTER FUTURE energy development at Arklow Bank. Phase 1 of the Wind Park was Part of the FTSE-listed SSE plc, we employ around 1,000 people in constructed in 2003/04 consisting of seven wind turbines with a Ireland and over 10,000 in the UK, all of whom believe in building capacity of 25.2 MW. Phase 1 is owned and operated by GE Energy At SSE Renewables we’re for leading Ireland’s offshore wind a better world of energy. We’re the largest owner and operator of under a sublease to the foreshore lease and remains the first and energy ambition. We’re for building a cleaner energy future. renewable energy in Ireland and the UK, and through our sister only operational offshore wind farm in Ireland. And - through the development of Arklow Bank Wind Park company SSE Airtricity, the wind energy we produce here supplies Phase 2 off the coast of County Wicklow - we’re for creating more Irish homes and businesses than any other company. Now, SSE Renewables is proposing to invest between €1 billion and €2 billion to develop new local jobs in Arklow, Wicklow and along the East Coast Arklow Bank Wind Park to its full potential.
    [Show full text]
  • Putting Wind on the Grid
    SPRING 2006 ELECTRIC POWER RESEARCH INSTITUTE PUTTING WIND ON THE GRID A lso I N T H is I ssue : Energy Storage EMF and Health Effects The Electric Power Research Institute (EPRI), with major locations in Palo Alto, California, and Charlotte, North Carolina, was established in 1973 as an independent, nonprofit center for public interest energy and environmental research. EPRI brings together members, participants, the Institute’s scientists and engineers, and other leading experts to work collaboratively on solutions to the challenges of electric power. These solutions span nearly every area of electricity generation, delivery, and use, including health, safety, and environment. EPRI’s members represent over 90% of the electricity generated in the United States. International participation represents nearly 15% of EPRI’s total research, development, and demonstration program. Together…Shaping the Future of Electricity EPRI Journal Staff and Contributors David Dietrich, Editor-in-Chief Jeannine Howatt, Business Manager Debra Manegold, Layout Designer/Production Manager Ken Cox, Illustrator/Photographer Michael Rohde, Products Editor Craig Diskowski, Art Consultant Brent Barker, Executive Director, Corporate Communications Joseph Bugica, Vice President, Marketing Henry A. (Hank) Courtright, Senior Vice President, Member Services Contact Information Editor-in-Chief EPRI Journal PO Box 10412 Palo Alto, CA 94303-0813 The EPRI Journal is published quarterly. For information on subscriptions and permissions, call the EPRI Customer Assistance Center at 800.313.3774 and press 4, or e-mail [email protected]. Please include the code number from your mailing label with inquiries about your subscription. Visit EPRI’s web site at www.epri.com. © 2006 Electric Power Research Institute (EPRI), Inc.
    [Show full text]
  • Standards and Requirements for Solar Equipment, Installation, and Licensing and Certification a Guide for States and Municipalities
    SUSTAINABLE SOLAR EDUCATION PROJECT Beren Argetsinger, Keyes&FoxLLP•BenjaminInskeep,EQResearchLLC Beren Argetsinger, A GuideforStatesandMunicipalities and LicensingCertification for SolarEquipment,Installation, Standards andRequirements FEBRU A RY 2017 RY © B igstock/ilfede SUSTAINABLE SOLAR EDUCATION PROJECT ABOUT THIS GUIDE AND THE SUSTAINABLE SOLAR EDUCATION PROJECT Standards and Requirements for Solar Equipment, Installation, and Licensing and Certification: A Guide for States and Municipalities is one of six program guides being produced by the Clean Energy States Alliance (CESA) as part of its Sustainable Solar Ed- ucation Project. The project aims to provide information and educational resources to help states and municipalities ensure that distributed solar electricity remains consumer friendly and its benefits are accessible to low- and moderate-income households. In ad- dition to publishing guides, the Sustainable Solar Education Project will produce webinars, an online course, a monthly newsletter, and in-person training on topics related to strengthening solar accessibility and affordability, improving consumer information, and implementing consumer protection measures regarding solar photovoltaic (PV) systems. More information about the project, including a link to sign up to receive notices about the project’s activities, can be found at www.cesa.org/projects/sustainable-solar. ABOUT THE U.S. DEpaRTMENT OF ENERGY SUNSHOT INITIATIVE The U.S. Department of Energy SunShot Initiative is a collaborative national effort that aggressively drives innovation to make solar energy fully cost-competitive with traditional energy sources before the end of the decade. Through SunShot, the Energy Department supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour.
    [Show full text]
  • A Preliminary Assessment of the Long-Term Prospects for Offshore Wind Farms in Maltese Territorial Waters Dane Orion Zammit James Madison University
    James Madison University JMU Scholarly Commons Masters Theses The Graduate School Fall 12-18-2010 A preliminary assessment of the long-term prospects for offshore wind farms in Maltese territorial waters Dane Orion Zammit James Madison University Follow this and additional works at: https://commons.lib.jmu.edu/master201019 Part of the Oil, Gas, and Energy Commons Recommended Citation Zammit, Dane Orion, "A preliminary assessment of the long-term prospects for offshore wind farms in Maltese territorial waters" (2010). Masters Theses. 435. https://commons.lib.jmu.edu/master201019/435 This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact [email protected]. A Preliminary Assessment of the Long-Term Prospects for Offshore Wind Farms in Maltese Territorial Waters A dissertation presented in part fulfillment of the requirements for the Degree of Master of Science in Sustainable Environmental Resource Management By Dane Zammit November 2010 UNDER THE SUPERVISION OF Ing. Robert Farrugia Dr. Jonathan Miles Dr. Godwin Debono University of Malta – James Madison University ABSTRACT DANE ZAMMIT A PRELIMINARY ASSESSMENT OF THE LONG-TERM PROSPECTS FOR OFFSHORE WIND FARMS IN MALTESE TERRITORIAL WATERS Keywords: WIND; ENERGY; MALTA; OFFSHORE; VIABILITY; MARKET Almost all of Malta’s current interest in offshore wind development is focused on the development of an offshore wind farm at Sikka L-Bajda in northwest Malta by 2020, to help the country reach its mandated 2020 RES target.
    [Show full text]