Examining the Physical Exam

Total Page:16

File Type:pdf, Size:1020Kb

Examining the Physical Exam Examining the Overview Quick approach to MSK Physical Exam problems • History – what does it How to Make Yours Better mean? • Considering the differential diagnosis Anthony Luke MD, MPH Primary Care Medicine: Update 2014 • Physical exam – confirm the diagnosis Is the patient? •Age • Occupation/Activity • Recreational, competitive, or elite • Handedness • Past medical history • Family history Manage patient expectations “The patient will tell you what the problem is” 1 Age factor is the Chief Complaint? Children The BIG THREE • Tendons and ligaments 1. Pain relatively stronger than 2. Instability epiphyseal plate 3. Dysfunction • Insertional overuse injuries • Other complaints: (OSD, SLJ, Sever’s) swelling, numbness Elderly and tingling, • Decreased flexibility decreased • Apoptosis – “programmed” performance cell death; repair affected Swelling Bone Pain • Intra-articular vs. • Constant extra-articular • Sharp • Consider onset of • Greater load = swelling greater pain (i.e. 1) Immediate - minutes weightbearing) 2) In 24 hours • May have pressure 3) Insidious - days features 2 Tendon Pain Onset of injury? • May be present at the start of an activity then “warm-up” •Acute • Sore when the muscle is used • Chronic • Acute on Chronic • May occur in “compensation” for other structural problems near by • Check for underlying spondyloarthropathy: Psoriasis, GI symptoms, STD Mechanism of Injury? L i g a m e n t Anatomy and Biomechanics Ultimate Ligament Tension Failure • ACL: 2200 N (Anterior) • PCL: 2500 N (Posterior) • MCL: 4000N (Valgus) • LCL: 750N (Varus) • Posteromedial Corner • Posterolateral Corner 3 Biomechanical Studies is the injury located? Forces on the ACL/Graft • Think about structures • Level Walking = 169 N in injured area • Ascending Stairs = 67 N • Is the pain referred? • Descending Stairs = 445 N • The one-finger test Morrison, Biomech, 1970 Morrison, Bio Eng,1968,1969 • Know your anatomy • Normal Walking = 400 N • Sharp Cutting = 1700 N Butler, Clin Orthop, 1985 • Sports = 2000+ N Red Flag Symptoms • Severe disability Intrinsic Risk Factors Extrinsic Risk Factors • Numbness and tingling •Growth • Training • Anatomy • Technique • Night pain • Muscle/Tendon • Footwear • Constitutional symptoms (fever, wt loss) imbalance •Surface • Swelling with no injury • Illness • Occupation • Nutrition • Systemic illness • Conditioning • TO PREVENT • Multiple joint injury • Psychology INJURIES!! 4 First Test - Physical Exam Physical exam Physical Exam SPECIAL TESTS • Confirms or excludes the suspected LOOK – Observation Provocative tests • Swelling, Erythema, • Reproduce patient’s pain diagnosis Atrophy, Deformity, • Tests are often non-specific Surgical Scars (SEADS) Stress tests • Stress structures for • Groups of tests can improve sensitivity FEEL – Palpate important instability (i.e. ligaments) structures and specificity Functional tests MOVE – Assess Range of • Assess functional Motion movements (i.e. weight bearing activity) Always check Neurovascular Status Other physical exam Case - Knee Swelling 22 year old Skier comes has twisting • Alignment injury in her knee • Motor strength skiing. Develops • Flexibility of agonists immediate swelling and antagonists after injury and has to be brought down • Neurologic by ski patrol • Check the joint above and the joint below • THINK KINETIC CHAIN 5 Look (Standing) Look (Supine) • Alignment “SEADS” • Ankles together • Swelling • Ankles apart • Erythema • On toes • Atrophy •Walk • Deformity • Red flag – can’t do it • Surgical scars • Hop test Feel Feel Patella • Bulge sign • “Milk medially, push • Tender over facets laterally” of patella • Apprehension sign • (Patellar tap) suggests possible instability 6 Feel - Patellar mobility Feel Joint Line Special Tests ACL Special Tests ACL • Lachman's test – test at • Lachman's test – test at 20° 20° Sens 81.8%, Spec 96.8% Sens 81.8%, Spec 96.8% • Anterior drawer – test at • Anterior drawer – test at 90° 90° Sens 22 - 41%, Spec 97%* Sens 22 - 41%, Spec 97%* • Pivot shift • Pivot shift Sens 35 - 98.4%*, Spec 98%* Sens 35 - 98.4%*, Spec 98%* Malanga GA, Nadler SF. Malanga GA, Nadler SF. Musculoskeletal Physical Musculoskeletal Physical Examination, Mosby, 2006 Examination, Mosby, 2006 * - denotes under anesthesia * - denotes under anesthesia Drop Lachman test 7 Medial Collateral Ligament (MCL) Medial Collateral Ligament (MCL) Injury Injury Physical Exam Physical Exam • Tender medially over • Tender medially over MCL (often MCL (often proximally) proximally) • May lack ROM “pseudolocking” • May lack ROM • Valgus stress test – test “pseudolocking” at 20° • Valgus stress test Sens = 86 - 96 % Malanga GA, Nadler SF. Musculoskeletal Physical Examination, Mosby, 2006 Posterior Cruciate Ligament (PCL) Posterior Cruciate Ligament (PCL) Injury Injury Mechanism Symptoms Physical Exam • Sag sign • Fall directly on knee • Pain with activities with foot plantarflexed • “Disability” > Sens 79%, Spec 100% • “Dashboard injury” “Instability” • Posterior drawer test Sens 90%, Spec 99% Rubenstein et al., Am J Sports Med, 1994; 22: 550-557 X-ray- often non-diagnostic MRI is test of choice 8 Special Tests: Meniscus Meniscus Tear Fowler PJ, Lubliner JA. Arthroscopy 1989; 5(3): 184-186. Mechanism Symptoms Test Sensitivity Specificity • Occurs after twisting •Catching Joint line tender 85.5% 29.4% injury or deep squat • Medial or lateral knee Hyperflexion 50% 68.2% • Patient may not recall pain specific injury • Usually posterior Extension block 84.7% 43.75% aspects of joint line McMurray Classic 28.75% 95.3% • Swelling (Med Thud) McMurray Classic (Lat 50% 29% pain) Appley (Comp/Dist) 16% / 5% 80% Modified McMurray Testing Thessaly Test • Flex hip to 90 • Hold patient’s hands for degrees support ° • Flex knee • Patient bends knee to 5 while he/she twists on knee • Internally or externally • Twisting movement will rotate lower leg with reproduce pain from rotation of knee meniscal injury • Fully flex the knee • Repeat with 20° knee with rotations flexion Medial side: Sens 89%, Spec 97% Lateral side: Sens. 92%; Spec 96% Karachalios et al. J Bone Joint Surg Am, 2005; 87: 955-962 Courtesy of Keegan Duchicella MD Courtesy of Keegan Duchicella MD 9 Ankle Injury Physical Exam 40 y.o. Male Tennis Symptoms LOOK player suffers • Localized pain usually • Swelling/bruising inversion injury to the over the lateral aspect laterally ankle FEEL Anterior of the ankle talofibular • Difficulty weight • Point of maximal ligament bearing, limping tenderness usually ATF Calcaneo • May feel unstable in MOVE fibular the ankle ligament • Limited motion due to swelling Special Tests Anterior Drawer Special Tests Anterior Drawer Test Test • Normal ~ 3 mm • Normal ~ 3 mm • Foot in neutral • Foot in neutral position position • Fix tibia • Fix tibia • Draw calcaneus • Draw calcaneus forward forward • Tests ATF ligament • Tests ATF ligament Sens = 80% Sens = 80% Spec = 74% Spec = 74% PPV = 91% PPV = 91% NPV = 52% van Dijk et al. J Bone Joint NPV = 52% van Dijk et al. J Bone Joint Surg-Br, 1996; 78B: 958-962 Surg-Br, 1996; 78B: 958-962 10 Subtalar Tilt Test Subtalar Tilt test • Foot in neutral position • Fix tibia • Invert or tilt calcaneus •Tests Calcaneofibular ligament No Sens / Spec Data Grading Ankle Sprains Ottawa Ankle Rules Grade Drawer/Tilt Pathology Functional • Inability to weight bear Test results Recovery immediately and in the in weeks emergency/ office (4 steps) 1 Drawer and Mild stretch 2 – 4 tilt negative, with no • Bone tenderness at the posterior but tender instability edge of the medial or lateral Sens = 97% malleolus (Obtain Ankle Series) 2 Drawer lax, ATFL torn, CFL 4 – 6 Spec = 31-63% tilt with good and PTFL • Bone tenderness over the PPV = 20% end point intact navicular or base of the fifth metatarsal (Obtain Foot Series) NPV = 99% 3 Drawer and ATFL and CFL 6 – 12 tilt lax injured/torn Am J Emerg Med 1998; 16: 564-67 11 “High Ankle” Sprains External Rotation Stress Test Mechanism • Fix tibia • Dorsiflexion, eversion • Foot in neutral injury • Dorsiflex and • Disruption of the externally Syndesmotic ligaments rotate ankle • Most commonly the anterior tibiofibular ligament No Sens/ Spec Data • R/O Proximal fibular Kappa = 0.75 fracture Alonso et al. J Orthop Sports Phys Ther, 1998; 27: 276-284 External Rotation Stress Test Squeeze test •Fix tibia • Hold leg at mid calf • Foot in neutral level • Dorsiflex and • Squeeze tibia and externally fibula together rotate ankle • Pain located over anterior tibiofibular ligament area No Sens/ Spec Data Kappa = 0.75 No Sens/ Spec Data Kappa = 0.50 Alonso et al. J Orthop Sports Phys Alonso et al. J Orthop Sports Phys Ther, 1998; 27: 276-284 Ther, 1998; 27: 276-284 12 Achilles Tendinopathy 3 Basic P/E findings for tendinopathy 28 y.o. Female track athlete has pain in back of calf running 1. Tenderness on direct palpation • Pushing off, running, sprinting, jumping 2. Reproduction of pain with resisted contraction (eccentric loading) 3. Reproduction of pain with passive stretch • “Hit in back of leg” while sprinting Exam - Thompson’s test Sens = 96 % • Squeeze calf Spec = 93 % • Foot should plantarflex Maffuli N. Am J Sport Med, 1998; 26: 266-270 Shoulder Impingement Syndrome Impingement Symptoms Problems with: Mechanism • Overhead activities? • Impingement under • Sleep? acromion with flexion • Putting on a jacket? and internal rotation of the shoulder • Rotator cuff, subacromial bursa and biceps tendon 13 Shoulder Pain Differential Diagnosis LOOK • Rotator cuff tendinopathy “SEADS” • Rotator cuff tears • SLAP Lesion • Swelling • Calcific
Recommended publications
  • Physical Esxam
    Pearls in the Musculoskeletal Exam Frank Caruso MPS, PA-C, EMT-P Skin, Bones, Hearts & Private Parts 2019 Examination Key Points • Area that needs to be examined, gown your patients - well exposed • Understand normal functional anatomy • Observe normal activity • Palpation • Range of Motion • Strength/neuro-vascular assessment • Special Tests General Exam Musculoskeletal Overview Physical Exam Preview Watch Your Patients Walk!! Inspection • Posture – Erectness – Symmetry – Alignment • Skin and subcutaneous tissues – Swelling – Redness – Masses Inspection • Extremities – Size – Deformities – Enlargement – Alignment – Contour – Symmetry Inspection • Muscles – Bilateral symmetry – Hypertrophy – Atrophy – Fasciculations – Spasms Palpation • Palpate bones, joints, and surrounding muscles for the following: – Heat – Tenderness – Swelling – Fluctuation – Crepitus – Resistance to pressure – Muscle tone Muscles • Size and strength affected by the following: – Genetics – Exercise – Nutrition • Muscles move joints through range of motion (ROM). Muscle Strength • Compare bilateral muscles – Strength – Symmetry – Equality – Resistance End Feel Think About It!! • The sensation the examiner feels in the joint as it reaches the end of the range of motion of each passive movement • Bone to bone: This is hard, unyielding – normal would be elbow extension. • Soft–tissue approximation: yielding compression that stops further movement – elbow and knee flexion. End Feel • Tissue stretch: hard – springy type of movement with a slight give – toward the end of range of motion – most common type of normal end feel : knee extension and metacarpophalangeal joint extension. Abnormal End Feel • Muscle spasm: invoked by movement with a sudden dramatic arrest of movement often accompanied by pain - sudden hard – “vibrant twang” • Capsular: Similar to tissue stretch but it does not occur where one would expect – range of motion usually reduced.
    [Show full text]
  • Evaluation and Management of Sports Injuries in Children
    2019 Frontiers in Pediatrics Sports Medicine Mini-Symposium Presented by MUSC Health Sports Medicine Sports Medicine Panel of Experts Michael J. Barr, PT, DPT, MSR Sports Medicine Manager MUSC Health Sports Medicine Alec DeCastro, MD Assistant Professor CAQ Sports Medicine Director, MUSC/Trident Family Medicine Residency MUSC Health Sports Medicine MUSC Department of Family Medicine Harris S. Slone, MD Associate Professor Orthopaedic Surgery and Sports Medicine MUSC Health Sports Medicine MUSC Department of Orthopaedics Sports Medicine Breakout Group Leaders Aaron Brown, ATC Athletic Trainer MUSC Health Sports Medicine Amelia Brown, MS, ATC Athletic Trainer MUSC Health Sports Medicine Brittney Lang, MS, ATC Athletic Trainer MUSC Health Sports Medicine Bobby Weisenberger, MS, ATC, PES Athletic Trainer MUSC Health Sports Medicine Sports Medicine Schedule Approximate Timeline: 2:00: Introduction – Michael Barr, PT, DPT, MSR – Sports Medicine Manager 2:05: Ankle Case Report – Harris Slone, MD 2:20: Knee Case Report – Harris Slone, MD 2:35: Shoulder Instability Case Report – Michael Barr, PT, DPT, MSR 2:50: Back Case Report – Alec DeCastro, MD 3:05: High BP Case Report – Alec DeCastro, MD 3:20: Hands On Practice of Exam Techniques – All + Athletic Trainers 3:50: Question/Answer Open Forum – All 4:00: End Sports Medicine Disclosers No relevant financial disclosers Sports Medicine Learning Objectives Learning Objectives: 1. Describe mechanisms of injury and clinical presentation for common pediatric sports related injuries of the ankle, knee, back and shoulder. 2. Demonstrate examination techniques to support the diagnosis of common pediatric sports related injuries of the ankle, knee, back and shoulder 3. Determine what imaging studies should be ordered and when to refer to a sports med/orthopaedic surgeon or to physical therapy 4.
    [Show full text]
  • Examination of the Knee
    Examination of the Knee The Examination For every joint of the lower extremity always begin with the patient in standing IN STANDING INSPECTION 1. Cutaneous Structures: Look for Erythema, scarring, bruising, and swelling in the following areas: a. Peripatellar grooves b. Suprapatellar bursa c. Prepatellar bursa d. Infrapatellar tendon e. Anserine bursa f. Popliteal fossa 2. Muscle & Soft Tissue: a. Quadriceps atrophy b. Hamstring atrophy c. Calf atrophy 3. Bones & Alignment: a. Patella position (Alta, Baha, Winking, Frog eyed), b. Varus or Valgus alignment c. Flexion contracture or Genu recurvatum RANGE OF MOTION - ACTIVE Standing is the best opportunity to assess active range of motion of the knee. 1. Ask the patient to squat into a deep knee bend. Both knees should bend symmetrically. 2. Ask the patient to then stand and extend the knee fully – lock the knee. The knee should straighten to 0 degrees of extension. Some people have increased extension referred to as genu recurvatum. GAIT 1. Look for a short stance phase on the affected limb and an awkward gait if a concomitant leg length discrepancy 2. Look for turning on block 3. Screening 1. Walk on the toes 2. Walk on the heels 3. Squat down – Active Range of Motion testing SPECIAL TESTS 1. Leg Length Discrepancy a. Look at patients back for evidence of a functional scoliosis b. Place your hands on the patients Iliac crests looking for inequality which may mean a leg length discrepancy IN SITTING NEUROLOGIC EXAMINATION 1. Test the reflexes a. L4 – Quadriceps reflex VASCULAR EXAMINATION 1. Feel for the posterior tibial artery SUPINE POSITION INSPECTION 1.
    [Show full text]
  • SIMMONDS TEST:  Patient Is Prone  Doctor Flexes the Patients Knee to 90 Degrees  Doctor Squeezes the Patient’S Calf
    Clinical Orthopedic Testing Review SIMMONDS TEST: Patient is prone Doctor flexes the patients knee to 90 degrees Doctor squeezes the patient’s calf. Classical response: Failure of ankle plantarflexion Classical Importance= torn Achilles tendon Test is done bilaterally ACHILLES TAP: Patient is prone Doctor flexes the patient’s knee to 90 degree Doctor dorsiflexes the ankle and then strikes the Achilles tendon with a percussion hammer Classical response: Plantar response Classical Importance= Intact Achilles tendon Test is done bilaterally FOOT DRAWER TEST: Patient is supine with their ankles off the edge of the examination table Doctor grasps the heel of the ankle being tested with one hand and the tibia just above the ankle with the other. Doctor applies and anterior to posterior and then a posterior to anterior sheer force. Classical response: Anterior or posterior translation of the ankle Classical Importance= Anterior talofibular or posterior talofibular ligament laxity. Test is done bilaterally LATERAL STABILITY TEST: Patient is supine Doctor grasps the tibia with one hand and the foot with the other. Doctor rotates the foot into inversion Classical response: Excessive inversion Classical Importance= Anterior talofibular ligament sprain Test is done bilaterally MEDIAL STABILITY TEST: Patient is supine Doctor grasps the tibia with one hand and the foot with the other Doctor rotates the foot into eversion Classical response: Excessive eversion Classical Importance= Deltoid ligament sprain Test is done bilaterally 1 Clinical Orthopedic Testing Review KLEIGER’S TEST: Patient is seated with the legs and feet dangling off the edge of the examination table. Doctor grasps the patient’s foot while stabilizing the tibia with the other hand Doctor pulls the ankle laterally.
    [Show full text]
  • The Lower Extremity Exam for the Family Practitioner
    Melinda A. Scott, D.O. THE LOWER EXTREMITY Orthopedic Associates of EXAM FOR THE FAMILY Dayton Board Certified in Primary Care PRACTITIONER Sports Medicine GOALS Identify landmarks necessary for exam of the lower extremity Review techniques for a quick but thorough exam Be familiar with normal findings and range of motion Review some special maneuvers and abnormal findings Review common diagnoses PRE-TEST QUESTIONS 20% 20% 20% 20% 20% If a patient has hip arthritis, where will he or she typically complain of pain? A. Buttock B. Low back C. Lateral hip D. Groin E. Posterior thigh 10 A. B. C. D. E. Countdown PRE-TEST QUESTIONS A positive straight leg raise test indicates 20% 20% 20% 20% 20% that the patient’s hip pain is from a A. Radicular/sciatic etiology B. Hip joint pathology C. Bursitis D. Tight Hamstrings E. Weak hip flexors 10 Countdown A. B. C. D. E. PRE-TEST QUESTIONS A positive McMurray’s tests is indicative of 20% 20% 20% 20% 20% a possible A. ACL tear B. MCL tear C. Patellar dislocation D. Joint effusion E. Meniscus tear 10 Countdown A. B. C. D. E. PRE-TEST QUESTIONS Anterior drawer test on the knee is performed with the knee in 20% 20% 20% 20% 20% A. 30 degrees flexion B. 90 degrees flexion C. Full extension D. 45 degrees flexion E. 130 degrees flexion 10 Countdown A. B. C. D. E. PRE-TEST QUESTIONS A positive squeeze test during an ankle 20% 20% 20% 20% 20% exam is indicative of A. Syndesmotic injury B.
    [Show full text]
  • Best Tests for Differential Diagnosis What Are the Metrics of Diagnosis?
    9/6/2018 Best Tests for Differential Diagnosis What are the Metrics Chad Cook PhD, PT, MBA, FAAOMPT of Diagnosis? Professor and Program Director Duke University Duke Clinical Research Institute For Diagnosis, There are Analytic Diagnostic Test Metrics Metrics • Diagnostic accuracy • Reliability • Diagnostic accuracy relates to the ability of • Sensitivity a test to discriminate between the target condition and another competing condition. • Specificity • Positive and Negative Predictive Value • Positive and Negative Likelihood Ratios Does Reliability Matter? Sensitivity and Specificity No worries, The you will Sensitivity: Percentage of people who test positive for a condition • be fine is fatal specific disease among a group of people who have the disease • Specificity: Percentage of people who test negative for a specific disease among a group of people who do not have the disease Kappa Intraclass Correlation www.zillowblog.com Coefficient 5 1 9/6/2018 Sensitivity Example Specificity Example • 50 patients with arm pain associated • 50 patients with no arm pain with cervical radiculopathy associated with a cervical strain • Test was positive in 40 of the 50 • Test was positive in 5 of the 50 cases cases • Sensitivity = 40/50 or 80% • Specificity = 45/50 or 90% • Correct 80% of the time in cases • Correct 90% of the time in cases that were cervical radiculopathy that were NOT cervical radiculopathy http://www.triggerpointbook.com/infrasp2.gif http://www.triggerpointbook.com/infrasp2.gif Likelihood Ratios • A high LR+ influences post-test probability with a positive finding • A value of >1 rules in a diagnosis • A low LR- influences post-test probability with a negative finding • A value closer to 0 is best and rules out Bossuyt P, et al.
    [Show full text]
  • Imaging Guidelines for Nuclear Cardiology Procedures - a Report of the American Societyarchived of Nuclear Cardiology Quality Assurance Committee
    Clinical Appropriateness Guidelines: Advanced Imaging Imaging Program Guidelines EffectiveDate: October 29, 2018 Proprietary Guideline Last Revised Last Reviewed Administrative 07-26-2016 07-26-2016 Head and Neck 11-01-2016 08-15-2017 Chest 03-01-2018 03-01-2018 Cardiac 11-14-2017 11-14-2017 Abdomen and Pelvis 03-01-2018 03-01-2018 Spine 07-26-2016 02-14-2017 Extremity 07-26-2016 09-22-2017 PET or PET/CT 09-07-2017 09-07-2017 MRI Bone Marrow Blood Supply 08-27-2015 07-26-2016 Magnetic Resonance Spectroscopy (MRS) 06-19-2012 07-26-2016 Quantitative CT (QCT) Bone Mineral Densitometry 11-01-2016 11-01-2016 ARCHIVED 8600 W Bryn Mawr Avenue South Tower – Suite 800 Chicago, IL 60631 P. 773.864.4600 Copyright © 2018. AIM Specialty Health. All Rights Reserved www.aimspecialtyhealth.com Table of Contents Description and Application of the Guidelines ........................................................................4 Administrative Guidelines ........................................................................................................5 Ordering of Multiple Studies ...................................................................................................................................5 Pre-test Requirements ...........................................................................................................................................6 Head & Neck Imaging ...............................................................................................................7 CT of the Head .......................................................................................................................................................7
    [Show full text]
  • Maneuvers • Strength Testing • Palpation 4
    Foot and Ankle Physical Exam 1. Gait analysis Physical Exam 2. Examination Standing The Big Picture: • Alignment • Swelling - Gait analysis 3. Examination Sitting - Exam standing • Neurovascular exam - Exam sitting • Skin • Range-of-motion / stability - Provocative maneuvers • Strength testing • Palpation 4. Provocative maneuvers Gait Gait Analysis - Begins and ends with heel strike of same foot - Stance: heel strike → foot flat → toe off (push-off) Stride length: Distance between two Gait Intervals of Stance ipsilateral heel strikes 1st Interval: Heel strike → foot flat Step length: Distance between heel strikes Eccentric tib ant contraction of opposing limbs 2nd Interval: Foot flat → midstance Walking: One foot always on ground Eccentric gastrocs contraction 3rd Interval: Midstance → Toe off Running: Brief period with both feet of Concentric gastrocs contraction the ground Walking velocity: Factor of stride length and (Swing: Concentric tib ant contraction) cadence Pathologic Gait Gait analysis . Antalgic: Shortened stance on painful side 1. Overall alignment Steppage: Leg lifts higher to clear ground 2. Heel strike Calcaneal: Exaggerated heel weight-bearing • Heel contact? . posterior weakness • Foot slap? Waddling: Broad-based, pelvis drops towards 3. Midstance raised leg during swing • arch collapse? . proximal myopathy • Valgus/varus thrust? Trandelenburg: Trunk towards weak 4. Push-off side during stance 5. Observe from front, back, and side . abductor weakness Walk around the patient . Exam Standing Understand the foot as a tripod . Foot as Tripod . Ground pressure Pes planus: ~ evenly distributed: - Medial overload st -1 metatarsal head Pes cavus: - Lesser metatarsals - Lateral overload - Heel Pes planus 1. Pes planus 2. Pes planovalgus 3. Adult acquired flatfoot deformity 4. Posterior tibial tendon dysfunction (PTTD) 5.
    [Show full text]
  • Uživatel:Zef/Output18
    Uživatel:Zef/output18 < Uživatel:Zef rozřadit, rozdělit na více článků/poznávaček; Název !! Klinický obraz !! Choroba !! Autor Bárányho manévr; Bonnetův manévr; Brudzinského manévr; Fournierův manévr; Fromentův manévr; Heimlichův manévr; Jendrassikův manévr; Kernigův manévr; Lasčgueův manévr; Müllerův manévr; Scanzoniho manévr; Schoberův manévr; Stiborův manévr; Thomayerův manévr; Valsalvův manévr; Beckwithova známka; Sehrtova známka; Simonova známka; Svěšnikovova známka; Wydlerova známka; Antonovo znamení; Apleyovo znamení; Battleho znamení; Blumbergovo znamení; Böhlerovo znamení; Courvoisierovo znamení; Cullenovo znamení; Danceovo znamení; Delbetovo znamení; Ewartovo znamení; Forchheimerovo znamení; Gaussovo znamení; Goodellovo znamení; Grey-Turnerovo znamení; Griesingerovo znamení; Guddenovo znamení; Guistovo znamení; Gunnovo znamení; Hertogheovo znamení; Homansovo znamení; Kehrerovo znamení; Leserovo-Trélatovo znamení; Loewenbergerovo znamení; Minorovo znamení; Murphyho znamení; Nobleovo znamení; Payrovo znamení; Pembertonovo znamení; Pinsovo znamení; Pleniesovo znamení; Pléniesovo znamení; Prehnovo znamení; Rovsingovo znamení; Salusovo znamení; Sicardovo znamení; Stellwagovo znamení; Thomayerovo znamení; Wahlovo znamení; Wegnerovo znamení; Zohlenovo znamení; Brachtův hmat; Credého hmat; Dessaignes ; Esmarchův hmat; Fritschův hmat; Hamiltonův hmat; Hippokratův hmat; Kristellerův hmat; Leopoldovy hmat; Lepagův hmat; Pawlikovovy hmat; Riebemontův-; Zangmeisterův hmat; Leopoldovy hmaty; Pawlikovovy hmaty; Hamiltonův znak; Spaldingův znak;
    [Show full text]
  • The “Lever Sign”: a New Clinical Test for the Diagnosis of Anterior Cruciate Ligament Rupture
    Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-014-3490-7 KNEE The “Lever Sign”: a new clinical test for the diagnosis of anterior cruciate ligament rupture Alessandro Lelli · Rita Paola Di Turi · David B. Spenciner · Marcello Dòmini Received: 6 June 2014 / Accepted: 12 December 2014 © European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2014 Abstract the Lever Sign test was performed on the un-injured leg of Purpose A new clinical test for the diagnosis of ACL rup- all 400 patients as a control. ture is described: the so-called “Lever Sign”. This prospec- Results All tests were nearly 100 % sensitive for patients tive study on four groups of patients divided subjects on with chronic, complete tears of the ACL. However, for the basis of MRI findings (complete or partial ACL lesion) patients with acute, partial tears, the sensitivity was much and the clinical phase of the injury (acute or chronic). The lower for the Lachman test (0.42), Anterior Drawer test hypothesis was that this manual test would be diagnostic (0.29), and Pivot Shift test (0.11), but not the Lever Sign for both partial and complete tears of the ACL regardless of test (1.00). the elapsed time from injury. Conclusion In general, chronic, complete tears were most Methods A total of 400 patients were evaluated and successfully diagnosed but acute, partial tears were least divided into four, equal-sized groups based on time elapsed successfully diagnosed. The Lever Sign test is more sensi- from injury and MRI findings: Group A (acute phase with tive to correctly diagnosing both acute and partial tears of positive MRI for complete ACL rupture), Group B (chronic the ACL compared with other common manual tests.
    [Show full text]
  • Orthopaedic Examination Spinal Cord / Nerves
    9/6/18 OBJECTIVES: • Identify the gross anatomy of the upper extremities, spine, and lower extremities. • Perform a thorough and accurate orthopaedic ORTHOPAEDIC EXAMINATION examination of the upper extremities, spine, and lower extremities. • Review the presentation of common spine and Angela Pearce, MS, APRN, FNP-C, ONP-C extremity diagnoses. Robert Metzger, DNP, APRN, FNP - BC • Determine appropriate diagnostic tests for common upper extremity, spine, and lower extremity problems REMEMBER THE BASIC PRINCIPLES OF MUSCULOSKELETAL EXAMINATION Comprehensive History Comprehensive Physical Exam THE PRESENTERS • Chief Complaint • Inspection • HPI OLDCART • Palpation HAVE NO CONFLICTS OF INTEREST • PMH • Range of Motion TO REPORT • PSH • Basic principles use a goniometer to assess joint ROM until you can • PFSH safely eyeball it • ROS • Muscle grading • Physical exam one finger point • Sensation to maximum pain • Unusual findings winging and atrophy SPINAL COLUMN SPINAL CORD / NERVES • Spinal cord • Begins at Foramen Magnum and • Consists of the Cervical, Thoracic, continues w/ terminus at Conus Medullaris near L1 and Lumbar regions. • Cauda Equina • Collection of nerves which run from • Specific curves to the spinal column terminus to end of Filum Terminale • Lordosis: Cervical and Lumbar • Nerve Roots • Kyphosis: Thoracic and Sacral • Canal is broader in cervical/ lumbar regions due to large number of nerve roots • Vertebrae are the same throughout, • Branch off the spinal cord higher except for C1 & C2, therefore same than actual exit through
    [Show full text]
  • Physical Examination of Knee Ligament Injuries..Pdf
    Review Article Physical Examination of Knee Ligament Injuries Abstract Robert D. Bronstein, MD The knee is one of the most commonly injured joints in the body. Joseph C. Schaffer, MD A thorough history and physical examination of the knee facilitates accurate diagnosis of ligament injury. Several examination techniques for the knee ligaments that were developed before advanced imaging remain as accurate or more accurate than these newer imaging modalities. Proper use of these examination techniques requires an understanding of the anatomy and pathophysiology of knee ligament injuries. Advanced imaging can be used to augment a history and examination when necessary, but should not replace a thorough history and physical examination. he knee joint is one of the most injuries because the current injury may Tcommonly injured joints in the be the sequela of a previous injury. body. Knee ligament injury and sub- Here, we present specific tech- sequent instability can cause consid- niques for the ligamentous exami- erable disability. Diagnosis of knee nation, including identifying injuries ligament injuries requires a thorough of the anterior cruciate ligament understanding of the anatomy and (ACL), the medial collateral liga- the biomechanics of the joint. Many ment (MCL), the lateral collateral specific examination techniques were ligament (LCL), the posterolateral cor- developed before advanced imaging, ner (PLC), and the posterior cruciate and several techniques remain as ligament (PCL), and describe the asso- accurate or more accurate than the ciated anatomy and biomechanics and From the Division of Sports Medicine, new imaging modalities. Advanced the methods that allow for increased Department of Orthopaedics, University of Rochester School of Medicine and imaging (eg, MRI) is appropriate to diagnostic sensitivity and accuracy.
    [Show full text]