Identifying Common Architectural Stone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Franklin Marble: One of New Jersey’S Most Famous Geologic Formations
New Jersey Geological and Water Survey Information Circular The Franklin Marble: One of New Jersey’s Most Famous Geologic Formations Introduction 0 5 10 Miles NY Sussex County Few rocks in New Jersey are as attractive or as well known as the Franklin Marble, which displays a Franklin virtual rainbow of colors from white, PA to light gray, pale pink, orange, pale Limecrest green, or pale blue. Samples of Franklin Quarry Marble are displayed in many museum exhibits nationally and internation- ally because of its importance as host rock for the world-famous zinc-iron- manganese deposits at the Franklin and Sterling Hill mines in Sussex County. These deposits contain more than 350 minerals, of which 90 are fluorescent. If New Jersey Highlands area of ever there were a contender for the offi- detail cial state rock of New Jersey, Franklin Marble would certainly be among those at the top of the list. Early in the study of the state’s geologic history, all marble was simply called white or crystalline limestone (Cook, 1868). The name “Frank- lin white limestone” was first intro- Figure 1. Distribution of the Franklin Marble (shown in blue) and other uncorre- duced by Wolff and Brooks (1898) for lated marble deposits (shown in red) in the New Jersey Highlands. marble at the zinc deposits in Frank- lin Borough. This was later shortened the area, where it forms a nearly continu- known. As a result, Franklin Marble was to “Franklin limestone” on one of the ous 21-mile-long belt in Sussex County. quarried extensively during the 20th cen- early state geologic maps of New Jersey Marble also crops out in small, detached tury, although most of the quarries are no (Lewis and Kümmel, 1910-1912), and bodies in the southwestern and eastern longer in operation. -
Fact Sheet 5 Principles of Stone Extraction
QuarryScapes guide to ancient stone quarries Fact Sheet 5 Fact Sheet 5 Principles of stone extraction In all stone quarry situations the extraction phase rich) ones. Partly because they in general display is based on one or combinations of three the most brittle behaviour, but also because it is a fundamental principles: well documented fact (and experience among quarrymen) that siliceous rocks (granite in 1. Levering; expanding open fractures by particular) have well defined preferred splitting inserting levers, crowbars or stones 2. Splitting; creating fractures, preferable directions defined by microfractures in quartz. planar, by strokes (i.e. sledge hammer), Splitting by heating is caused by a combination of wedging; heating or blasting with thermal expansion properties and brittle explosives behaviour. It works best on quartz-rich rocks due 3. Channelling (carving); making channels in to the well known but poorly understood change the rock by carving with hammer and of mechanical properties of quartz when heated. chisel, pickaxe or stone tools, heating with fire, sawing or drilling Channelling is the third fundamental principle. Channels in the rock are made by removing the Levering may be described as the “simplest” way rock mass by chiselling, picking, sawing or of extraction, involving the expansion of natural heating. In most soft stone quarries from the cracks or other planes of weakness (such as Bronze Age onwards, channelling is the most bedding planes) using various tools. important extraction method. In most cases, channelling is combined with other methods. For Splitting may be defined as the act of generating instance, channels are made perpendicular to the new fractures for extracting rock. -
Cemetery Preservation QUICK TIPS
Georgia’s State Historic Preservation Office IIIIIICCCeeemmmeeettteeerrryyy PPPrrreeessseeerrrvvvaaatttiiiooonnn QQQUUUIIICCCKKK TTTIIIPPPSSSIIIIII Common Monument and Gravemarker Materials Below are brief descriptions of the most common stones and monument material types found in Georgia. Stones vary in hardness and therefore in their ability to survive satisfactorily outdoors in cemeteries, as well as their ability to withstand cleaning or restoration. The Mohs Scale of Mineral Hardness, created in 1812, establishes talc as the softest mineral material and diamond as the hardest. There is no need to determine the exact hardness of a stone you are working on. However, seeing how some common cemetery materials rank on the Mohs Scale can guide your choice of the best methods for working with them: Talc (see "soapstone" below) Marble Sandstone Granite Diamond 1 3-4 5 7-8 10 If identifying the type of stone is difficult, but will be important to a cemetery preservation project, referring to a stone/mineral field guide is recommended, or consulting with a geologist or other expert. Marker Material Descriptions MARBLE Marble has been used for a great many markers in historic cemeteries in Georgia. The state's marble industry dates back to the late 1830s, when outcroppings of surface marble were discovered in north Georgia. Quarrying began, and markers were carved and sold throughout the area. The Georgia marble industry still thrives today. Several different types of stone that can be polished are called marble. A true marble, though, is a metamorphic rock made up of calcium carbonate, traces of silica and iron oxides; it is rather soft and easily carved. -
Special Effects with Stains
Get Fortified with Fiber Vol. 7 No. 4 • June/July 2007 • $6.95 Special Effects With Stains The masters reveal their secrets Getting Edgy New border tools and stamps Kitchen Countertops: Safety First II • www.ConcreteDecor.net • Aug./Sept. 2006 June/July 2007 | www.ConcreteDecor.net | 1 Publisher’s Letter Dear Readers, My wife’s grandfather is turning 98 years old in a month or June/July 2007 • Volume 7 so. Having lost his wife a couple of years ago, Papa, believe it or Issue No. 4 • $6.95 not, still lives at home by himself. On a recent visit to Papa we sat, as usual, in his family Publisher: Bent O. Mikkelsen room talking about a lot of things, like the way things used to Co-Publisher: Ernst H. Mikkelsen Editor: Wendy Ardolino be and, for obvious reasons, our concern for his health. During Editor: John Strieder our conversation Papa told me in a matter-of-fact tone of voice Translation Editor: Eduardo Morales that he had suffered a heart attack a couple of weeks earlier. Shocked by the news, I asked Creative Director: Patrick Hunter if he had seen a doctor or spent time in the hospital following that ordeal. Papa responded Web Design: Mark Dixon by saying “Oh yes, one night. My legs feel numb but I’m getting better.” Pressing for more Writers: Andrew Amrhein Susan Brimo-Cox information, he added, “… when I had the heart attack I was afraid I was going to die Christina Camara – however, a moment later, I became afraid I wasn’t going to die.” Saddened as we both Doug Carlton were by his news, this announcement caused us to laugh at the ordeal. -
BUIL])ING STON.E O·F WASHINGTON
BUIL])ING STON.E o·f WASHINGTON By WAYNE S. MOEN Washington Department of Conservation Division of Mines and Geology Bulletin No. 55 1967 State of Washington DANIEL J. EV ANS, Governor Department of Conservation H. MAURICE AHLQUIST, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 55 BUILDING STONE OF WASHINGTON By WAYNE S. MOEN STATE PRINTING PLANT. OLYMPI A , WASHINGTON 1967 For sale by Department Pof? ceConsl]SliARYervation, Olympia, Washington. PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION etnDTLAND. OR£00N CONTENTS Poge Introduction 7 General history .. ...... ...........................•............ 8 Production and vo lue . 10 Forms of building stone . 12 Field stone . 12 Rough building stone . 13 Rubble . • . 14 Flogging (flagstone) . 14 Ashlar . .. ......... ........ , ................. , . , . 15 Crushed stone . 16 Terrozzo . 17 Roofing granules.............. .... ..... ......... 18 Exposed aggregate . 18 Reconstituted stone . • . 19 Landscape rock . 20 Area coverage of bui Iding stone . 21 Acquisition of bui )ding stone . 22 Examination of stone deposits . 23 General quarrying methods . 24 Physical properties of building stone . 26 Strength . 26 Hardness and workabi Iity . • . 27 Color . 28 Alteration ....•...................... , ........... , . 29 Porosity and absorption ...........•. : . 31 Testing of building stone... .. .................... ................ 33 Common building stones of Washington . 34 Granite . 35 Geology and distribution . 35 Physical properties . 38 Varieties -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Descriptions of Common Sedimentary Environments
Descriptions of Common Sedimentary Environments River systems: . Alluvial Fan: a pile of sediment at the base of mountains shaped like a fan. When a stream comes out of the mountains onto the flat plain, it drops its sediment load. The sediment ranges from fine to very coarse angular sediment, including boulders. Alluvial fans are often built by flash floods. River Channel: where the river flows. The channel moves sideways over time. Typical sediments include sand, gravel and cobbles. Particles are typically rounded and sorted. The sediment shows signs of current, such as ripple marks. Flood Plain: where the river overflows periodically. When the river overflows, its velocity decreases rapidly. This means that the coarsest sediment (usually sand) is deposited next to the river, and the finer sediment (silt and clay) is deposited in thin layers farther from the river. Delta: where a stream enters a standing body of water (ocean, bay or lake). As the velocity of the river drops, it dumps its sediment. Over time, the deposits build further and further into the standing body of water. Deltas are complex environments with channels of coarser sediment, floodplain areas of finer sediment, and swamps with very fine sediment and organic deposits (coal) Lake: fresh or alkaline water. Lakes tend to be quiet water environments (except very large lakes like the Great Lakes, which have shorelines much like ocean beaches). Alkaline lakes that seasonally dry up leave evaporite deposits. Most lakes leave clay and silt deposits. Beach, barrier bar: near-shore or shoreline deposits. Beaches are active water environments, and so tend to have coarser sediment (sand, gravel and cobbles). -
Sandstone Problems
CONSERVATION TALK Michael Trinkley Why Sandstone Monuments Have So Many Problems Whether in the Carolinas, Utah or Massachusetts biggest cause is the effect of moisture, brought on by many sandstone are in very poor condition. Why? And capillary action, humidity and even a monument's perhaps even more importantly, what can be done? environment and micro-climate. Sources not related to Sandstone is a sedimentary rock, meaning that moisture include solar and UV radiation, as well as minerals or organic particles have settled in layers and the structural issues-although I don't believe any of these layers have gradually formed into rock. They often (but not are as important as moisture. Contributing to the always) have distinct bedding planes-or layers. Geologists problems caused by moisture are salts and air pollution. generally divided sedimentary rocks into three categories So let's look at a few of the more common problems. and most of what we see in cemeteries may be classified as Keep in mind that relatively little conservation research "clastic." These are formed by the accumulation of has been conducted concerning these problems, so there mechanically distintegrated rocks that are cemented remains much debate-and few simple answers. together. Air pollution can cause what are known as Sandstones are composed of quartz, feldspar, silicates, pollution crusts-often hard and brittle, leaving the stone mica, hornblende, and clay minerals that are cemented with beneath soft, friable, and disaggregating. They may also either siliceous or carbonate/calcite cement (see Table 1). It be known as carbon deposits. Found in urban settings is largely these cementing materials that affect the they are formed from pollution products, including longevity of one sandstone over another. -
Short Notice to Quarrying Sector
DRAFT REPORT STATE-OF-THE-ART: ORNAMENTAL STONE QUARRYING IN EUROPE Nicos Arvantides Tom Heldal 1 OSNET quarrying sector Nicos Arvantides Institute of Geology and Mineral exploration (IGME) 1. Fragon str. 54626 Thessaloniki Greece [email protected] Tom Heldal Geological Survey of Norway (NGU) N-7491 Trondheim Norway [email protected] Preface This report is an attempt to summarize some characteristics of the ornamental stone quarrying industry throughout Europe and underline some challenges that this sector is facing. Furthermore, it seeks to highlight some of the most important innovative technologies and methods contributing to improve the viability and sustainability of ornamental stone quarrying. In addition to quarrying itself, the report also deals with other important aspects directly relevant to quarrying – such as exploration, some environmental issues, management of deposits and handling and use of waste rock. For other aspects related to the ornamental stone production, including environmental, the work by the other sectors within OSNET is recommended. These are: Processing, Stone characterization, Tools and equipment, Risk assessment, safety and environment and Technology transfer. Ornamental stone quarrying in Europe is characterized by a great variation in traditions, extraction methods and, not at least, rock types. To give a complete picture of everything happening within the sector would demand far more pages and time than available, but we hope that we have not forgotten too much. The members of the OSNET quarrying sector come from Greece, Italy, Portugal, Sweden, Finland and Norway. Clearly, the report will be "coloured" by examples and case studies from these countries, but we hope – and believe - they have a more general validity. -
Chasm & Quarry Tour
Chasm & Quarry Tour Natural Bridge State Park SELF-GUIDED INTERPRETIVE TOUR Welcome Natural Bridge State Park, in North Adams, is a small 44-acre DCR park that provides a window into the past: ancient geology, curious marble rock formations, a history of visitors who left their mark, and an industrial quarry. Nature, over eons of erosion, has cut deep into the marble bedrock; and in just 130 years man has excavated even further! These actions left indelible marks here that you can see and touch. Use this guide to experience the natural wonder of this marble chasm, but also wit- ness the result of man’s determination. These are only some of the curious stories found here. Take your time, explore, and use your senses. Enjoy a picnic on the grounds. Listen to the rushing water echoing through the chasm. Touch and admire the texture and brilliance of the marble surface. Take photographs and look for clues to the past. About the Tour The Chasm & Quarry Tour starts at the foot of the parking lot, in front of the Visitor Center. The tour takes about 1 hour. Total round-trip distance is under a half-mile. Ability rating is easy. The route goes over some uneven terrain, boardwalks, and a staircase. The tour is accessible year-round, be prepared for the weather. A parking fee may be charged from late-May through mid-October. In the off-season park outside the entrance gate off Beaver Street/ MA Route 8, North Adams, and walk 0.25 miles up McCauley Road into the park; for convenience you may follow this tour in reverse order. -
MARBLE MOSAIC Installing and Treatment Guide for Marble Mosaic and Other Natural Stone Designtegels.Nl 1 MARBLE MOSAIC Questions
Goeie foto MARBLE MOSAIC Installing and treatment guide for Marble Mosaic and other Natural stone Designtegels.nl INSTALLING AND TREATMENT GUIDE Type: Marble mosaic tiles are tiles made of natural stone such as marble, whether or not finished by polishing. Production is (partly) manual. Materials: Natural stone, marble Characteristics: Marble is a natural product and is extracted in countries such as Italy and Turkey. Large blocks or plates are processed into smaller mosaic shapes, usually glued onto mats. Variants: There are numerous variants that are often characterized by color and / or shape. Applicability: Inside, outside, walls, floors. Extra attention: Our mosaic tiles made from natural stone such as marble are more sensitive than other tile types. Be careful with acids or caustic cleaning agents. The processing of mats works differently than the processing of whole tiles, which is why mosaic tiles must be placed with extra attention and preferably by someone with experience. The step-by-step plan and advice may differ per space or area of application. Below we give our advice for the most common placement of our mosaic tiles. Also read the important tips at the bottom of the step-by-step plan and contact us if you have any questions. What do you need to install mosaic tiles: - Primer - Flexible tile adhesive - Flexible grout - 2 mm tile spacers - Angle grinder or water-cooled tile saw - Joint trowel, glue tub, glue comb 6 or 8mm, depending on the mosaic MARBLE MOSAIC - Azule Cement Stain Remover (cleaning agent) 1 - Bucket and sponge, wash-in set STEP-BY-STEP PLAN Before you start tiling, make a plan of same joint width. -
The Lustrous Stone: White Marble in America, 1780-1860
THE LUSTROUS STONE: WHITE MARBLE IN AMERICA, 1780-1860 by Elise Madeleine Ciregna A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History Summer 2015 © 2015 Elise Madeleine Ciregna All Rights Reserved ProQuest Number: 3730261 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 3730261 Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 THE LUSTROUS STONE: WHITE MARBLE IN AMERICA, 1780-1860 by Elise Madeleine Ciregna Approved: __________________________________________________________ Arwen P. Mohun, Ph.D. Chair of the Department of History Approved: __________________________________________________________ George H. Watson, Ph.D. Dean of the College of Arts and Sciences Approved: __________________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ J. Ritchie Garrison, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.