Recombinant Human Siglec-2/CD22 Protein

Total Page:16

File Type:pdf, Size:1020Kb

Recombinant Human Siglec-2/CD22 Protein Leader in Biomolecular Solutions for Life Science Recombinant Human Siglec-2/CD22 Protein Catalog No.: RP02003LQ Recombinant Sequence Information Background Species Gene ID Swiss Prot CD22, or cluster of differentiation-22, is a molecule belonging to the SIGLEC family Human 933 P20273 of lectins. It is found on the surface of mature B cells and to a lesser extent on some immature B cells. CD22 a member of the immunoglobulin superfamily. CD22 Tags functions as an inhibitory receptor for B cell receptor (BCR) signaling. It is also 6xHis tag at the C-terminus involved in the B cell trafficking to Peyer's patches in mice. Synonyms SIGLEC-2; SIGLEC2 Basic Information Description Recombinant Mouse PD-L1/B7-H1 Protein is produced by mammalian expression system. The target protein is expressed with sequence (Asp20-Arg687) of human Product Information Siglec-2/CD22 (Accession #P20273) fused with a 6xHis tag at the C-terminus. Source Purification Bio-Activity Mammalian > 95% by SDS- Immobilized Human Siglec-2/CD22 at 0.5ug/mL (100μL/well), dose response PAGE. curve for Anti Siglec-2 /CD22 Ab with the EC50 of 25ng/mL determined by ELISA. Endotoxin Storage < 0.1 EU/μg of the protein by LAL This product is stable at ≤ -70° C for up to 1 year from the date of receipt. method. For optimal storage, aliquot into smaller quantities after centrifugation and store at recommended temperature. Formulation Avoid repeated freeze/thaw cycles. Supplied as 0.22um filtered solution in PBS, pH 7.4. Contact us for customized product form or formulation. Reconstitution Contact www.abclonal.com Validation Data Recombinant Human Siglec-2/CD22 Immobilized Human Siglec-2/CD22 at Protein was determined by SDS-PAGE with 0.5ug/mL (100μL/well), dose response Coomassie Blue, showing a band at curve for Anti Siglec-2 /CD22 Ab with the 100-120 kDa. EC50 of 25ng/mL determined by ELISA. Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only. Not for therapeutic or diagnostic purposes. Please visit http://abclonal.com for a complete listing of recommended products..
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • A CD22-Shp1 Phosphatase Axis Controls Integrin Β7 Display and B Cell Function in Mucosal Immunity
    UCSF UC San Francisco Previously Published Works Title A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Permalink https://escholarship.org/uc/item/27j4g9rr Journal Nature immunology, 22(3) ISSN 1529-2908 Authors Ballet, Romain Brennan, Martin Brandl, Carolin et al. Publication Date 2021-03-01 DOI 10.1038/s41590-021-00862-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Europe PMC Funders Group Author Manuscript Nat Immunol. Author manuscript; available in PMC 2021 August 15. Published in final edited form as: Nat Immunol. 2021 March 01; 22(3): 381–390. doi:10.1038/s41590-021-00862-z. Europe PMC Funders Author Manuscripts A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity Romain Ballet1,2,#, Martin Brennan1,2,10, Carolin Brandl3,10, Ningguo Feng1,4, Jeremy Berri1,2, Julian Cheng1,2, Borja Ocón1,2, Amin Alborzian Deh Sheikh5, Alex Marki6, Yuhan Bi1,2, Clare L. Abram7, Clifford A. Lowell7, Takeshi Tsubata5, Harry B. Greenberg1,4, Matthew S. Macauley8,9, Klaus Ley6, Lars Nitschke3, Eugene C. Butcher1,2,# 1The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, United States 2Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, United States 3Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen,
    [Show full text]
  • CD22 Antigen Is Broadly Expressed on Lung Cancer Cells and Is a Target for Antibody-Based Therapy
    Published OnlineFirst September 17, 2012; DOI: 10.1158/0008-5472.CAN-12-0173 Cancer Therapeutics, Targets, and Chemical Biology Research CD22 Antigen Is Broadly Expressed on Lung Cancer Cells and Is a Target for Antibody-Based Therapy Joseph M. Tuscano1,2, Jason Kato1, David Pearson3, Chengyi Xiong1, Laura Newell4, Yunpeng Ma1, David R. Gandara1, and Robert T. O'Donnell1,2 Abstract Most patients with lung cancer still die from their disease, necessitating additional options to improve treatment. Here, we provide evidence for targeting CD22, a cell adhesion protein known to influence B-cell survival that we found is also widely expressed in lung cancer cells. In characterizing the antitumor activity of an established anti-CD22 monoclonal antibody (mAb), HB22.7, we showed CD22 expression by multiple approaches in various lung cancer subtypes, including 7 of 8 cell lines and a panel of primary patient specimens. HB22.7 displayed in vitro and in vivo cytotoxicity against CD22-positive human lung cancer cells and tumor xenografts. In a model of metastatic lung cancer, HB22.7 inhibited the development of pulmonary metastasisandextendedoverallsurvival.Thefinding that CD22 is expressed on lung cancer cells is significant in revealing a heretofore unknown mechanism of tumorigenesis and metastasis. Our work suggests that anti- CD22 mAbs may be useful for targeted therapy of lung cancer, a malignancy that has few tumor-specific targets. Cancer Res; 72(21); 5556–65. Ó2012 AACR. Introduction lymphoma (NHL), HB22.7, effectively binds lung cancer cells fi in vitro in vivo In the United States, lung cancer is the most common and mediates speci c and killing.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Genomic Alterations During the in Situ to Invasive Ductal Breast Carcinoma Transition Shaped by the Immune System a C Anne Trinh1,2,3, Carlos R
    Published OnlineFirst December 18, 2020; DOI: 10.1158/1541-7786.MCR-20-0949 MOLECULAR CANCER RESEARCH | CANCER "-OMICS" Genomic Alterations during the In Situ to Invasive Ductal Breast Carcinoma Transition Shaped by the Immune System A C Anne Trinh1,2,3, Carlos R. Gil Del Alcazar1,2,3, Sachet A. Shukla1,2,3,4, Koei Chin5,6, Young Hwan Chang5,6, Guillaume Thibault5, Jennifer Eng5, Bojana Jovanovic1,2,3,4, C. Marcelo Aldaz7, So Yeon Park8, Joon Jeong9, Catherine Wu1,2,3,4, Joe Gray5,6, and Kornelia Polyak1,2,3,4 ABSTRACT ◥ The drivers of ductal carcinoma in situ (DCIS) to invasive number aberrations in MHC-I presentation machinery and ductal carcinoma (IDC) transition are poorly understood. Here, losses in 3p, 4q, and 5p are associated with differences in immune we conducted an integrated genomic, transcriptomic, and whole- signaling in estrogen receptor (ER)-negative IDC. Common slideimageanalysistoevaluatechangesincopy-numberprofiles, oncogenic hotspot mutations in genes including TP53 and mutational profiles, expression, neoantigen load, and topology in PIK3CA are predicted to be neoantigens yet are paradoxically 6 cases of matched pure DCIS and recurrent IDC. We demon- conserved during the DCIS-to-IDC transition, and are associated strate through combined copy-number and mutational analysis with differences in immune signaling. We highlight both tumor that recurrent IDC can be genetically related to its pure DCIS and immune-specific changes in the transition of pure DCIS to despite long latency periods and therapeutic interventions. IDC, including genetic changes in tumor cells that may have a Immune “hot” and “cold” tumors can arise as early as DCIS role in modulating immune function and assist in immune and are subtype-specific.
    [Show full text]
  • Gene List HTG Edgeseq Immuno-Oncology Assay
    Gene List HTG EdgeSeq Immuno-Oncology Assay Adhesion ADGRE5 CLEC4A CLEC7A IBSP ICAM4 ITGA5 ITGB1 L1CAM MBL2 SELE ALCAM CLEC4C DST ICAM1 ITGA1 ITGA6 ITGB2 LGALS1 MUC1 SVIL CDH1 CLEC5A EPCAM ICAM2 ITGA2 ITGAL ITGB3 LGALS3 NCAM1 THBS1 CDH5 CLEC6A FN1 ICAM3 ITGA4 ITGAM ITGB4 LGALS9 PVR THY1 Apoptosis APAF1 BCL2 BID CARD11 CASP10 CASP8 FADD NOD1 SSX1 TP53 TRAF3 BCL10 BCL2L1 BIRC5 CASP1 CASP3 DDX58 NLRP3 NOD2 TIMP1 TRAF2 TRAF6 B-Cell Function BLNK BTLA CD22 CD79A FAS FCER2 IKBKG PAX5 SLAMF1 SLAMF7 SPN BTK CD19 CD24 EBF4 FASLG IKBKB MS4A1 RAG1 SLAMF6 SPI1 Cell Cycle ABL1 ATF1 ATM BATF CCND1 CDK1 CDKN1B NCL RELA SSX1 TBX21 TP53 ABL2 ATF2 AXL BAX CCND3 CDKN1A EGR1 REL RELB TBK1 TIMP1 TTK Cell Signaling ADORA2A DUSP4 HES1 IGF2R LYN MAPK1 MUC1 NOTCH1 RIPK2 SMAD3 STAT5B AKT3 DUSP6 HES5 IKZF1 MAF MAPK11 MYC PIK3CD RNF4 SOCS1 STAT6 BCL6 ELK1 HEY1 IKZF2 MAP2K1 MAPK14 NFATC1 PIK3CG RORC SOCS3 SYK CEBPB EP300 HEY2 IKZF3 MAP2K2 MAPK3 NFATC3 POU2F2 RUNX1 SPINK5 TAL1 CIITA ETS1 HEYL JAK1 MAP2K4 MAPK8 NFATC4 PRKCD RUNX3 STAT1 TCF7 CREB1 FLT3 HMGB1 JAK2 MAP2K7 MAPKAPK2 NFKB1 PRKCE S100B STAT2 TYK2 CREB5 FOS HRAS JAK3 MAP3K1 MEF2C NFKB2 PTEN SEMA4D STAT3 CREBBP GATA3 IGF1R KIT MAP3K5 MTDH NFKBIA PYCARD SMAD2 STAT4 Chemokine CCL1 CCL16 CCL20 CCL25 CCL4 CCR2 CCR7 CX3CL1 CXCL12 CXCL3 CXCR1 CXCR6 CCL11 CCL17 CCL21 CCL26 CCL5 CCR3 CCR9 CX3CR1 CXCL13 CXCL5 CXCR2 MST1R CCL13 CCL18 CCL22 CCL27 CCL7 CCR4 CCRL2 CXCL1 CXCL14 CXCL6 CXCR3 PPBP CCL14 CCL19 CCL23 CCL28 CCL8 CCR5 CKLF CXCL10 CXCL16 CXCL8 CXCR4 XCL2 CCL15 CCL2 CCL24 CCL3 CCR1 CCR6 CMKLR1 CXCL11 CXCL2 CXCL9 CXCR5
    [Show full text]
  • A Novel Recombinant Anti-CD22 Immunokinase Delivers
    Published OnlineFirst January 29, 2016; DOI: 10.1158/1535-7163.MCT-15-0685 Large Molecule Therapeutics Molecular Cancer Therapeutics A Novel Recombinant Anti-CD22 Immunokinase Delivers Proapoptotic Activity of Death- Associated Protein Kinase (DAPK) and Mediates Cytotoxicity in Neoplastic B Cells Nils Lilienthal1,2, Gregor Lohmann1, Giuliano Crispatzu1, Elena Vasyutina1, Stefan Zittrich3, Petra Mayer1, Carmen Diana Herling4, Mehmet Kemal Tur5, Michael Hallek4, Gabriele Pfitzer3, Stefan Barth6,7, and Marco Herling1,4 Abstract The serine/threonine death-associated protein kinases (DAPK) SGIII against the B-cell–exclusive endocytic glyco-receptor CD22 provide pro-death signals in response to (oncogenic) cellular stres- was created. Its high purity and large-scale recombinant production ses. Lost DAPK expression due to (epi)genetic silencing is found in a provided a stable, selectively binding, and efficiently internalizing broad spectrum of cancers. Within B-cell lymphomas, deficiency of construct with preserved robust catalytic activity. DK1KD-SGIII the prototypic family member DAPK1 represents a predisposing or specifically and efficiently killed CD22-positive cells of lymphoma early tumorigenic lesion and high-frequency promoter methylation lines and primary CLL samples, sparing healthy donor– or CLL marks more aggressive diseases. On the basis of protein studies and patient–derived non-B cells. The mode of cell death was predom- meta-analyzed gene expression profiling data, we show here that inantly PARP-mediated and caspase-dependent conventional apo- within the low-level context of B-lymphocytic DAPK, particularly ptosis as well as triggering of an autophagic program. The notori- CLL cells have lost DAPK1 expression. To target this potential ously high apoptotic threshold of CLL could be overcome by vulnerability, we conceptualized B-cell–specific cytotoxic reconsti- DK1KD-SGIII in vitro also in cases with poor prognostic features, tution of the DAPK1 tumor suppressor in the format of an immu- such as therapy resistance.
    [Show full text]
  • Bidirectional Crosstalk Between PD-L1 Expression and Epithelial To
    Alsuliman et al. Molecular Cancer (2015) 14:149 DOI 10.1186/s12943-015-0421-2 RESEARCH Open Access Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: Significance in claudin-low breast cancer cells Abdullah Alsuliman1, Dilek Colak2, Olfat Al-Harazi2, Hanaa Fitwi1, Asma Tulbah3, Taher Al-Tweigeri4, Monther Al-Alwan1,5 and Hazem Ghebeh1,5* Abstract Background: The T-cell inhibitory molecule PD-L1 (B7-H1, CD274) is expressed on tumor cells of a subset of breast cancer patients. However, the mechanism that regulates PD-L1 expression in this group of patients is still not well-identified. Methods: We have used loss and gain of function gene manipulation approach, multi-parametric flow cytometry, large scale gene expression dataset analysis and immunohistochemistry of breast cancer tissue sections. Results: Induction of epithelial to mesenchymal transition (EMT) in human mammary epithelial cells upregulated PD-L1 expression, which was dependent mainly on the activation of the PI3K/AKT pathway. Interestingly, gene expression signatures available from large cohort of breast tumors showed a significant correlation between EMT score and the PD-L1 mRNA level (p < 0.001). Strikingly, very strong association (p < 0.0001) was found between PD-L1 expression and claudin-low subset of breast cancer, which is known to have high EMT score. On the protein level, significant correlation was found between PD-L1 expression and standard markers of EMT (p =0.005)in67breast cancer patients. Importantly, specific downregulation of PD-L1 in claudin-low breast cancer cells showed signs of EMT reversal as manifested by CD44 and Vimentin downregulation and CD24 upregulation.
    [Show full text]
  • Multiomics of Azacitidine-Treated AML Cells Reveals Variable And
    Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome Kevin K. Leunga, Aaron Nguyenb, Tao Shic, Lin Tangc, Xiaochun Nid, Laure Escoubetc, Kyle J. MacBethb, Jorge DiMartinob, and James A. Wellsa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; bEpigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158; cDepartment of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121; and dDepartment of Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA 02140 Contributed by James A. Wells, November 19, 2018 (sent for review August 23, 2018; reviewed by Rebekah Gundry, Neil L. Kelleher, and Bernd Wollscheid) Myelodysplastic syndromes (MDS) and acute myeloid leukemia of DNA methyltransferases, leading to loss of methylation in (AML) are diseases of abnormal hematopoietic differentiation newly synthesized DNA (10, 11). It was recently shown that AZA with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA treatment of cervical (12, 13) and colorectal (14) cancer cells methyltransferase inhibitor widely used to treat MDS and AML, can induce interferon responses through reactivation of endoge- yet the impact of AZA on the cell-surface proteome has not been nous retroviruses. This phenomenon, termed viral mimicry, is defined. To identify potential therapeutic targets for use in com- thought to induce antitumor effects by activating and engaging bination with AZA in AML patients, we investigated the effects the immune system. of AZA treatment on four AML cell lines representing different Although AZA treatment has demonstrated clinical benefit in stages of differentiation. The effect of AZA treatment on these AML patients, additional therapeutic options are needed (8, 9).
    [Show full text]
  • B Lymphocyte Binding to E- and P-Selectins Is Mediated Through the De Novo Expression of Carbohydrates on in Vitro and in Vivo Activated Human B Cells
    B lymphocyte binding to E- and P-selectins is mediated through the de novo expression of carbohydrates on in vitro and in vivo activated human B cells. A A Postigo, … , F Sánchez-Madrid, M O de Landázuri J Clin Invest. 1994;94(4):1585-1596. https://doi.org/10.1172/JCI117500. Research Article Cell adhesion to endothelium regulates the trafficking and recruitment of leukocytes towards lymphoid organs and sites of inflammation. This phenomenon is mediated by the expression of a number of adhesion molecules on both the endothelium and circulating cells. Activation of endothelial cells (EC) with different stimuli induces the expression of several adhesion molecules (E- and P-selectins, ICAM-1, VCAM-1), involved in their interaction with circulating cells. In this report, we have studied the binding of nonactivated and activated B cells to purified E- and P-selectins. Activated but not resting B cells were able to interact with both selectins. This binding capacity of activated B cells paralleled the induction of different carbohydrate epitopes (Lewisx, sialyl-Lewisx, CD57 and CDw65) as well as other molecules bearing these or related epitopes in myeloid cells (L-selectin, alpha L beta 2 and alpha X beta 2 integrins, and CD35) involved in the interaction of different cell types with selectins. B cells infiltrating inflamed tissues like in Hashimoto's thyroiditis, also expressed these selectin-binding carbohydrates in parallel with the expression of E-selectin by surrounding follicular dendritic cells. Moreover, the crosslinking of these selectin-binding epitopes resulted in an increased binding of B cells to different integrin ligands.
    [Show full text]
  • Differential Regulation of PD-L1 Expression by Immune and Tumor Cells in NSCLC and the Response to Treatment with Atezolizumab (Anti–PD-L1)
    Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti–PD-L1) Marcin Kowanetza,1, Wei Zoua, Scott N. Gettingerb, Hartmut Koeppena, Mark Kockxc, Peter Schmidd, Edward E. Kadel IIIa, Ignacio Wistubae, Jamie Chaftf, Naiyer A. Rizvig, David R. Spigelh, Alexander Spirai, Fred R. Hirschj, Victor Cohenk, Dustin Smitha, Zach Boyda, Natasha Mileya, Susan Flynna, Vincent Levequea, David S. Shamesa, Marcus Ballingera, Simonetta Moccia, Geetha Shankara, Roel Funkea, Garret Hamptona, Alan Sandlera, Lukas Amlera, Ira Mellmana,1, Daniel S. Chena, and Priti S. Hegdea aOncology Biomarker Development, Genentech, Inc., South San Francisco, CA 94080; bMedical Oncology, Yale Cancer Center, New Haven, CT 06510; cHistoGeneX, 2610 Antwerp, Belgium; dBarts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom; eTranslational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77054; fMedical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065; gHematology and Oncology, Columbia University, New York, NY 10027; hSarah Cannon Research Institute, Nashville, TN 37203; iOncology Program, Virginia Cancer Specialists, Fairfax, VA 22031; jMedical Oncology, University of Colorado Cancer Center, Denver, CO 80045; and kOncology, Jewish General Hospital, Montreal, QC, Canada H3T 1E2 Edited by Dennis A. Carson, University of California, San Diego, La Jolla, CA, and approved August 21, 2018 (received for review August 21, 2018) Programmed death-ligand 1 (PD-L1) expression on tumor cells cell response, the mechanistic significance of PD-L1 on TC vs. IC (TCs) by immunohistochemistry is rapidly gaining importance as a is unclear. diagnostic for the selection or stratification of patients with non- PD-L1 expression is generally thought to be induced at the small cell lung cancer (NSCLC) most likely to respond to single- transcriptional level after exposure to IFN-γ released by T ef- agent checkpoint inhibitors.
    [Show full text]