TCR-Mediated Signal Transduction Adhesion Molecule-1 (CD31)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
A CD22-Shp1 Phosphatase Axis Controls Integrin Β7 Display and B Cell Function in Mucosal Immunity
UCSF UC San Francisco Previously Published Works Title A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Permalink https://escholarship.org/uc/item/27j4g9rr Journal Nature immunology, 22(3) ISSN 1529-2908 Authors Ballet, Romain Brennan, Martin Brandl, Carolin et al. Publication Date 2021-03-01 DOI 10.1038/s41590-021-00862-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Europe PMC Funders Group Author Manuscript Nat Immunol. Author manuscript; available in PMC 2021 August 15. Published in final edited form as: Nat Immunol. 2021 March 01; 22(3): 381–390. doi:10.1038/s41590-021-00862-z. Europe PMC Funders Author Manuscripts A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity Romain Ballet1,2,#, Martin Brennan1,2,10, Carolin Brandl3,10, Ningguo Feng1,4, Jeremy Berri1,2, Julian Cheng1,2, Borja Ocón1,2, Amin Alborzian Deh Sheikh5, Alex Marki6, Yuhan Bi1,2, Clare L. Abram7, Clifford A. Lowell7, Takeshi Tsubata5, Harry B. Greenberg1,4, Matthew S. Macauley8,9, Klaus Ley6, Lars Nitschke3, Eugene C. Butcher1,2,# 1The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, United States 2Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, United States 3Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, -
Anti-Human CD31 (EPR3094)-151Eu
PRD025-3151025D PRODUCT INFORMATION SHEET Anti-Human CD31/PECAM-1-151Eu Pathologist-Verified Clone for Imaging Mass Cytometry™ Catalog: 3151025D Clone: EPR3094 Package size and concentration: 25 µg, 0.5 mg/mL Isotype: Rabbit IgG Storage: Store at 4 °C. Do not freeze. Formulation: Antibody stabilizer with 0.05% sodium azide Reactivity: Human Application: IMC-Paraffin Technical Information Application: The metal-tagged antibody is designed and formulated for the application of Imaging Mass Cytometry (IMC™) using the Fluidigm Hyperion™ Imaging System on formalin-fixed, paraffin-embedded (FFPE) tissue sections. Quality control: Each lot of conjugated antibody is quality control- tested by Imaging Mass Cytometry on tissue sections. Recommended concentration: For optimal performance it is recommended that the antibody be titrated for the desired application. Suggested initial dilution range: IMC-Paraffin: 1:50 to 1:200 Description CD31, also known as platelet endothelial cell adhesion molecule-1 (PECAM-1) or endoCAM, is a type I transmembrane glycoprotein. It is expressed by endothelial cells on blood vessels, as well as by monocytes, granulocytes, platelets and a small subset of T cells. It plays a role in wound healing, angiogenesis and removal of aged neutrophils and in cellular migration in an inflammatory situation. Human spleen (FFPE) stained with 151Eu-anti-CD31 (EPR3094) at a dilution of 1:100 (green pseudocolor), 141Pr-anti-αSMA (1A4) (red pseudocolor), and iridium DNA intercalator (blue pseudocolor). Heat-mediated antigen retrieval was performed using Tris/EDTA buffer pH 9. Scale bar size = 100 µm. References Chang, Q. et al. "Staining of frozen and formalin-fixed, paraffin-embedded tissues with metal-labeled antibodies for imaging mass cytometry analysis." Current Protocols in Cytometry 82 (2017): 12.47.1–12.47.8. -
CD22 Antigen Is Broadly Expressed on Lung Cancer Cells and Is a Target for Antibody-Based Therapy
Published OnlineFirst September 17, 2012; DOI: 10.1158/0008-5472.CAN-12-0173 Cancer Therapeutics, Targets, and Chemical Biology Research CD22 Antigen Is Broadly Expressed on Lung Cancer Cells and Is a Target for Antibody-Based Therapy Joseph M. Tuscano1,2, Jason Kato1, David Pearson3, Chengyi Xiong1, Laura Newell4, Yunpeng Ma1, David R. Gandara1, and Robert T. O'Donnell1,2 Abstract Most patients with lung cancer still die from their disease, necessitating additional options to improve treatment. Here, we provide evidence for targeting CD22, a cell adhesion protein known to influence B-cell survival that we found is also widely expressed in lung cancer cells. In characterizing the antitumor activity of an established anti-CD22 monoclonal antibody (mAb), HB22.7, we showed CD22 expression by multiple approaches in various lung cancer subtypes, including 7 of 8 cell lines and a panel of primary patient specimens. HB22.7 displayed in vitro and in vivo cytotoxicity against CD22-positive human lung cancer cells and tumor xenografts. In a model of metastatic lung cancer, HB22.7 inhibited the development of pulmonary metastasisandextendedoverallsurvival.Thefinding that CD22 is expressed on lung cancer cells is significant in revealing a heretofore unknown mechanism of tumorigenesis and metastasis. Our work suggests that anti- CD22 mAbs may be useful for targeted therapy of lung cancer, a malignancy that has few tumor-specific targets. Cancer Res; 72(21); 5556–65. Ó2012 AACR. Introduction lymphoma (NHL), HB22.7, effectively binds lung cancer cells fi in vitro in vivo In the United States, lung cancer is the most common and mediates speci c and killing. -
Clinical and Biological Characteristics of Medullary and Extramedullary Plasma Cell Dyscrasias
biology Article Clinical and Biological Characteristics of Medullary and Extramedullary Plasma Cell Dyscrasias Snjezana Janjetovic 1,2, Philipp Lohneis 3,4, Axel Nogai 5, Derya Balci 5,6, Leo Rasche 7, Doris Jähne 8, Carsten Bokemeyer 1, Georgia Schilling 1,9, Igor Wolfgang Blau 5,10 and Martin Schmidt-Hieber 2,5,11,* 1 Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; [email protected] (S.J.); [email protected] (C.B.); [email protected] (G.S.) 2 Clinic of Hematology and Stem Cell Transplantation, HELIOS Clinic Berlin-Buch, 13125 Berlin, Germany 3 Institute of Pathology, Charité University Medicine Berlin, 10117 Berlin, Germany; [email protected] 4 Institute of Pathology, University of Cologne, 50923 Cologne, Germany 5 Clinic of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité University Medicine Berlin, 12203 Berlin, Germany; [email protected] (A.N.); [email protected] (D.B.); [email protected] (I.W.B.) 6 St. Joseph Hospital Berlin-Tempelhof, 12101 Berlin, Germany 7 Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; [email protected] 8 Institute of Pathology, HELIOS Clinic Berlin-Zehlendorf, 14165 Berlin, Germany; [email protected] 9 Citation: Janjetovic, S.; Lohneis, P.; Department of Hematology, Oncology, Palliative Care and Rheumatology, Asklepios Hospital Altona, Asklepios Tumorzentrum, 22763 Hamburg, Germany Nogai, A.; Balci, D.; Rasche, L.; 10 Clinic of Hematology, Oncology and Tumor Immunology, Campus Virchow Klinikum, Charité University Jähne, D.; Bokemeyer, C.; Medicine Berlin, 10117 Berlin, Germany Schilling, G.; Blau, I.W.; 11 Clinic of Hematology and Oncology, Carl-Thiem-Klinikum, 03048 Cottbus, Germany Schmidt-Hieber, M. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
ORIGINAL ARTICLE Flow Cytometric Protein Expression Profiling As a Systematic Approach for Developing Disease-Specific Assays
Leukemia (2006) 20, 2102–2110 & 2006 Nature Publishing Group All rights reserved 0887-6924/06 $30.00 www.nature.com/leu ORIGINAL ARTICLE Flow cytometric protein expression profiling as a systematic approach for developing disease-specific assays: identification of a chronic lymphocytic leukaemia-specific assay for use in rituximab-containing regimens AC Rawstron, R de Tute, AS Jack and P Hillmen Haematological Malignancy Diagnostic Service (HMDS), Leeds Teaching Hospitals, Leeds, UK Depletion of disease below the levels detected by sensitive sustained remissions only occur in patients achieving an MRD- minimal residual disease (MRD) assays is associated with negative complete response.12 Therefore MRD is increasingly prolonged survival in chronic lymphocytic leukaemia (CLL). being used as an end point for therapeutic trials, and several Flow cytometric MRD assays are now sufficiently sensitive and rapid to guide the duration of therapy in CLL, but generally rely studies are now using the assessment of MRD to define the on assessment of CD20 expression, which cannot be accurately duration of therapy. measured during and after therapeutic approaches containing Approaches using allele-specific oligonucleotide polymerase rituximab. The aim of this study was to use analytical software chain reaction (ASO-PCR) to the immunoglobulin gene of the developed for microarray analysis to provide a systematic B-CLL cell are generally accepted to show the highest sensitivity approach for MRD flow assay development. Samples from CLL for MRD detection. However, more recent four-colour ap- patients (n ¼ 49), normal controls (n ¼ 21) and other B-lympho- proaches show sensitivities nearing that of ASO-PCR6,11,13 with proliferative disorders (n ¼ 12) were assessed with a panel of 66 antibodies. -
Clinical Significance of Soluble CD31 in Patients with Systemic
Clinical Significance of Soluble CD31 in Patients with Systemic Sclerosis (SSc): Association with Limited Cutaneous SSc SHINICHI SATO, KAZUHIRO KOMURA, MINORU HASEGAWA, MANABU FUJIMOTO, and KAZUHIKO TAKEHARA ABSTRACT. Objective. To determine serum levels of soluble CD31 (sCD31) and its clinical associations in patients with systemic sclerosis (SSc). Methods. Serum sCD31 levels from 70 patients with SSc were examined by ELISA. For a longitu- dinal study, 64 sera from 17 SSc patients were analyzed (followup: 0.4–3.9 yrs). Results. Serum sCD31 levels were elevated in patients with SSc (n = 70) compared with healthy controls (n = 20) and patients with systemic lupus erythematosus (n = 15). Serum sCD31 levels were higher in patients with limited cutaneous SSc (lSSc; n = 37) than those with diffuse cutaneous SSc (n = 33). Patients with elevated sCD31 levels had pulmonary fibrosis and decreased percentage vital capacity (%VC) less frequently than those with normal sCD31 levels. sCD31 levels correlated posi- tively with %VC in patients with SSc. This association of elevated sCD31 levels with the lower frequency of pulmonary involvement and better %VC was still observed when analyzed among lSSc patients alone. The elevation of sCD31 was associated with shorter disease duration in patients with lSSc. In a longitudinal study, 75% of patients with SSc showed increased sCD31 levels only tran- siently in the early phase of the disease. Serum sCD31 levels remained normal during followup in all patients with normal sCD31 levels at the first visit. Conclusion. Elevated sCD31 levels were associated with lSSc with relatively early onset and lower frequency and severity of pulmonary fibrosis. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Clinical Significance of Soluble CD31 in Patients with Systemic Sclerosis
Clinical Significance of Soluble CD31 in Patients with Systemic Sclerosis (SSc): Association with Limited Cutaneous SSc SHINICHI SATO, KAZUHIRO KOMURA, MINORU HASEGAWA, MANABU FUJIMOTO, and KAZUHIKO TAKEHARA ABSTRACT. Objective. To determine serum levels of soluble CD31 (sCD31) and its clinical associations in patients with systemic sclerosis (SSc). Methods. Serum sCD31 levels from 70 patients with SSc were examined by ELISA. For a longitu- dinal study, 64 sera from 17 SSc patients were analyzed (followup: 0.4–3.9 yrs). Results. Serum sCD31 levels were elevated in patients with SSc (n = 70) compared with healthy controls (n = 20) and patients with systemic lupus erythematosus (n = 15). Serum sCD31 levels were higher in patients with limited cutaneous SSc (lSSc; n = 37) than those with diffuse cutaneous SSc (n = 33). Patients with elevated sCD31 levels had pulmonary fibrosis and decreased percentage vital capacity (%VC) less frequently than those with normal sCD31 levels. sCD31 levels correlated posi- tively with %VC in patients with SSc. This association of elevated sCD31 levels with the lower frequency of pulmonary involvement and better %VC was still observed when analyzed among lSSc patients alone. The elevation of sCD31 was associated with shorter disease duration in patients with lSSc. In a longitudinal study, 75% of patients with SSc showed increased sCD31 levels only tran- siently in the early phase of the disease. Serum sCD31 levels remained normal during followup in all patients with normal sCD31 levels at the first visit. Conclusion. Elevated sCD31 levels were associated with lSSc with relatively early onset and lower frequency and severity of pulmonary fibrosis. -
Soluble Carcinoembryonic Antigen Activates Endothelial Cells and Tumor Angiogenesis
Published OnlineFirst October 11, 2013; DOI: 10.1158/0008-5472.CAN-13-0123 Cancer Microenvironment and Immunology Research Soluble Carcinoembryonic Antigen Activates Endothelial Cells and Tumor Angiogenesis Kira H. Bramswig1, Marina Poettler1, Matthias Unseld1, Friedrich Wrba2, Pavel Uhrin3, Wolfgang Zimmermann4, Christoph C. Zielinski1, and Gerald W. Prager1 Abstract Carcinoembryonic antigen (CEA, CD66e, CEACAM-5) is a cell-surface–bound glycoprotein overexpressed and released by many solid tumors that has an autocrine function in cancer cell survival and differentiation. Soluble CEA released by tumors is present in the circulation of patients with cancer, where it is used as a marker for cancer progression, but whether this form of CEA exerts any effects in the tumor microenvironment is unknown. Here, we present evidence that soluble CEA is sufficient to induce proangiogenic endothelial cell behaviors, including adhesion, spreading, proliferation, and migration in vitro and tumor microvascularization in vivo. CEA-induced activation of endothelial cells was dependent on integrin b-3 signals that activate the focal- adhesion kinase and c-Src kinase and their downstream MAP–ERK kinase/extracellular signal regulated kinase and phosphoinositide 3-kinase/Akt effector pathways. Notably, while interference with VEGF signaling had no effect on CEA-induced endothelial cell activation, downregulation with the CEA receptor in endothelial cells attenuated CEA-induced signaling and tumor angiogenesis. Corroborating these results clinically, we found