Is it p ossible to cut a cub e into pieces

and to assemble a

Hilb erts problem and Dehns theorem

Dmitry FUCHS

Hilb erts Problem Three

Is it p ossible to cut a cub e by nitely many planes and assemble out of the

p olyhedral pieces obtained a regular tetrahedron of the same

This is a slight mo dication of one of the problems presented by David

Hilb ert in his famous talk at the Congress of Mathematicians in Paris on

August it go es under the numb er Hilb erts problems had a tremen

dous impact on Most of them were solved during XX century

and each has a very sp ecial history Still Problem Three stands exceptional

in many resp ects

First this was the rst of Hilb erts problems to b e solved The solution

b elonged to a years old German geometer Hilb erts student

His article app eared two years after the Paris Congress but the solution

existed earlier mayb e even b efore Hilb ert stated the problem

or less the same as the one presented b elow was short Dehns pro of more

for p opular lectures and clear and it b ecame one of the favorite sub jects

articles and b o oks in like the one you are holding in your hands I

can recommend the b o ok by Boltianskii for a more extended exp osition

But among working mathematicians it was almost forgotten

Certainly the name of Dehn was not forgotten He b ecame one of the few

top exp erts in top ology of threedimensional and his work of

has b een never regarded as his main achievement it is not even mentioned

in Dehns biography available on the web

In American Mathematical So ciety published a twovolume collec

tion of articles under the title Mathematical Developments Arising from

Hilb ert Problems It was a very solid account of the three quarters of

century of history of the problems solutions full and partial generaliza

tions similar problems and so on This edition contains a thorough analysis

of of Hilb erts problems And only Problem Three is not discussed

there The opinion of the editors is obvious no developments no inuence

on Mathematics nothing to discuss

How strange it seemed just a couple of years later Dehns theorem

Dehns theory Dehns b ecame one of the hottest sub jects in geom

an exciting domain etry This was stimulated by then newb orn Ktheory

develop ed along the b orderline b etween algebra and top ology We will not

follow this development but will just revise the theorem and its pro of

For a similar problem in the the an

swer is yes

Let P P be two polygonal domains in the plane having the Theorem

1 2

same ar ea Then it is possible to cut P into pieces by straight lines and to

1

assemble Of these pieces P

2

Pro of First it is clear that it is sucient to consider the case when P

2

is a rectangle with the sides and P in doing this we can shorten the

1

notation of P to just P

1

Second since any p olygonal domain can b e cut into triangles we can

reduce the general case to that of a triangle see Figure

P ! ! !

P area

Figure

Third we need to remake by cutting and pasting a triangle into a rect

with one if the sides having length one This is done in four steps on

Figure

!

!

Step Step

rational length

pq

p

!

q

!

p

Step Step

q

Figure

We do this in four steps First we make a parallelogram out of our triangle

Step Then we cut a small triangle on one side of the parallelogram and

attach it to the other side in such a way that the length of one of the sides of

Step On Step we make this the parallelogram b ecomes rational pq

parallelogram a rectangle the numb er of horizontal cuts needed dep ends on

the shap e of the parallelogram On the nal step we cut the rectangle into

pq equal pieces by p horizontal lines and q vertical lines with the

understanding that it is the vertical side of the rectangle that has the length

pq then we rearrange these pq pieces into a rectangle with the length of

the vertical side b eing

A planar problem which do es not lo ok sim

ilar to Hilb erts Problem Three but has a

similar solution

rectangle into nitely many smaller rectangles with Is it p ossible to cut a

p p

sides parallel to the sides of the given rectangle and to assemble a

square

The answer is NO The pro of is more algebraic than geometric but still

unlike the Hilb ert Problem it requires a small geometric preparation

A geometric preparation

Let us given two rectangles with vertical and horizontal sides b elow we will

call such rectangles briey V H rectangles and supp ose that is is p ossible

to cut them into smaller V H rectangles such then the pieces of the rst are

equal congruent to the pieces of the second

2 6

1 1

5 2 7 5

3 4 3 4

(C )

6 7

A) (

a b m n o

e f g h

a b c d c d p

i j k l

e f g h

) (D

i j k l

m n o p

(B )

(E )

Figure

still smaller V H rectangles such Then there exists a collection of N

that each of the given rectangles can b e obtained by a sequence of N

admissible moves An admissible move we take two of our small rectangles

having equal widths or equal heights and attach them to each other vertically

or horizontally creating one rectangle of the same width or height Thus

our pro cess of cutting is replaced by a more strict pro cess of attaching of

rectangles How to do this is shown on Figure

Supp ose that two rectangles are cut into equal pieces as requested by

Problem rectangles A and C on Figure equal pieces are marked there

by the same Arabic numb ers Then we extend the sides of the pieces to the

whole width or length of the rectangle see rectangle B of Figure Some

of the pieces of division are cut into smaller pieces marked by Roman letters

b e and f b ecomes a union in rectangle B so b ecomes a union of a

of c and d etc Then we divide in the same way the pieces of the second

given rectangle see rectangle D of Figure we break the rectangle of

rectangle C into pieces congruent to a b e f the rectangle into pieces

c d and so on We obtain a new division of the second given rectangle

into smaller rectangles and again extend the sides of these smaller pieces

to the whole width or length of the rectangle see rectangle E of Figure

These last pieces form our collection Obviously we can assemble the

second rectangle C from these pieces using the admissible moves Other

admissible moves pro duce out of our small rectangles the parts of the ner

division of the rectangle A that is a b c o p and out of this part

we can assemble using admissible moves the rectangle A The geometric

preparation is over

An algebraic pro of

Let us have a nite collection of V H rectangles of the total area Then no

more than one of the following two is p ossible

to comp ose out of these rectangles a rectangle using only admissible

moves

p p

to comp ose out of these rectangles a square using only admis

sible moves

This is what we need to answer negatively the question of these section

w b e the widths of the rectangles of our collection N b eing Let w

1 N

the numb er of these rectangles and h h b e their heights

1 N

Consider the sequence

p

w w

1 N

remove a memb er of this sequence if it is a linear combination with rational

co ecients of the preceding memb ers Thus we do not remove we do not

p p

remove since it is irrational we remove w if and only if w r r

1 1 1 2

with rational r r and so on Let a a b e the remaining numb ers

1 2 1 m

p

thus a a It is imp ortant that each of the numb ers can

1 2

b e presented as a rational linear combination of the numb ers a a in a

1 m

1

unique way

No w do the same with the sequence

p

h h

1 N

p

with b b such that each of We will get the numb ers b b

1 2 1 n

the numb ers can b e presented as a rational linear combination of the

numb ers b b in a unique way

1 n

Call a rectangle admissible if its width is a rational linear combination

of a a and its height is a rational linear combination of b b

1 m 1 n

Let P b e an admissible rectangle of the width w and the length h and

P P

n m

s r a and h b with rational r s an d s s We de let w

i i j j i j

=1 =1 j i

ne the symbol SymbP of the rectangle P as the rational m n matrix

k k with S r s We usually will use for the symb ols the notation S

ij ij i j

P

SymbP r s a b which is simply the alternative notation for

i j i j

ij

the matrix ab ove Thus we regard the symb ols as formal rational linear

combination of the expressions a b Such formal linear combinations

i j

cab b e added in the obvious way we consider two formal rational linear

P P

combinations t a b j t a b equal if t t for all i

i j i j

ij ij ij ij

ij ij

Let P and P b e two admissible rectangles of equal heights or equal

widths Then we can merge these two rectangles into one rectangle P using

an admissible move see ab ove Obviously P is also an admissible rectangle

and Symb P Symb P Symb P Indeed if P and P have widths

1

This is a standard theorem from linear algebra but for the sake of completeness let us

p

is a rational linear combination of a give a pro of a a so is a Assume

1 1 m 2

by induction that all the numb ers preceding w are rational linear combinations

k

of a a If w is not a rational linear combination of preceding numb ers then

1 m k

it is one of a s and hence is a rational linear combination of a a if w is a

j 1 m k

rational linear combination of preceding numb ers then it is a rational linear combination of

a a since all the preceding numb ers are rational linear combinations of a a

1 m 1 m

If two dierent rational linear combinations of a a It remains to prove uniqueness

1 m

P P

m m

0 0 0 0 0 0

r is the largest of m for which r r then are equal a r a and s

i j

s s

i j

=1 j =1 i

1 s

0 0 0

X

r r

i i

a a which shows that a is a rational linear combination of preceding a s

s i s j

00 0

r r

s s

i=1

in contradiction to the choice of a a

1 m

P P P

n m m

s b then r a and the same height h r a and w w

j j i i

i i

j =1 i=1 i=1

P

m

r r a and the height h and P has the width w w

i

i i

i=1

P

Symb P r r s a b

j i j

i i

ij

P P

r s a b r s a b

j i j j i j

i i

ij ij

SymbP SymbP

Thus if we have a collection of admissible rectangles P P and can

1 N

assemble out of them by N admissible moves a rectangle P then

P

N

t Symb P If we can assemble in this way two dieren SymbP

i

i=1

rectangles P and P then SymbP Symb P This proves our theorem

p p

since the symb ol of a rectangle is a b and the symb ol of a

1 1

square is a b which is dierent

2 2

Pro of of Dehns Theorem

We want to prove the following

Theorem Let C and T be a and a regular tetrahedron of the same

volume Suppose that each of them is cut into the same number of pieces by

is we cut our into two pieces then cut one of the planes That

two pieces into two pieces then cut one of the three pieces into two pieces

and so on It is not possible that the two col lection of polyhedral pieces are

the same

Pro of Let b e the lengths of all edges of all p olyhedra involved in

1 N

the two cutting pro cesses Let are corresp onding dihedral

1 N

we supp ose that for all i Take the sequence el l

i 1 N

and remove from it any term which is a rational linear combination of the

previous terms we obtain a sequence a a such that each of the s

1 m k

is equal to a unique rational linear combination of a s Then do the same

i

with the sequence the resulting sequence is denoted as

1 N 0

and each of s is equal to a unique linear combination of s

1 n k j

Call a convex p olyhedron admissible if the length of every edge is a rational

linear combination of a a and each dihedral angle is a rational linear

1 m

combination of

0 1 n

b e the lengths of edges of an admissible convex p oly Let m m

1 q

hedron P and let b e the corresp onding dihedral angles Let

1 q

P P

n m

s Dene the symb ol of P by the r a and m

k j j k i i k k

j =0 i=1

formula

q

n m

X X X

a r s SymbP

i j k i k j

i=1 j =1

k =1

I mp ortant remark it is not a misprint that the second summation is

taken from j to n not from j to n we do not include into the

symb ol the summand s Thus if one changes an angle by a rational

k 0

multiple of then the symb ol is not aected if some dihedral angle is a

rational multiple of then the corresp onding edge do not app ear in the

expression for the symb ol at all

E xample the symb ol of a cub e or of a rectangular b ox is zero Indeed

all the angles are

E xercise the symb ol of any rectangular prism with a p olygonal base is

zero

Lemma Let P be a convex polyhedron Suppose that it is cut by a plane L

into two pieces P and P Then provided that P P and P are admissible

Symb P Symb P SymbP

e e g b e the set of all edges of P let Pro of of Lemma Let S f

1 q k

b e the length of the edge e and b e the corresp onding dihedral angle We

k k

divide the set S into four subsets S consists of edges which have no interior

1

p oints in L and lie on the P side of L S is the similar set with P instead

2

of P S consists of edges e cut by L into an edge e of P and an edge

3 k

k

e of P and S consists of edges which are totally contained in L for each

4

k

e S the dihedral angle is divided by L into two parts and

k 4 k

k k

P This is a convex p olygon each e S Consider also the intersection L

k 4

is its side let T ff f g b e the set of all other sides of R Each f

1 p k

is a side b oth of P and P let m b e the length of f and b e the

k k

k k

corresp onding dihedral angles in P and P Obviously

k k

Edges of P

the edges e S the lengths are the angles are

k 1 k k

for e S the lengths are the angles are the edges e

k 3 k

k k

the edges e S the lengths are the angles are

k 4 k

k

the edges f T the lengths are m the angles are

k k

k

Edges of P

the edges e S the lengths are the angles are

k 2 k k

the edges e for e S the lengths are the angles are

k 3 k

k k

the edges e S the lengths are the angles are

k 4 k

k

the edges f T the lengths are m the angles are

k k

k

. . . .

. .

.

. .

.

. .

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

. . .

.

. .

.

. .

. . .

.

.

.

. .

.

.

.

.

.

. .

.

. .

.

.

.

.

.

. .

.

.

.

.

. .

.

.

.

.

.

. .

. .

. .

. .

. .

.

.

. .

.

.

.

. .

.

. .

.

.

.

.

.

. .

.

.

.

. . . . .

. .

. .

. .

. . .

. . . .

. . . .

.

. .

.

. . . .

. . . .

. . .

. . .

.

. .

.

. . . .

. . .

. . .

.

.

. . .

. .

. . .

. . .

. . .

.

. . .

. . .

. .

e

......

.

. .

.

. . .

. .

. . . .

. . .

. .

. . . . .

. . . 11

.

. . .

. .

. .

. .

. . . .

. . . .

. .

. .

.

. . .

. .

. .

. . .

. . .

. .

. . .

. .

. . .

. . .

. .

. . .

. . .

.

. . .

. . . . .

. .

.

. . .

. . . . .

. .

. .

. .

. . . .

.

. . .

. . . .

. . . .

. . .

. .

. . . .

. .

. .

. .

.

. .

......

. .

. .

.

. . . .

. . . .

.

. . .

. . .

.

. . . . .

.

. . .

. . . .

. . . . .

. .

. . . .

. .

. . .

. . . .

.

. .

. . . .

.

. . .

.

. . . .

......

.

. .

. . .

. . . .

. . .

. .

.

. .

. . . . .

. .

. .

.

. .

. . . .

. .

. .

.

. .

. . . .

. .

. .

.

. .

.

.

. . .

. .

.

. .

.

. . . .

. .

.

. .

.

. . . .

. . . . .

. .

.

......

. . .

. .

.

. . . .

. . .

. .

. .

.

. . .

. . . .

. .

. .

.

.

. .

. . . .

. . . .

.

. . .

. . .

. . . .

.

.

. .

. . . . .

. . .

.

. .

. . .

. . .

.

.

. .

. . . 00

. . .

.

.

. .

. .

. . . . .

. . .

. .

. .

. . .

. . .

. .

. .

. .

. . .

. . .

. . . .

. .

. .

. .

. . .

. . . .

. .

. .

. . . . e e

. . .

. . . .

. . . .

.

.

. . . . .

. . .

. .

.

.

.

. . . 12

. . .

. .

. . .

.

.

.

. .

. . .

.

. . . 8

.

.

. . .

. . .

. . .

.

.

. .

. .

. . . .

. .

.

.

. .

. .

. . . . .

. . .

.

. .

.

. . . . .

. . . .

. .

.

. . .

. . .

. . .

.

. .

.

.

. .

. . .

. . .

. .

. .

.

. . .

.

. . . .

. .

. .

.

. .

.

. . . .

. .

. . .

. .

. .

. . . .

. . .

. . .

.

. . .

. . . . .

. .

.

. .

.

. . . . .

. .

. .

.

.

.

. . . . .

. . .

. .

.

.

. . .

. . .

. .

. .

.

.

.

. .

. .

. . .

. .

.

. .

. . .

. . . . .

. .

.

. . .

. .

. . . . .

. . . .

.

.

. .

......

. . . . .

. . .

. .

. . .

. .

. . .

. . . .

......

.

. .

. . .

. . . . .

. . . . .

.

. .

. .

. . .

. .

. .

. . . . .

. .

. .

. .

.

. . . . .

. .

. . .

. .

. .

. . .

. . .

. e

.

. . .

. . . .

. .

. .

. . .

.

. . . .

.

. . . . .

. .

. . .

. . .

.

. 10

......

. .

. . .

.

. . . .

. . . . .

. . . .

. . . .

. .

.

.

. .

. . .

......

. . .

.

. . . e

. . .

. . . .

. .

. . .

. .

.

. .

. . .

. . . .

. . .

.

. . . . . 8

. . .

. . . . .

. . .

.

. . .

. .

.

. .

......

. . .

.

. .

......

. . . . .

. .

. . .

. .

. . .

. .

......

. . .

. . .

. . . . .

. . . .

. . .

. . . .

. .

. .

. .

. . . . .

. .

. . .

. .

. . . . .

. .

. . .

. .

. . . .

. . . . .

. .

. .

.

......

. .

. .

. . .

. . . .

.

......

. .

. . .

. .

. . .

.

......

. . . .

.

. .

. . .

. . . .

. . . . .

. . .

. . . . .

.

. .

. .

. . .

. . .

. . . . .

.

. . .

. .

. . .

. . . .

. . . .

. . . .

. .

. . .

. .

......

. . . . .

.

. . .

. . . . .

. .

. . . . .

. . .

......

. .

. . .

. . . . .

. . . . .

. . . . .

. .

. . . . .

. . . . .

. . .

. .

. . .

. .

. .

. . .

. . .

. .

. .

.

. . . .

. . . .

.

. . .

. . .

......

. . .

. . . .

.

. . .

. . . . .

. . . .

.

.

...... f

.

. . . .

. . . .

. . .

. . . .

.

. . . .

. . . . .

. . . .

. .

. . .

. . .

. 2

. .

. . . .

. . .

. . . . .

. . .

.

.

. .

. . . . .

. . . . .

. . .

. .

.

. . .

. .

. .

......

......

.

. . . .

. . . . .

. . . .

. . .

.

. .

. . . .

. . .

. . . .

. . .

. . .

.

. . . . .

. .

......

.

. . .

.

......

.

. . . .

. . .

. . . . .

. . . .

. . . .

.

. . . .

. . .

. . . . .

. . . .

......

. . .

. .

. .

. . . .

. . . .

. . .

......

. . . .

. . .

. . .

. . . .

. . . . .

. . . . .

. . . .

. . .

. . .

. . . .

. . . . .

.

......

. .

. . . . .

. .

......

......

. .

. . . .

......

.

. .

......

.

. .

. . . .

......

. .

......

.

. . . .

......

. .

. . . .

. . . .

.

. . . .

......

. . . .

. .

. . . . .

. .

. .

. . .

. . . .

. . . . .

. .

.

......

. .

. . .

. . . . .

. . .

. . . .

.

......

. . .

. . .

. . . . .

. . . .

. . .

......

. . .

. . .

. .

. . .

. . . .

. .

......

. . .

. . .

. .

. .

. . . . .

. .

......

. .

. . .

. .

. . . .

. . . .

. . .

......

. . .

. .

. .

......

. . .

. . . . e

. . . . .

. . .

. . . . .

. . . . .

. . . .

. . . .

. . . . .

. .

......

. .

. . . .

. . . . 9

. . . . .

. .

. . . .

. . . .

. . . . . e

. . . .

. . .

. . .

. . .

. .

.

......

. . .

.

. . . . .

. .

.

...... 7

. .

.

. . . .

. . .

.

......

.

. .

. .

.

. . .

......

. .

.

. .

. .

.

.

......

. . .

. . .

. . .

.

......

. . .

. . . . .

......

. .

. . . .

. .

. . .

. . . .

. . . .

. . . . .

. .

. . .

. . . .

. . . .

. . .

. . . .

. . .

. .

......

. .

.

. . . .

. .

. .

......

. .

.

. . .

.

. . . .

. . . .

. .

. .

. .

. . .

.

. . . .

. . . .

. . . .

. .

.

. . .

. . . .

. . . .

. .

.

. . .

...... 0

. .

. .

. . . .

.

. . . .

. . . .

. . . .

. . . .

.

. . . .

. . . . .

. . . .

. .

. . . . .

. .

......

. . .

. .

. . . . .

. .

. . . . .

. . .

. .

. . . .

.

...... e

. . . .

. .

. .

. . .

. . .

. . . .

. . . .

. .

. . . . .

. . .

. . . .

. .

. .

.

. . . .

.

. . . .

. .

. .

8

. .

. .

.

......

. . . .

. .

. .

.

...... f

. .

. .

.

.

. .

. .

. . . .

......

. .

.

.

.

. . . . .

. .

...... 3

. .

.

.

. . . .

. . .

......

.

. .

.

. . . .

. . .

......

.

. . .

.

. .

. . . . .

...... e

.

. .

.

. .

. . .

. . .

. . . . .

. .

.

. .

. .

. .

. . . . . 5

. .

. . . .

. . .

.

. . . . .

. . . .

. .

. . .

. .

......

. . . . .

. .

.

. . . .

...... f

. . . . .

. .

.

. .

.

......

. . . . .

. .

.

. .

.

...... 1

. . .

. .

.

.

. .

.

......

.

. . .

.

. . .

......

.

.

. .

.

. .

......

......

. . .

. . .

. . .

......

.

......

......

. . .

......

.

......

. . .

. . . . .

. . . . .

. . . .

. . . .

. . .

. . . .

. .

. . . .

. . .

......

. .

. . . .

. . .

. . .

. . . . .

. . .

. . . .

. .

. . . .

. .

.

......

. . .

. . . .

. .

......

. . . .

. . . .

. . .

. . . . .

. .

.

. . .

. . .

......

. .

. . .

. . .

. . .

. . . . .

. .

. . . . .

......

......

...... e

. .

. . . .

. .

.

. . . . .

. . .

......

.

. . .

. .

.

. . .

. . . . .

...... 4

.

. . .

. .

. . . . .

. .

......

. . .

. .

. .

......

......

. . . .

. .

. . . . .

. .

...... e

......

. . . .

.

. . . . .

......

.

......

.

. . . . .

. . . . . 3

.

. . . .

. . .

. .

......

.

. .

. . .

. . . . .

. . .

. .

......

.

. .

. . .

......

......

......

. . .

. . . . .

. . .

.

. .

......

......

. . .

. . .

. .

......

.

. . .

. .

. . . . .

. . . .

......

......

. .

......

. . . .

.

. .

......

. .

. . . . .

......

. . .

. .

. . . . .

.

. . .

......

. . .

.

......

. . . . .

. . . .

.

. . .

. .

. .

. . . .

. . .

......

. . .

. .

. . .

. . . .

. .

......

. . . .

. .

. .

.

. . . . .

...... e .

. . . . .

.

......

. . . .

. .

. . . .

. .

. . .

. .

. . . .

...... 6 .

. . .

. . .

.

. . .

. . .

. . . .

......

......

.

.

. .

. . .

......

. .

. . . . .

. .

......

.

. . . . .

. .

. . .

. .

......

. .

.

. . . . .

. .

. . .

......

. . .

. . .

. . .

. .

. .

. .

......

. .

. . .

. . .

. . . . .

.

......

. .

.

. . .

. . . . .

. .

.

.

......

. .

. . .

. . .

. . . .

.

. . .

. .

. . . .

. . . .

. .

.

......

. .

.

. . . . .

. . . .

.

. .

. . .

.

. . . .

. .

. . .

.

. .

. . . .

. . . .

. .

......

. . .

.

. . .

......

. .

.

. . . .

. . . .

. . .

. .

. .

.

. . . . .

. . .

......

. . . .

. .

. . .

. . . .

. . . .

. . .

. .

. . . .

. . .

. .

. .

......

. .

. . . . .

......

.

. . .

......

. . .

. . .

.

. . . .

. . .

. .

.

. . . . .

. . . .

.

. . . . .

. . . . .

. . . . .

.

......

. . .

.

. .

......

. .

.

. . .

......

. . .

. . .

.

. . . .

. . .

. .

. . .

......

.

. . .

......

.

.

. . .

. . . .

......

.

.

. . . .

. . .

. . . .

......

. . .

. .

. . .

. .

. . .

. . .

. . . . .

. .

......

. .

. . .

. . . . .

. . .

. .

. . .

. . . . .

. . .

. . . . .

......

. .

. . .

. . .

. .

. . . . .

. . .

. . .

. .

......

. . .

. . . . .

. .

. . .

. . .

. . .

. . . .

. . .

. . .

e

. . . . e

......

. . .

. . . . .

. .

. . .

. . .

. . .

. .

. .

1 2

. . .

. . .

. .

. . .

. . .

. .

. . .

. . . . .

. . .

. .

. . .

. . .

. .

. .

......

. .

. . .

. . .

. .

. . .

. .

. . .

. . .

. .

. . .

. . . . .

. . .

. . .

. .

. .

. . .

. . .

. . .

. .

. .

. . .

. . .

......

P ) (

. .

.

.

. .

.

.

.

. .

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

e

.

.

.

.

. .

.

. .

.

11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

. .

.

.

.

. . .

.

.

. . .

.

.

. .

.

.

. .

.

.

. .

.

.

.

. .

.

.

.

. .

. . .

.

.

. .

.

.

. .

.

.

. .

.

.

. .

.

.

.

.

.

.

.

.

. .

.

.

. . .

.

. . .

.

.

. .

.

.

. .

.

.

. .

.

.

. .

.

.

. .

.

. .

00

.

.

. .

.

.

. .

.

.

. .

.

.

. .

.

.

.

. e e

.

.

. .

.

.

. .

. 12

.

. .

.

8

. .

.

.

. .

.

.

. .

.

.

. .

.

.

. . .

.

. . .

.

.

. .

.

.

. .

.

.

.

.

.

.

.

.

. .

.

.

. .

.

.

. . .

.

. . .

.

. . .

.

.

. .

.

.

.

e

. . . . .

.

.

. .

. . .

.

.

.

.

.

. . .

. .

. 10

.

.

. .

. . .

. .

.

. .

. .

.

. . .

.

.

. .

. .

. .

. .

.

. . .

. .

.

. .

.

.

.

.

. .

.

.

.

. .

. .

.

. . .

.

.

.

. .

. .

. .

.

. . . .

.

. .

.

. . .

.

. . .

. . . .

. .

.

.

.

. . .

.

.

. . .

.

. .

. . .

. . .

.

. .

. .

.

.

.

. .

. . .

.

. .

.

. .

. .

.

.

.

.

. . .

.

.

. .

. .

.

.

.

.

. . .

.

.

. .

. .

.

.

.

.

. .

.

.

.

. .

. .

.

.

. .

. .

.

.

.

. .

. .

.

. .

. . .

.

.

.

.

. .

. .

.

.

.

. . .

. . .

.

.

.

. .

.

.

. .

.

. .

. .

. .

. . .

.

. . .

.

. .

.

.

. .

.

. . . .

.

.

.

. .

. .

. .

. .

. .

.

.

. . f f

.

.

.

.

. .

.

.

.

.

. .

.

. .

. 2 2

. .

.

.

.

.

. .

.

.

.

. .

.

. .

.

.

. .

. .

.

.

. . .

. .

.

.

.

. .

. .

.

. .

. .

.

. .

. .

. .

.

.

0 00

......

. .

.

.

. . .

. .

. .

.

.

. . .

. . .

.

.

.

.

. .

. .

. . .

. .

.

.

. .

. . .

.

. . .

.

.

. .

. . .

.

(P ) (P )

. . . .

.

. .

. . .

. . . . .

.

. .

. . .

.

. . . .

.

. .

. . .

. .

. .

.

. . .

. .

. . .

.

.

. . .

.

.

. .

.

. . .

.

.

.

. .

.

. . .

. .

.

. .

. .

.

. . . .

.

.

. .

. .

.

. .

. .

. .

. .

. .

.

. .

. .

. .

. .

. .

.

. .

. .

.

. . . .

.

.

. .

.

. .

. . . .

.

.

. .

.

.

. . . . .

. . .

.

. .

. . .

. . .

.

.

. .

. .

.

. . .

.

.

.

. . . . e e

. . .

.

.

.

. .

. . .

.

.

.

. . 9 7

. . .

. .

.

. . . .

.

.

.

.

. . . .

.

.

.

.

. .

. .

.

.

. . .

. .

. .

. .

. .

.

. .

. .

. .

. .

.

. . .

. .

. .

.

. . .

. . . .

. . .

.

. .

. .

. . .

.

. .

. .

. . .

.

.

.

. .

. .

. .

.

. .

. .

.

.

.

. 0

. . .

.

.

.

. .

. .

.

.

.

. .

. .

.

. . .

. .

. .

.

.

. .

. .

. .

.

.

. .

. .

. . . e

.

.

.

. .

.

. . .

.

. . .

.

. . .

. . .

. .

. .

. .

. 8

.

. . .

. .

.

.

. . f f

. . .

.

.

.

.

. . . .

.

. .

.

. . . . 3 3

. .

.

.

. .

. .

.

. .

.

. .

. .

.

. .

.

. .

. . e

.

. .

. .

. .

.

. .

. .

. . 5

.

. . .

.

. . .

.

. .

.

. . .

. .

. .

.

. . . f f

. . . .

.

.

. .

. . . .

.

.

. . . 1 1

. . .

. .

. . . . .

.

. .

. . . .

.

.

.

......

.

.

. .

. . .

. . .

. .

. .

. . .

. . . .

.

. . . .

. .

. .

. .

.

. . .

.

. . .

.

. . .

. .

. . .

.

. .

.

. .

.

. . .

.

. .

.

. . .

.

. .

.

. . .

. . .

. . .

. .

. . .

. .

. .

. .

.

. .

.

. e

. . . . .

.

.

. .

. .

. . .

.

.

. .

. .

. . . . 6

.

.

. . . .

. . . e

. .

. . .

. .

. . .

.

.

. . .

. .

. . . e

. 3

. .

. .

.

.

. . . .

. . .

.

.

. . . 4

. .

.

.

.

. . .

. .

.

.

.

. .

. . .

. .

.

. .

. .

. . . .

. .

.

.

. .

.

. . . . .

. .

. .

.

. . . . .

.

.

. . .

. .

. .

.

.

. . .

. . .

.

.

. .

. . .

. .

.

.

.

. . .

.

. . . .

. .

. . .

. .

. .

.

.

. .

.

. .

. . . .

.

. .

.

. .

. . .

.

. .

. .

. . . . .

. . .

. .

. .

.

. .

. .

.

.

.

.

. . .

. .

.

.

.

.

. . . . .

. .

.

.

......

. .

.

......

. . .

. .

.

. . .

. .

.

. .

.

. . .

.

. .

.

. .

. . . . .

. .

.

. .

.

. . . .

. .

.

. . .

......

. .

.

. .

.

.

. .

. .

.

.

. . .

. .

.

. .

.

. .

.

. .

.

.

. .

. .

.

......

.

. .

. .

.

.

. .

.

. .

.

. .

.

. . .

. .

.

.

. .

. .

.

.

. .

.

. .

. . . .

. . .

. .

.

.

. . . .

.

.

. .

.

. .

.

. .

.

. . .

. .

.

.

. . . .

.

. . . .

. .

.

. .

. . .

.

. .

.

. . .

. . .

.

. . . .

.

.

. .

. . .

.

. .

.

. .

. . . .

.

. .

. .

.

.

. .

. . .

.

. . .

. .

.

. .

.

.

. .

. .

.

.

. .

. . .

. . . .

. .

.

. .

.

. . .

. .

.

.

. . . . .

.

. .

. . .

.

. .

.

. . .

. .

.

...... e e e

.

. . . .

.

.

. .

.

. .

. 1 2 2

. .

.

. .

.

. .

.

.

. . . .

.

.

. .

.

. .

. . . .

. .

.

. .

.

.

. .

. .

.

.

. .

. . .

.

. .

.

. .

.

. .

.

. . .

. .

.

. . . . .

Figure

The symb ols of each of the p olyhedra P P and P consists of four groups

of summands for P and P these groups corresp ond to the four groups

of edges as listed ab ove for P they corresp ond to the sets S S S S

1 2 3 4

The rst of summands in SymbP is the same as the rst group

of summands in SymbP The rst group of summands in SymbP is

the same as the second group of summands in SymbP The sum of the

second groups of summands in SymbP and Symb P is the third group

of summands in SymbP b ecause The sum of the third groups

k

k k

of summands in SymbP and SymbP is the fourth group of summands

in SymbP b ecause At last the sum of the fourth groups of

k

k k

summands in Symb P and Symb P is zero since Thus

k k

SymbP SymbP SymbP as stated by Lemma

An example is shown on Figure A p olyhedron P a fourgonal prism

with nonparallel bases shown at the left of the rst row is cut into two

p olyhedra by a plane the cut is shown in the rst row the p olyhedra P and

P are shown in the second row The edges of P are e e the sets S

1 12 i

are S fe e e e g S fe e e e e e g S fe g S fe g

1 1 3 4 5 2 6 7 9 10 11 12 3 8 4 2

Bach to Theorem If two p olyhedra can b e cut into the same collection

of p olyhedral parts then their symb ols are b oth equal to the sum of the

symb ols of the part and hence the symb ols of the given two p olyhedra are

equal to each other But the symb ol of a cub e is equal to zero since all the

angles are see Example ab ove The symb ol of a regular tetrahedron

is equal to where is the length of the edge and is the dihedral

angle All we need to check is that is not a rational multiple of

. .

..

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

. .

.

. .

. . .

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.

. .

. .

.

. .

.

.

.

.

. .

.

.

.

. . .

.

.

. .

.

.

.

. .

.

.

. .

.

.

.

. . .

.

. .

.

.

. .

.

.

.

. .

. .

. . .

. .

.

.

. . .

.

. .

.

.

.

.

.

. .

.

.

.

. .

.

.

. . . .

.

. .

. .

.

.

. . .

. .

.

. .

.

.

. . .

.

.

.

. .

.

.

. .

.

. .

.

. . .

. .

.

.

. .

. .

.

.

.

. .

.

.

.

. . .

.

. .

.

.

. .

. .

.

. . .

.

.

. .

.

. .

.

.

. . .

.

. . .

.

.

.

.

.

. .

.

.

. .

.

.

.

. . .

.

.

. . .

.

.

. .

.

.

. .

.

.

. .

. .

.

.

.

. .

.

. .

. . .

.

.

.

.

. . .

.

. .

.

. . . . .

.

.

. . .

.

. .

. .

. .

. . .

. .

. .

.

. .

.

.

. . . .

.

.

. .

.

. .

. .

. .

.

. . .

. .

.

. .

. . .

.

. . .

. .

.

.

.

.

. .

. .

. .

.

. . .

. . .

.

.

. .

.

. .

.

.

.

. . .

.

.

. .

.

. .

. .

. .

. .

. .

.

. .

.

. . .

.

. .

. .

.

.

. . .

. .

. .

. .

. .

.

. . .

.

. .

. .

.

. .

.

.

. . . .

.

. .

. .

. .

.

. .

. .

.

. .

.

. . .

. .

. .

.

.

.

.

. . .

. .

.

.

. . .

.

. .

.

.

. . . .

.

.

. .

.

.

. . . .

. .

.

. .

. . .

. .

. .

.

.

......

.

.

. .

.

. .

. .

.

. .

.

.

.

.

.

.

.

.

.

. .

.

.

. .

. .

. .

.

. .

. .

.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

. .

.

.

.

.

.

. .

. .

.

.

.

. .

. .

.

.

.

. .

. .

.

.

. .

.

.

.

.

.

. .

.

.

. .

.

. .

. .

.

. .

.

.

. .

.

.

. .

. .

.

.

.

. .

.

.

. .

.

.

.

. .

.

. .

.

.

.

. .

.

. . .

.

.

.

. .

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

. . . .

.

.

. . .

.

.

.

. .

.

.

.

.

.

.

.

.

.

. .

.

.

. . . .

.

. .

. .

.

.

.

. .

.

.

.

. .

.

.

.

. .

. .

.

. . . . .

Figure

The dihedral angle of a regular tetrahedron is the largest angle of an

p p

isosceles triangle whose sides are see Figure The cosine

theorem shows that

p p

2 2

3 3

2

2 2

cos

p p

3 3

2 2

Lemma If cos then is irrational

Pro of of Lemma Otherwise cos n for some n However it is known

from trigonometry that

cos n P cos

n

n 1

where P is a p olynomial of degree n with the leading co ecient

n

Pro of by induction Statement for all n

cos sin cos n P cos sin n Q

n n

where deg P n deg Q n and the leading co ecients of b oth P

n n n

n1

and Q are equal to For n this is true P t t Q t

n 1 1

assume that the statement is true for some n Then

cos n cos n sin sin n sin

2

P cos cos Q cos sin

n n

2

P cos cos Q cos cos

n n

sinn sin n cos cos n sin

Q cos sin cos P cos sin

n n

Q cos cos P cos sin

n n

Hence

2

t P tt Q tt P

n n n+1

Q t Q tt P t

n+1 n n

and the statement for the degrees and leading terms follows

This shows that

n1

an integer

cos n P

n

n n1

which cannot b e an integer in particular

This proves Lemma and completes the pro of of Dehns theorem

Some further results

In the language of algebra which may technically not familiar to the reader

but the formulas b elow seem to me selfexplanatory the construction of the

previous section assigns to every convex actually not necessarily convex

p olyhedron a certain invariant Dehns symb ol

SymbP R R Q

Q

and Dehns theorem states that if two p olyhedra P and P are e quipartite

1 2

that is can b e cut by planes into identical collections of parts then

SymbP SymbP

1 2

This is precisely the result of the previous section

......

.

. .

. .

. . . .

.

. .

.

.

. . . .

. .

.

.

. . .

. . . .

.

. . .

.

. . . .

.

. .

.

.

. . .

. . . .

.

. . .

. . .

. .

.

. .

. .

. .

. .

. . .

.

.

. . . .

. .

.

. . . .

. .

. . .

. .

.

.

. .

.

. . . .

.

.

. . . . .

. .

.

. . .

. . .

. .

. . .

.

.

. .

. .

. . .

.

. . .

. .

. . .

. . .

.

. .

.

. . . .

.

.

. .

. . .

. .

. .

. .

. . .

. . .

. . .

. . .

. .

. . .

.

.

. . . .

.

. .

.

. .

.

. .

.

. . . . .

.

. .

.

. .

.

. .

.

. . . .

.

.

. . .

. .

. . .

. . .

. . .

. . .

. .

. .

. .

. . .

. .

. .

. . . .

.

. .

.

. . .

. . .

. .

. . .

.

. . .

. .

. .

.

.

. . .

. .

. . .

. . .

.

. .

. . . . .

.

.

. . . . .

. .

.

.

. .

. . .

. .

. . . .

.

. .

. . . .

. .

. . .

. .

. .

.

.

. .

.

. .

. . .

. . .

.

h ......

.

.

. .

.

. . . .

.

. . .

.

. . . .

. . .

.

.

. .

. . . .

.

.

. .

.

. .

. . . .

. .

.

. h ......

. .

. .

. . . .

. . .

. . .

. . . .

. . . .

.

. . . .

. . .

. . . .

. . .

. . . .

. .

. .

......

. . . .

. . . .

.

. .

. . .

......

. . .

. .

. . . .

.

. .

. . . . .

. .

. .

. .

. .

. . . .

. . . .

. . . .

. .

. .

.

. . .

. . . .

. . . .

.

. . . .

. .

. . .

......

. . . .

. .

. . . .

. . . .

......

. .

.

. .

. . . . .

. . . .

. . . . .

. .

. . .

. . . .

. . .

. .

. . . .

. . . .

. . . .

. . . .

. . . .

. . .

. .

. . .

. .

. . . .

. . .

. . . .

. .

. . .

.

. . . .

......

. .

. . . .

. . . .

. . . .

. .

. . . . .

.

. .

......

. . .

. . . .

. . . . .

. . .

. . . .

. .

. .

. . . .

. . . .

. . . .

. .

. . . . .

. .

. . .

. .

. .

. . .

. .

. . . .

. . .

. . .

. .

. . . .

. .

. .

......

. . . .

. .

. .

. .

. .

. .

. .

. .

. . . .

. .

. .

. .

. .

. . . .

. .

. .

. .

. .

. . . .

. . . .

. .

. .

. .

. .

. .

. . . .

. .

. .

......

. .

. .

. .

. .

. .

. .

. .

. .

. .

. . . .

. . . .

. .

. .

. .

. .

. . . .

. .

. .

. .

. .

. . . .

. .

. .

. . . .

. .

. .

. .

. . . .

. . . .

......

. .

. .

. .

. .

. .

. .

. .

. .

. .

. . . .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. . . .

Figure

Certainly this may b e applied not only to cub es and tetrahedra The

initial Hilb erts problem by the way dealt with a dierent example Hilb ert

conjectured that two tetrahedra with equal bases and equal heights like

those on Figure are not equipartite

......

. .

. .

. .

. .

. .

. . . .

. . . .

.

.

. . . .

.

.

. .

......

.

.

. .

. . .

.

. .

. . .

. . . .

.

.

. .

.

. . .

. .

. . .

. . . .

.

. .

.

.

. . . .

. . .

.

. . . .

. .

. .

. .

. .

. . . .

. .

......

. .

. . . .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. . . .

. .

. . . .

. . . .

. .

. . . .

. .

. .

. .

. .

. . . .

. .

. .

. .

. . . .

. .

......

. .

. . . .

. . . .

. . . .

......

. . .

. .

. . .

.

......

. .

......

. . . .

. .

. .

. . . .

. .

.

. . . . .

.

. .

. . . .

. .

. . . .

. .

. .

. . . .

. .

......

.

. . . . .

.

. . . .

. .

. .

......

. . . .

. . . .

......

......

. .

. .

......

. .

......

......

. . . .

......

. .

. .

. .

......

. .

. .

......

. . . .

. .

. . . .

......

......

. .

. .

. . . . .

. . .

.

......

......

. . . .

......

......

. .

. .

......

......

. .

......

......

. .

......

. . . .

. . . .

. . . .

. . . .

......

. .

. .

......

......

. .

. .

......

. . . .

......

. . . ..

......

......

. .

......

. . . .

. .

......

......

......

. . .

. . . .

.

. . .

......

. . . .

. . . .

......

......

. . . .

. . . .

. .

......

. . .

. . .

......

. . . . .

. . . .

. .

......

......

. . . .

. .

......

......

.

. .

. . . . .

......

......

......

. .

......

. . . .

......

......

. . . .

. .

......

......

......

......

. .

......

. . . .

......

. . . .

......

. . . .

. .

. . . .

......

......

. . . .

. .

......

......

. .

. .

......

......

......

......

. . . .

. .

......

. . . .

......

. .

......

. .

. . . .

......

. . . .

. .

......

. .

. . . .

. .

......

. .

......

. . . .

. .

. . . .

......

......

. . . .

. . . .

......

.

.

. . . .

.

......

. . . .

. .

......

. . . .

......

. .

. . . .

......

. .

. .

......

......

. .

. . . .

. . . .

. . . .

......

. . . .

......

. .

. .

. .

......

. . . .

. .

......

. .

......

. . . .

......

. . . .

......

. .

. .

......

. .

......

. .

. .

. .

. .

......

......

......

. .

......

. .

. .

......

. .

......

......

. .

. .

......

. .

. .

......

......

......

. .

. .

......

......

. . . .

. .

......

. .

......

. . . .

. .

. . . .

. .

......

......

......

. .

......

. . . .

. .

......

. . . .

......

. .

. .

. .

......

. . . .

. .

. . . .

......

......

. . . .

. .

......

. .

. . . .

. . . .

......

. . . .

......

. . . .

. .

. . . .

......

. .

......

. .

. . . .

. .

. .

......

. .

. .

......

......

. .

. .

. . . .

. .

......

. . . .

......

. .

. .

......

. .

......

. .

. .

. . . .

. .

. . . .

. .

. . . .

. .

. . . .

. .

......

. .

. .

. .

......

. . . .

. .

. .

. .

. .

. .

. .

. .

. . . .

. . . .

. .

. .

. .

. .

. .

. .

. .

. . . .

......

. . . .

. .

. .

. .

. .

. .

. .

. .

. . . .

. . . .

. .

. .

. .

. .

. .

. .

. .

. . . .

......

. . . .

. .

. .

. .

. .

. .

. .

. .

. . . .

. . . .

. .

. .

. .

. .

. .

. .

. .

. . . .

......

. . . .

. .

. .

. .

. .

. .

. .

. .

. . . .

. . . .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. . . . .

Figure

The origin of this question b elongs to the foundations of geometry The

whole theory of of solids is based on the lemma stating that the

volumes of tetrahedra in Figure are the same The similar planar lemma

involving the of triangles has a direct geometric pro of based on cut

ting and pasting But the threedimensional fact requires a limit stair con

struction involving pictures like Figure you can nd a gure like this in

textb o oks in the spatial geometry The question is is this really necessary

and the answer is yes Dehns theorem easily implies that the tetrahedra

like those in Figure are not in general equipartite

More than years after Dehns work Sydler proved that p olyhedra

with equal volumes and equal Dehns invariant are equipartite There are

similar results in spherical and hyp erb olic

Dehns symb ol may b e generalized to p olyhedra of any dimension for an

ndimensional p olyhedron P

X

dihedral

volumes Symb P R R Q

Q

angle at s

n dimensional

faces s of P

the angle is formed by the two n dimensional faces of P attached to s

In dimension like in dimension two p olyhedra are equipartite if and only

if their volumes and their symb ols are the same But in dimension it is not

true any longer there arises a new invariant a secondary Dehns symb ol

involving a summation over the edges for an ndimensional p olyhedron

over n dimensional faces of P There is a conjecture I do not know its

current status that an equipartite typ e of an ndimensional p olyhedron

n

invariants the volume Dehns is characterized by a sequence of

symb ol secondary Dehns symb ol and so on taking values in more and

more complicated tensor pro ducts k th Dehn symb ol involves a summation

over n k dimensional faces In particular for one and twodimensional

p olyhedra segments and p olygons only the volume the length and the

area counts in dimensions and we also have Dehns symb ol and so on

If you want to know more ab out this you can read in addition to the

p opular b o ok of Boltianskii the article of Cartier in Pro ceedings of the Bour

baki Seminar But I am not sure that it has b een ever translated from

French into English so if you read this article you have a chance to study a

b eautiful language in addition to a b eautiful geometry

References

V G Boltianskii Hilb erts Third Problem Scripta Series in Math

John Wiley and Sons Wash NY

osition des p olyedres le p oint sur le troisieme P Cartier Decomp

probleme de Hilb ert Ast erisque

M Dehn Ub er den Rauminhalt Math Ann

necessaires et susantes p our lequivalence JP Sydler Conditions

des p olyedres de lespace euclidien a trois dimension Comment

Math Helv

developments arising from Hilb erts problems F Mathematical

Browder ed Pro c Symp Pure Math XXVI II