Hilbert's Problem and Dehn's Theorem

Total Page:16

File Type:pdf, Size:1020Kb

Hilbert's Problem and Dehn's Theorem Is it p ossible to cut a cub e into pieces and to assemble a tetrahedron Hilb erts problem and Dehns theorem Dmitry FUCHS Hilb erts Problem Three Is it p ossible to cut a cub e by nitely many planes and assemble out of the p olyhedral pieces obtained a regular tetrahedron of the same volume This is a slight mo dication of one of the problems presented by David Hilb ert in his famous talk at the Congress of Mathematicians in Paris on August it go es under the numb er Hilb erts problems had a tremen dous impact on Mathematics Most of them were solved during XX century and each has a very sp ecial history Still Problem Three stands exceptional in many resp ects First this was the rst of Hilb erts problems to b e solved The solution b elonged to a years old German geometer Hilb erts student Max Dehn His article app eared two years after the Paris Congress but the solution existed earlier mayb e even b efore Hilb ert stated the problem or less the same as the one presented b elow was short Dehns pro of more for p opular lectures and clear and it b ecame one of the favorite sub jects articles and b o oks in geometry like the one you are holding in your hands I can recommend the b o ok by Boltianskii for a more extended exp osition But among working mathematicians it was almost forgotten Certainly the name of Dehn was not forgotten He b ecame one of the few top exp erts in top ology of threedimensional manifolds and his work of has b een never regarded as his main achievement it is not even mentioned in Dehns biography available on the web In American Mathematical So ciety published a twovolume collec tion of articles under the title Mathematical Developments Arising from Hilb ert Problems It was a very solid account of the three quarters of century of history of the problems solutions full and partial generaliza tions similar problems and so on This edition contains a thorough analysis of of Hilb erts problems And only Problem Three is not discussed there The opinion of the editors is obvious no developments no inuence on Mathematics nothing to discuss How strange it seemed just a couple of years later Dehns theorem Dehns theory Dehns invariant b ecame one of the hottest sub jects in geom an exciting domain etry This was stimulated by then newb orn Ktheory develop ed along the b orderline b etween algebra and top ology We will not follow this development but will just revise the theorem and its pro of For a similar problem in the plane the an swer is yes Let P P be two polygonal domains in the plane having the Theorem 1 2 same ar ea Then it is possible to cut P into pieces by straight lines and to 1 assemble Of these pieces P 2 Pro of First it is clear that it is sucient to consider the case when P 2 is a rectangle with the sides and area P in doing this we can shorten the 1 notation of P to just P 1 Second since any p olygonal domain can b e cut into triangles we can reduce the general case to that of a triangle see Figure P ! ! ! P area Figure Third we need to remake by cutting and pasting a triangle into a rect angle with one if the sides having length one This is done in four steps on Figure ! ! Step Step rational length pq .
Recommended publications
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • The Dehn-Sydler Theorem Explained
    The Dehn-Sydler Theorem Explained Rich Schwartz February 16, 2010 1 Introduction The Dehn-Sydler theorem says that two polyhedra in R3 are scissors con- gruent iff they have the same volume and Dehn invariant. Dehn [D] proved in 1901 that equality of the Dehn invariant is necessary for scissors congru- ence. 64 years passed, and then Sydler [S] proved that equality of the Dehn invariant (and volume) is sufficient. In [J], Jessen gives a simplified proof of Sydler’s Theorem. The proof in [J] relies on two results from homolog- ical algebra that are proved in [JKT]. Also, to get the cleanest statement of the result, one needs to combine the result in [J] (about stable scissors congruence) with Zylev’s Theorem, which is proved in [Z]. The purpose of these notes is to explain the proof of Sydler’s theorem that is spread out in [J], [JKT], and [Z]. The paper [J] is beautiful and efficient, and I can hardly improve on it. I follow [J] very closely, except that I simplify wherever I can. The only place where I really depart from [J] is my sketch of the very difficult geometric Lemma 10.1, which is known as Sydler’s Fundamental Lemma. To supplement these notes, I made an interactive java applet that renders Sydler’s Fundamental Lemma transparent. The applet departs even further from Jessen’s treatment. [JKT] leaves a lot to be desired. The notation in [JKT] does not match the notation in [J] and the theorems proved in [JKT] are much more general than what is needed for [J].
    [Show full text]
  • Hinged Dissections Exist Whenever Dissections Do
    Hinged Dissections Exist Timothy G. Abbott∗† Zachary Abel‡§ David Charlton¶ Erik D. Demaine∗k Martin L. Demaine∗ Scott D. Kominers‡ Abstract We prove that any finite collection of polygons of equal area has a common hinged dissection. That is, for any such collection of polygons there exists a chain of polygons hinged at vertices that can be folded in the plane continuously without self-intersection to form any polygon in the collection. This result settles the open problem about the existence of hinged dissections between pairs of polygons that goes back implicitly to 1864 and has been studied extensivelyin the past ten years. Our result generalizes and indeed builds upon the result from 1814 that polygons have common dissections (without hinges). We also extend our common dissection result to edge-hinged dissections of solid 3D polyhedra that have a common (unhinged)dissection, as determined by Dehn’s 1900 solution to Hilbert’s Third Problem. Our proofs are constructive, giving explicit algorithms in all cases. For a constant number of planar polygons, both the number of pieces and running time required by our construction are pseudopolynomial. This bound is the best possible, even for unhinged dissections. Hinged dissections have possible applications to reconfigurable robotics, programmable matter, and nanomanufacturing. arXiv:0712.2094v1 [cs.CG] 13 Dec 2007 ∗MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA, {tabbott,edemaine,mdemaine}@mit.edu †Partially supported by an NSF Graduate Research Fellowship and an MIT-Akamai Presidential Fellowship. ‡Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA.
    [Show full text]
  • Lecture Notes C Sarah Rasmussen, 2019
    Part III 3-manifolds Lecture Notes c Sarah Rasmussen, 2019 Contents Lecture 0 (not lectured): Preliminaries2 Lecture 1: Why not ≥ 5?9 Lecture 2: Why 3-manifolds? + Introduction to knots and embeddings 13 Lecture 3: Link diagrams and Alexander polynomial skein relations 17 Lecture 4: Handle decompositions from Morse critical points 20 Lecture 5: Handles as Cells; Morse functions from handle decompositions 24 Lecture 6: Handle-bodies and Heegaard diagrams 28 Lecture 7: Fundamental group presentations from Heegaard diagrams 36 Lecture 8: Alexander polynomials from fundamental groups 39 Lecture 9: Fox calculus 43 Lecture 10: Dehn presentations and Kauffman states 48 Lecture 11: Mapping tori and Mapping Class Groups 54 Lecture 12: Nielsen-Thurston classification for mapping class groups 58 Lecture 13: Dehn filling 61 Lecture 14: Dehn surgery 64 Lecture 15: 3-manifolds from Dehn surgery 68 Lecture 16: Seifert fibered spaces 72 Lecture 17: Hyperbolic manifolds 76 Lecture 18: Embedded surface representatives 80 Lecture 19: Incompressible and essential surfaces 83 Lecture 20: Connected sum 86 Lecture 21: JSJ decomposition and geometrization 89 Lecture 22: Turaev torsion and knot decompositions 92 Lecture 23: Foliations 96 Lecture 24. Taut Foliations 98 Errata: Catalogue of errors/changes/addenda 102 References 106 1 2 Lecture 0 (not lectured): Preliminaries 0. Notation and conventions. Notation. @X { (the manifold given by) the boundary of X, for X a manifold with boundary. th @iX { the i connected component of @X. ν(X) { a tubular (or collared) neighborhood of X in Y , for an embedding X ⊂ Y . ◦ ν(X) { the interior of ν(X). This notation is somewhat redundant, but emphasises openness.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Max Dehn: His Life, Work, and Influence
    Mathematisches Forschungsinstitut Oberwolfach Report No. 59/2016 DOI: 10.4171/OWR/2016/59 Mini-Workshop: Max Dehn: his Life, Work, and Influence Organised by David Peifer, Asheville Volker Remmert, Wuppertal David E. Rowe, Mainz Marjorie Senechal, Northampton 18 December – 23 December 2016 Abstract. This mini-workshop is part of a long-term project that aims to produce a book documenting Max Dehn’s singular life and career. The meet- ing brought together scholars with various kinds of expertise, several of whom gave talks on topics for this book. During the week a number of new ideas were discussed and a plan developed for organizing the work. A proposal for the volume is now in preparation and will be submitted to one or more publishers during the summer of 2017. Mathematics Subject Classification (2010): 01A55, 01A60, 01A70. Introduction by the Organisers This mini-workshop on Max Dehn was a multi-disciplinary event that brought together mathematicians and cultural historians to plan a book documenting Max Dehn’s singular life and career. This long-term project requires the expertise and insights of a broad array of authors. The four organisers planned the mini- workshop during a one-week RIP meeting at MFO the year before. Max Dehn’s name is known to mathematicians today mostly as an adjective (Dehn surgery, Dehn invariants, etc). Beyond that he is also remembered as the first mathematician to solve one of Hilbert’s famous problems (the third) as well as for pioneering work in the new field of combinatorial topology. A number of Dehn’s contributions to foundations of geometry and topology were discussed at the meeting, partly drawing on drafts of chapters contributed by John Stillwell and Stefan M¨uller-Stach, who unfortunately were unable to attend.
    [Show full text]
  • Lectures on the Mapping Class Group of a Surface
    LECTURES ON THE MAPPING CLASS GROUP OF A SURFACE THOMAS KWOK-KEUNG AU, FENG LUO, AND TIAN YANG Abstract. In these lectures, we give the proofs of two basic theorems on surface topology, namely, the work of Dehn and Lickorish on generating the mapping class group of a surface by Dehn-twists; and the work of Dehn and Nielsen on relating self-homeomorphisms of a surface and automorphisms of the fundamental group of the surface. Some of the basic materials on hyper- bolic geometry and large scale geometry are introduced. Contents Introduction 1 1. Mapping Class Group 2 2. Dehn-Lickorish Theorem 13 3. Hyperbolic Plane and Hyperbolic Surfaces 22 3.1. A Crash Introduction to the Hyperbolic Plane 22 3.2. Hyperbolic Geometry on Surfaces 29 4. Quasi-Isometry and Large Scale Geometry 36 5. Dehn-Nielsen Theorem 44 5.1. Injectivity of ª 45 5.2. Surjectivity of ª 46 References 52 2010 Mathematics Subject Classi¯cation. Primary: 57N05; Secondary: 57M60, 57S05. Key words and phrases. Mapping class group, Dehn-Lickorish, Dehn-Nielsen. i ii LECTURES ON MAPPING CLASS GROUPS 1 Introduction The purpose of this paper is to give a quick introduction to the mapping class group of a surface. We will prove two main theorems in the theory, namely, the theorem of Dehn-Lickorish that the mapping class group is generated by Dehn twists and the theorem of Dehn-Nielsen that the mapping class group is equal to the outer-automorphism group of the fundamental group. We will present a proof of Dehn-Nielsen realization theorem following the argument of B.
    [Show full text]
  • Arxiv:1710.11247V1 [Math.MG]
    DEHN INVARIANT OF FLEXIBLE POLYHEDRA ALEXANDER A. GAIFULLIN, LEONID IGNASHCHENKO Abstract. We prove that the Dehn invariant of any flexible polyhedron in n-dimen- sional Euclidean space, where n 3, is constant during the flexion. For n = 3 and 4 this implies that any flexible polyhedron≥ remains scissors congruent to itself during the flexion. This proves the Strong Bellows Conjecture posed by Connelly in 1979. It was believed that this conjecture was disproved by Alexandrov and Connelly in 2009. However, we find an error in their counterexample. Further, we show that the Dehn invariant of a flexible polyhedron in either sphere Sn or Lobachevsky space Λn, where n 3, is constant during the flexion if and only if this polyhedron satisfies the usual Bellows≥ Conjecture, i. e., its volume is constant during every flexion of it. Using previous results due to the first listed author, we deduce that the Dehn invariant is constant during the flexion for every bounded flexible polyhedron in odd-dimensional Lobachevsky space and for every flexible polyhedron with sufficiently small edge lengths in any space of constant curvature of dimension greater than or equal to 3. 1. Introduction Let Xn be one of the three n-dimensional spaces of constant curvature, that is, Eu- clidean space En or sphere Sn or Lobachevsky space Λn. A flexible polyhedron is an (n 1)-dimensional closed polyhedral surface P in Xn that − admits a flexion, i. e., a non-trivial continuous deformation Pt not induced by an isometry n of the whole space X such that every face of Pt remains congruent to itself during the deformation.
    [Show full text]
  • Introduction to Circle Packing: the Theory of Discrete Analytic Functions
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 46, Number 3, July 2009, Pages 511–525 S 0273-0979(09)01245-2 Article electronically published on February 19, 2009 Introduction to circle packing: The theory of discrete analytic functions, by Kenneth Stephenson, Cambridge University Press, Cambridge, 2005, xii+356 pp., ISBN 13: 978-0-521-82356-2, £42 1. The context: A personal reminiscence Two important stories in the recent history of mathematics are those of the ge- ometrization of topology and the discretization of geometry. Having come of age during the unfolding of these stories as both observer and practitioner, this reviewer does not hold the detachment of the historian and, perhaps, can be forgiven the personal accounting that follows, along with its idiosyncratic telling. The first story begins at a time when the mathematical world is entrapped by abstraction. Bour- baki reigns, and generalization is the cry of the day. Coxeter is a curious doddering uncle, at best tolerated, at worst vilified as a practitioner of the unsophisticated mathematics of the nineteenth century. 1.1. The geometrization of topology. It is 1978 and I have just begun my graduate studies in mathematics. There is some excitement in the air over ideas of Bill Thurston that purport to offer a way to resolve the Poincar´e Conjecture by using nineteenth century mathematics—specifically, the noneuclidean geometry of Lobachevski and Bolyai—to classify all 3-manifolds. These ideas finally appear in a set of notes from Princeton a couple of years later, and the notes are both fas- cinating and infuriating—theorems are left unstated and often unproved, chapters are missing never to be seen, the particular dominates—but the notes are bulging with beautiful and exciting ideas, often with but sketches of intricate arguments to support the landscape that Thurston sees as he surveys the topology of 3-manifolds.
    [Show full text]
  • A DEHN TYPE QUANTITY for RIEMANNIAN MANIFOLDS 1. The
    A DEHN TYPE QUANTITY FOR RIEMANNIAN MANIFOLDS OLIVER KNILL R Abstract. We look at the functional γ(M) = M K(x)dV (x) for compact Riemannian 2d- −1 −d R Qd manifolds M, where K(x) = (2d)!(d!) (4π) T k=1 Kt2k;t2k+1 (x)dt involves products of d sectional curvatures Kij(x) averaged over the space T ∼ O(2d) of all orthonormal frames −1 −d P Qd t = (t1; : : : ; t2d). A discrete version γd(M) with Kd(x) = (d!) (4π) σ k=1 Kσ(2k−1),σ(2k) sums over all permutations σ of f1;:::; 2dg. Unlike Euler characteristic which by Gauss-Bonnet- R Chern is M KGBC dV = χ(M), the quantities γ or γd are in general metric dependent. We are interested in δ(M) = γ(M) − χ(M) because if M has curvature sign e, then γ(M)ed and d γd(M) are positive while χ(M)e > 0 is only conjectured. We compute γd in a few concrete 2 examples like 2d-spheres, the 4-manifold CP , the 6 manifold SO(4) or the 8-manifold SU(3). 1. The functional 1.1. When studying manifolds with definite curvature sign, one is naturally led to quantities like d Z 1 X Y d Kπ(2k−1)π(2k)(x) dV (x) M d!(4π) π2S2d k=1 on compact Riemannian 2d-manifolds M involves curvatures of pairwise perpendicular coordi- nate 2-planes in the tangent space TxM. The definition makes use of an orthonormal coordinate system in TxM and depends in general on it, like on how M is parametrized.
    [Show full text]
  • Max Dehn, Kurt Godel, and the Trans-Siberian Escape Route
    Max Dehn, Kurt Gödel, and the Trans-Siberian Escape Route John W. Dawson Jr. This article contains the text of an invited address prepared for a special session on the exodus of math- ematicians from Nazi-occupied territories, held in Vienna in mid-September 2001 as part of a joint meet- ing of the Deutsche Mathematiker-Vereinigung and the Österreichische Mathematische Gesellschaft. Aware- ness of how difficult it was for those caught up in the rise of Nazism to escape from the terrors they experienced was reinforced by the terrorist attacks of September 11, which prevented the author’s at- tendance at the conference. He is grateful to Professor Karl Sigmund of the University of Vienna for having read the paper in his absence and to Professor Michael Drmota for granting permission for its reprinting here. It originally appeared in the April 2002 issue of the Internationale Mathematische Nachrichten. he careers of Max Dehn and Kurt Gödel Hilbert’s famous list [16]; both published important followed very different trajectories. Yet papers on decision problems; and both, by force Dehn and Gödel were linked by one his- of circumstance, emigrated to America via the torical circumstance: They were the only trans-Siberian railway. Tmathematicians of stature to flee the The disparity between the situations of Dehn and scourge of Nazism via the trans-Siberian railway. Gödel prior to their emigration exemplifies the di- The stories of their escapes and the contrasts in versity of backgrounds among the mathematicians their situations before and after their emigration who fled Hitler. The circumstances of their escapes exemplify both the perils and the limited range of highlight the dislocations, difficulties, and dan- opportunities that confronted intellectual refugees gers such emigrés faced.
    [Show full text]
  • SCISSORS CONGRUENCES, II* Johan L. DUPONT Chih
    Journal of Pure and Applied Algebra 25 (1982) 159-195 159 North-Holland Publishing Company SCISSORS CONGRUENCES, II* Johan L. DUPONT Maiematisk Institut, Aarhus Universitet. Aarhus, Denmark Chih-Han SAH Department of Mathematics, SUNY at Stony Brook, NY 11794, USA Communicated by F. Oort Received 26 October 1981 1. Introduction In previous works, DuPont 181, Sah [ 18,191, we have indicated interesting connec- tions between Hilbert’s Third Problem (suitably extended) and other areas of investigations. The basic open problem is: Ql. Do the Dehn invariants (appropriately defined and including volume) form a complete system of invariants for the scissors congruence class of polytopes in Euclidean, spherical and hyperbolic n spaces? This problem is affirmatively settled for n I 4 in Euclidean spaces (through the work of Sydler [22] and Jessen [lo, 111) and for ns2 in the other cases (these are classical). In the present work, we settle some of the questions raised in earlier works. The first of our result is the following isomorphism: Y(F) G ?(1”), n 2 2. In general, Y(X) is the scissors congruence group of polytopes in the space X. Unless stated explicitly, the group of motions of X is understood to be the group of all isometries of X. _@ is the extended hyperbolic n-space; it is obtained by adding to the hyperbolic n-space x”’ all the ideal points lying on 65~~. The geometry of a.F is that of conformal geometry on a sphere of dimension n - 1. The group 4~~) captures the scissors congruence problem in a precise manner.
    [Show full text]