Introduction to Mammalian Cell Culture

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Mammalian Cell Culture Workshop Training Series Biomedical and Obesity Research Core Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules Introduction to Mammalian Cell Culture April 9, 2019 Yongjun Wang Ph.D. Director of Biomedical and Obesity Research Core Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules What Is Cell Culture Cell culture is the process by which cells are grown in controlled conditions outside of their native environment. Timeline: key milestone in cell cultures History of Cell Culture http://dx.doi.org/10.5772/66905 Primary vs Cell line Primary cells Cell lines Lifespan and division capacity Limited Indefinite Isolated in the lab or bought from Source Bought from commercial provider commercial provider Care and maintenance Complex and difficult Easy to maintain or proliferate Chromosomal aberration Minimal Several Retention of functional markers and Yes Not always signaling pathways Functional study, diagnosis, Drug development, vaccine and protein Application Gene therapy, et al. production, et al. Three Types of Cells Epithelial-like cells Fibroblast-like cells Lymphoblast-like cells Cell differentiation 3T3L1 cells C212 cells Cell Culture Vessels • Most adherent cells require attachment to proliferate • Polystyrene are treated to become hydrophilic and negatively charged once medium is added • Coating with basic synthetic polymers • Poly-L-lysine • Coating with matrix proteins • Collagen, laminin, gelatin, fibronectin Class II Biological Safety Cabinet The Class II Biological Safety Cabinet can be found in almost every tissue culture lab. It is designed to: 1. Protect you from being exposed to infectious aersoles that may be generated within the cabinet. 2. Protect your cultures from microbial contaminants that are ubiquitous in room air Cell Culture Incubator • Normal body temperature 37oC • Humidity must be maintained at saturating levels as evaporation can lead to changes in • Osmolarity • Volume of media and additives • Carbon dioxide (5%) • Buffering • Oxygen (20%) • Aerobic metabolism • Atmospheric 21% • Tissue levels between 1-7% Medium Formulation • Inorganic ions • Osmotic balance – cell volume • Trace Elements • Co-factors for biochemical pathways (Zn, Cu) • Amino Acids • Protein synthesis • Glutamine required at high concentrations • Vitamins • Metabolic co-enzymes for cell replication • Energy sources • Glucose • Phenol red (option) • pH indicator 6.8-8.2 (yellow to red) Serum provides the following • Basic nutrients • Hormones and growth factors • Attachment and spreading factors • Vitamins, minerals, lipids • Protease inhibitors • pH buffer Cell Culture initiation-Primary Cell https://www.creative-bioarray.com/support/primary-cell-culture-guide.htm Cell Culture initiation- Cell Lines From storage ATCC From other people Passaging or Sub-culture Adherent Cells 1. Remove medium 2. Wash with PBS 3. Trypsin-EDTA treatment 4. Cell dispersion and resuspension 5. Replenish with fresh medium 6. Count cells 7. Split cells (1:2-1:10 depending on growth rates of each cell lines) Suspension Cells 1. Cell collection 2. Centrifuge 3. Resuspend and split the cells Note: Label the vessels with cell line name, passage number, date, treatment and et al. Cell Harvesting and Storage Storage Cell Based Assay Cell Based Assay • Transfection and infection • Transcription • Protein expression • Reporter gene assay • Drug Treatment • Functional assay (Differentiation, senescence, migration, apoptosis, glycolysis, mitochondria respiration, and et al) Primary application of animal cell culture • Model Systems • Genetic Counseling and diagnosis • Drug Screening and Development • Genetic Engineering • Cell-Based Manufacturing • Gene Therapy Cell Culture Problems • Spotting (Bubbles) • Uneven Growth (Does not mix well) • Static Electricity (low attachment) • Meniscus Rings (low volume) • Uneven evaporation (96 well plates) • Contamination Sources of Contamination Type of contamination Visual recognition Detection methods Eradication Bacteria microscopically PCR, microbiological culture Discard culture methods Yeast microscopically bald PCR, microbiological culture Discard culture, , perhaps use an Anti-mycotic methods Fungi microscopically bald PCR, microbiological culture Discard culture, perhaps use an Anti-mycotic methods Mycoplasma only indirectly, PCR, microbiological culture Discard culture, special antibiotics for morphological changes methods mycoplasma of cells, slower growth Viruses very difficult, electron PCR, serological, cell-based assays Discard culture or set up a new safety protocol microscope only Prions impossible mostly too complicated, risk BSE-low risk reagents of animal/human origin mitigation by reagent tests (FCS, proteins) Chemical contamination impossible mostly too complicated, risk QA tests on reagents (plastic ware, reagents) mitigation by reagent tests Bacterial Contamination • Small black dots • Easy to mistake for cellular debris, especially at low levels • Multiply fast • Acidic pH, media • Cells die fast (overnight) Yeast Contamination • Small round bright dots • Multiply faster than mammalian cells but slower than bacteria • Visible in 2-3 days after contamination • Resistant to antibiotics like penicillin and streptomycin Other fungi contamination • Hyphae-branched, tubular, thread-like filaments. • Mycelium-consisting of a mass of branching, thread-like hyphae. • Multiply faster than mammalian cells but slower than bacteria • Resistant to antibiotics like penicillin and streptomycin Mycoplasma contamination • The incidence of mycoplasma contamination is high, being 15 to 85% • Does not generate the turbidity • Undetected for long periods of time • No cell wall and resistant to common antibiotics • Causes morphological changes and altered growth rates Note: About 11% of NCBI’s Gene Expression Omnibus (GEO) projects between 2012 and 2013 contain at least ≥ 100 reads / million reads mapping to mycoplasma’s small 0.6 Mb genome Contamination Prevention Cause Prevention Operator (hair, hands, breath, clothing) Wash hands thoroughly. Use a lab coat reserved exclusively for culture room. Dust from skin, hair, or clothing dropped or blown into the Tie back long hair or wear a cap. Face away from work when talking is culture necessary. Aerosols from talking, coughing, sneezing, etc. Avoid working with a cold or wear a mask. Nonsterile surfaces and equipment Clean the cabinet before and after using it. Do not leave extra tubes, pipettes Dirty cabinet inside the cabinet Do not pour liquids. Dispense by pipette, auto dispenser, or transfer device. Spillage on necks and outside of bottles and on work If pouring is unavoidable: (1)do so in one smooth movement, (2) discard the surface bottle that you pour from. Discard waste into a beaker with a funnel or use vacuum to draw off waste Splash-back from waste beaker whenever possible. Sedimentary dust or particles of skin settling on the culture Never pass hands over open vessels. Do not work over an open bottle or dish. or bottle Swab outside of vessels with 70% alcohol before use them in cabinet. Dirty vessels and inadequately glassware sterilization Monitor performance of the autoclave with a recording thermometer or sterility indicator. Contamination Prevention -Materials and Reagents Cause Prevention Instruments, pipettes Use individually wrapped, sterile, disposable supplies from a reputable supplier. Unreliable sterility Sterilize reusable items by dry heat before using them. Contact with a nonsterile surface or some other Do not grasp any part of an instrument or pipettes that will pass into a culture material vessel. Touching or holding pipettes too close to tips. Hold pipettes above graduations. Handle sterile pipettes by overwrap sleeve. Solutions Nonsterile reagents and media Filter or autoclave solutions before use. Inadequate sterilization procedures Test or culture sterilized solutions if contamination is suspected. Obtain media, buffers, sera only from reputable suppliers that certify quality and Poor quality control at commercial supplier source. Environment Clean out refrigerator and incubators regularly. Dirty storage or incubation conditions Use screw caps instead of stoppers. Swab bottles before placing in hood. Cover Dust and spores from incubator or refrigerator caps and necks of bottles with aluminum foil during storage or incubation. Use secondary containment for plates if necessary. Add disinfectant and change the water in the water bath regularly. Dirty water bath Clean and swab bottles with 70% alcohol before placing in hood Other Considerations • Cell confluence • Sensitivity to mechanical dispersal or enzymes (Trypsin concentration) • Cell-cell contact may be required for proliferation • Most primary cells require satisfactory adherence (special coating) • In a mixed primary culture, differences in growth rate may mean a loss of the cell type of interest – selection techniques • Limited life span of some cultures • Functional characteristic changes • Some cell are prone to spontaneous transformation Some cell are prone to spontaneous transformation Rules of Cell Culture Room • Do not forget to reserve the cell culture room on iLab before using it no matter how shot you use it. • The maximum reservation time is 4 hrs. for one use. Please plan your experiments ahead. • Reservation may be canceled if the users do not show up one or more hr after the start of the reservation. • Do not interrupt people when people are doing experiments. • If you have to use the cell culture room in the time reserved by other users. Please ask politely. Rules of Cell Culture Room • Please clean the cabinet after using it. Do not leave extra tubes, pipettes inside the cabinet. • Do not forget to turn off the vacuum. • Remove unused medium from refrigerator • Please check the water pan in the incubator Rules of Cell Culture Room • Please separate the trash in different trash cans/bags. • Regular (Gloves, wrapping plastic bags, et al) trash goes to the black trash can. • Serological pipettes go to one orange biohazard trash bag. • Other biohazard trash go to another orange bag. • The recycling container by the door is for the waste that can be recycled. .
Recommended publications
  • Nanotechnology in Drug Delivery: the Need for More Cell Culture Based
    Kura et al. Chemistry Central Journal 2014, 8:46 http://journal.chemistrycentral.com/content/8/1/46 MINI REVIEW Open Access Nanotechnology in drug delivery: the need for more cell culture based studies in screening Aminu Umar Kura1, Sharida Fakurazi1,2*, Mohd Zobir Hussein3 and Palanisamy Arulselvan1 Abstract Advances in biomedical science are leading to upsurge synthesis of nanodelivery systems for drug delivery. The systems were characterized by controlled, targeted and sustained drug delivery ability. Humans are the target of these systems, hence, animals whose systems resembles humans were used to predict outcome. Thus, increasing costs in money and time, plus ethical concerns over animal usage. However, with consideration and planning in experimental conditions, in vitro pharmacological studies of the nanodelivery can mimic the in vivo system. This can function as a simple method to investigate the effect of such materials without endangering animals especially at screening phase. Keywords: In vitro, Animal studies, Nanodelivery system, Toxicity and bio distribution Introduction However, with changes and improvement in drug de- Nanodelivery system (NDS) is a branch of Nanomedicine livery via NDS comes a price (possible toxic effect), the characterized by controlled, targeted and sustained drug evaluation of which is important before any biological delivery ability, a limitation and drawback that is currently application can be introduce. In 2004, the term nanotoxi- limiting conventional drug delivery system especially city was coined; referring to the study of the potential in drug delivery to tight areas like the brain [1]. NDS, toxic impacts of nanoparticles on biological and ecological due to their small sizes usually below 100 nm and systems [5].
    [Show full text]
  • Food Produced Using Animal Cell Culture Technology (07/12/2018) Page 1
    Food Produced Using Animal Cell Culture Technology (07/12/2018) Page 1 U.S. FOOD & DRUG ADMINISTRATION OFFICE OF FOODS AND VETERINARY MEDICINE CENTER FOR FOOD SAFETY & APPLIED NUTRITION FDA Public Meeting: Foods Produced Using Animal Cell Culture Technology Docket No. FDA-2018-N-2155 Harvey W. Wiley Federal Building - Auditorium 5001 Campus Drive College Park, MD 20740 Thursday, July 12, 2018 Reported by: Natalia Thomas, Capital Reporting Company Food Produced Using Animal Cell Culture Technology (07/12/2018) Page 2 A P P E A R A N C E S Jessica Almy The Good Food Institute Kari Barrett Advisor for Strategic Communications and Public Engagement, Office of Food and Veterinary Medicine, FDA Danielle Beck National Cattlemen's Beef Association Dustin Boler, PhD American Meat Science Association Benjamina Bollag Higher Steaks Beth Briczinski, PhD National Milk Producers Federation Lou Cooperhouse BlueNalu Isha Datar Executive Director, New Harvest Jeremiah Fasano Consumer Safety Officer, Division of Biotechnology and GRAS Notice Review, Office of Food Additive Food Produced Using Animal Cell Culture Technology (07/12/2018) Page 3 A P P E A R A N C E S Safety, Center for Food Safety and Applied Nutrition, FDA Scott Gottlieb, MD Commissioner, FDA Michael Hansen, PhD Consumers Union Gregory Jaffe Director, Project on Biotechnology, Center for Science in the Public Interest William Jones, PhD Acting Director, Office of Food Safety, Center for Food Safety and Applied Nutrition, FDA Kate Krueger, PhD New Harvest Tiffany Lee, DVM North American Meat Institute Peter Licari Chief Technology Officer, JUST Susan Mayne, PhD Director, Center for Food Safety and Applied Nutrition, FDA Food Produced Using Animal Cell Culture Technology (07/12/2018) Page 4 A P P E A R A N C E S Paul McCright, PhD Biotrack Diagnostics, Inc.
    [Show full text]
  • Use of Cell Culture in Virology for Developing Countries in the South-East Asia Region © World Health Organization 2017
    USE OF CELL C USE OF CELL U LT U RE IN VIROLOGY FOR DE RE IN VIROLOGY V ELOPING C O U NTRIES IN THE NTRIES IN S O U TH- E AST USE OF CELL CULTURE A SIA IN VIROLOGY FOR R EGION ISBN: 978-92-9022-600-0 DEVELOPING COUNTRIES IN THE SOUTH-EAST ASIA REGION World Health House Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110002, India Website: www.searo.who.int USE OF CELL CULTURE IN VIROLOGY FOR DEVELOPING COUNTRIES IN THE SOUTH-EAST ASIA REGION © World Health Organization 2017 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition.” Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.
    [Show full text]
  • 68 Appendix A. Viral Isolation Protocol (For Cell Culture)
    Appendix A. Viral Isolation Protocol (for Cell Culture) Introduction The optimal method for determining specific etiology of an arbovirus infection requires isolation of the virus from a specimen obtained from the patient during the acute stage of the disease and the demonstration of a rise in titer of an antibody to the isolate during convalescence. For a number of reasons successful isolation of most arboviruses from specimens from patients is the exception, reasons being that the specimen to be examined is not collected soon enough, is not properly handled, or is not expeditiously transmitted to the virus laboratory for inoculation. The viremia for many arbovirus infections in humans, if detectable at any stage, ceases by the time of or soon after onset of symptoms-- a stage when antibody is often demonstrable. Because some circulating virus may be recoverable and the antibody may be absent, or present in low titer, the acute-phase blood specimen should be collected immediately upon suspicion of a viral etiology. Delay of an hour or so can compromise the chance of virus isolation; the allowable time depends upon the type of viruses involved. Certain arboviruses produce a viremia of sufficient magnitude and duration that the viruses can be isolated from blood during the acute phase of illness, e.g., 0 to 5 days after onset. Examples of these viruses include the agents of yellow fever, dengue, chikungunya, Venezuelan equine encephalitis (VEE), and sandfly, Ross River, and Oropouche fevers. The viremia in Colorado tick fever is unique because it can extend for weeks or months, and infection has been transmitted by transfusions.
    [Show full text]
  • Peptide-Based Scaffolds for the Culture and Maintenance of Primary
    www.nature.com/scientificreports OPEN Peptide‑based scafolds for the culture and maintenance of primary human hepatocytes Douglas MacPherson1, Yaron Bram1, Jiwoon Park1 & Robert E. Schwartz1,2* We report here the use of a nanofbrous hydrogel as a 3D scafold for the culture and maintenance of functional primary human hepatocytes. The system is based on the cooperative assembly of a fber‑forming peptide component, fuorenylmethyloxycarbonyl‑diphenylalanine (Fmoc‑FF), and the integrin‑binding functional peptide ligand, Fmoc‑arginine‑glycine‑aspartic acid (Fmoc‑RGD) into a nanofbrous gel at physiological pH. This Fmoc‑FF/RGD hydrogel was formulated to provide a biomimetic microenvironment with some critical features such as mechanical properties and nanofber morphology, which were optimized to support hepatocyte culture. The material was shown to support maintenance and function of encapsulated primary human hepatocytes as indicated by actin staining, qRT‑PCR, and functional cytochrome P450 assays. The designed gel was shown to outperform Matrigel in cytochrome P450 functional assays. The hydrogel may prove useful for liver development and disease models, as well as providing insights into the design of future implantable scafolds for the regeneration of liver tissue in patients with liver disease. Cellular function is determined in part by micro-environmental cues such as soluble factors, extracellular matrix, and cell–cell interactions 1,2. In vitro culture of epithelial cells is ofen associated with epithelial cell dediferentia- tion (i.e. marked by rapid loss of cell-specifc morphology, phenotype, and function)3. Consequently, there is a need for the development and employment of improved materials which can more closely mimic the in vivo microenvironment and reconstitute the appropriate environmental cues in vitro1–3.
    [Show full text]
  • Nano-Silver Particles Reduce Contaminations in Tissue Culture but Decrease Regeneration Rate and Slows Down Growth and Development of Aldrovanda Vesiculosa Explants
    applied sciences Article Nano-Silver Particles Reduce Contaminations in Tissue Culture but Decrease Regeneration Rate and Slows Down Growth and Development of Aldrovanda vesiculosa Explants Marzena Parzymies Subdepartment of Ornamental Plants and Dendrology, Institute of Horticultural Production, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Ul. Gł˛eboka28, 20-612 Lublin, Poland; [email protected] Abstract: Aldrovanda vesiculosa is a carnivorous water plant which is endangered by extinction worldwide. The number of natural stands and populations has decreased; therefore, there is a need for its active protection. The best method would be an in vitro culture. One of the main problems is disinfection of the explants. Therefore, it was decided that we should treat the explants with nano- silver particles. The explants were shoot fragments which were disinfected with sodium hypochlorite and then placed in a liquid 1/5 MS medium, supplemented with silver nanoparticles (AgNPs) at a concentration of 5 mg·dm−3. It was observed that AgNPs reduced the number of contaminations but also led to necrosis of the shoots. The shoots, which undertook regeneration in presence of AgNPs, were smaller and did not form traps; however, after being moved to fresh media twice, they started to develop normal leaves. Taking into consideration both disinfection and regeneration rates, it might be advisable to disinfect aldrovanda shoots in sodium hypochlorite only, without AgNPs. The results Citation: Parzymies, M. Nano-Silver of the research might indicate a toxic activity of AgNPs towards water plants, which seems a big Particles Reduce Contaminations in problem, as nanoparticles are commonly used in all the fields of life.
    [Show full text]
  • Chapter 11: Virology
    CHAPTER 11 Virology Ken Peters USFWS – Bozeman Fish Health Center Bozeman, Montana NWFHS Laboratory Procedures Manual - Second Edition, June 2004 Chapter 11 - Page 1 I. Introduction Detection of aquatic animal viruses historically has been by growth and isolation on living cell cultures appropriately researched and chosen for the propagation of target viruses and species of host. Viral detection can also include immunological and nucleotide testing procedures. The determination of a testing procedure is a complex decision involving factors of cost, timeliness, sensitivity, specificity, efficiency, and available host tissues and technology. For the purposes of the Wild Fish Health Survey, the USFWS has chosen the use of cell culture for initial screening and corroboration of test results using appropriate nucleotide primers of specific viral pathogens in polymerase chain reaction (PCR) tests. Other corroborative tests may also be utilized, including serum neutralization, indirect fluorescent antibody techniques, biotinylated DNA probes, and immuno-dot blot tests (see Chapter 12 - Corroborative Testing of Viral Isolates). The following sections describe the procedures and methods for virology using standard cell culture techniques. Definitions: Several terms are used routinely in virology and throughout this section. A full Glossary of terms can be found in Appendix A. Media Formulations: See Appendix B: Media Used in Tissue Culture and Virology. II. Selection of Appropriate Cell Lines All viral testing will utilize cell lines traceable to cell lines from the American Type Culture Collection (ATCC) when available. At the minimum, cell lines will be tested annually for viral sensitivity and mycoplasma infection: see section VI. Quality Control in Tissue Culture, in Chapter 10 -Tissue Culture of Fish Cell Lines.
    [Show full text]
  • Basic Pluripotent Stem Cell Culture Protocols Maria Borowski∗, Maria Giovino-Doherty, Lan Ji, Meng-Jiao Shi, Kelly P
    Basic pluripotent stem cell culture protocols Maria Borowski∗, Maria Giovino-Doherty, Lan Ji, Meng-Jiao Shi, Kelly P. Smith and Joseph Laning, Massachusetts Stem Cell Bank, University of Massachusetts Medical School, Shrewsbury, MA 01545 USA Abstract Stem cell research is a rapidly expanding field with the potential to develop therapeutic agents to treat diseases as well as study disease development from early stages. The culture of human pluripotent stem cells shares many of the same protocols as standard mammalian cell culture. However, the successful culture and maintenance of human pluripotent stem cells (hPSCs) in an undifferentiated state requires additional consider- ations to ensure that cells maintain their key characteristics of self-renewal and pluripotency. There are several basic techniques needed for the culturing of mammalian cells, including thawing frozen stocks, plating cells in culture vessels, changing media, passaging and cryopreservation. The protocols in this document represent a subset of the standard operating procedures used to maintain and culture stem cells at the Massachusetts Human Stem Cell Bank, and have been thoroughly testing and verified. A Stem cell culture considerations Stem cell research is a rapidly expanding field with the potential to develop therapeutic agents to treat diseases as well as study disease development from early stages. However, to fulfill this promise, researchers need to have access to standardized protocols for the development, maintenance and differentiation of these unique cells. Such “best practices” will allow comparisons of different studies and hasten the refinement of these techniques. Such standardization can be driven by resources such as StemBook and by stem cell banks.
    [Show full text]
  • From 2D Culture to Organ-On-Chip Lab on a Chip
    Volume 18 Number 9 07 May 2018 Pages 1267–1390 Lab on a Chip Devices and applications at the micro- and nanoscale rsc.li/loc ISSN 1473-0197 CRITICAL REVIEW Jochen Kieninger et al. Microsensor systems for cell metabolism – from 2D culture to organ-on-chip Lab on a Chip View Article Online CRITICAL REVIEW View Journal | View Issue Microsensor systems for cell metabolism – from Cite this: Lab Chip,2018,18,1274 2D culture to organ-on-chip Jochen Kieninger, * Andreas Weltin, Hubert Flamm and Gerald A. Urban Microsensor systems for cell metabolism are essential tools for investigation and standardization in cell cul- ture. Electrochemical and optical read-out schemes dominate, which enable the marker-free, continuous, online recording of transient effects and deliver information beyond microscopy and end-point tests. There has been much progress in microfluidics and microsensors, but the translation of both into standard cell culture procedures is still limited. Within this critical review, we discuss different cell culture formats ranging from standard culture vessels to dedicated microfluidic platforms. Key aspects are the appropriate supply of cells, mass transport of metabolites to the sensors and generation of stimuli. Microfluidics enable the transition from static to dynamic conditions in culture and measurement. We illustrate the parameters oxy- gen (respiration), pH (acidification), glucose and lactate (energy metabolism) as well as short-lived reactive Creative Commons Attribution 3.0 Unported Licence. species (ROS/RNS) from the perspective of microsensor integration in 2D and 3D cell culture. We discuss different sensor principles and types, along with their limitations, microfabrication technologies and mate- Received 1st September 2017, rials.
    [Show full text]
  • Guide to Biotechnology 2008
    guide to biotechnology 2008 research & development health bioethics innovate industrial & environmental food & agriculture biodefense Biotechnology Industry Organization 1201 Maryland Avenue, SW imagine Suite 900 Washington, DC 20024 intellectual property 202.962.9200 (phone) 202.488.6301 (fax) bio.org inform bio.org The Guide to Biotechnology is compiled by the Biotechnology Industry Organization (BIO) Editors Roxanna Guilford-Blake Debbie Strickland Contributors BIO Staff table of Contents Biotechnology: A Collection of Technologies 1 Regenerative Medicine ................................................. 36 What Is Biotechnology? .................................................. 1 Vaccines ....................................................................... 37 Cells and Biological Molecules ........................................ 1 Plant-Made Pharmaceuticals ........................................ 37 Therapeutic Development Overview .............................. 38 Biotechnology Industry Facts 2 Market Capitalization, 1994–2006 .................................. 3 Agricultural Production Applications 41 U.S. Biotech Industry Statistics: 1995–2006 ................... 3 Crop Biotechnology ...................................................... 41 U.S. Public Companies by Region, 2006 ........................ 4 Forest Biotechnology .................................................... 44 Total Financing, 1998–2007 (in billions of U.S. dollars) .... 4 Animal Biotechnology ................................................... 45 Biotech
    [Show full text]
  • What Is Cell Culture? Cell Culture Refers to the Removal of Cells from an Animal Or Plant and Their Subsequent Growth in a Favorable Artificial Environment
    What is Cell Culture? Cell culture refers to the removal of cells from an animal or plant and their subsequent growth in a favorable artificial environment. The cells may be removed from the tissue directly and disaggregated by enzymatic or mechanical means before cultivation, or they may be derived from a cell line or cell strain that has already been established. It is widely used for growing viruses. Tissues are dissociated into the component cells by the action of enzyme and mechanical shaking. The cells are washed ,counted and suspended in a growth medium. The growth medium conists of essential amino acids,glucose,vitamins , salts and a buffer.Antibiotics are added to prevent bacterial contamination . the cell suspension is put into bottles , tubes and pertidishes. The cell adhere to the glass or plastics surface , divide and form a confluent monplayer sheet within a week . Cell culture is further classified on the basis of origin,chromosomal characters and the number of generations through which they can be maintained . It is of three types- primary cell culture,diploid cell strain and continuous cell lines. 1. Primary cell culture 2. Diploid cell strain 3. Continuous cell culture Primary cell culture 1. They are normal cells freshly taken from the body and cultured. They are capable of only limited growth in culture. They cannot be maintained in serial culture example :- monkey kidney, human embryo kidnry and chick embryo cell culture . 2. Primary Cultures Primary cultures are derived directly from excised, normal animal tissue and cultures either as an explant culture or following dissociation into a single cell suspension by enzyme digestion.
    [Show full text]
  • Mass Propagation of Plant Cells – an Emerging Technology Platform for Sustainable Production of Biopharmaceuticals
    mac har olo P gy : Georgiev, Biochem Pharmacol (Los Angel) 2015, 4:5 & O y r p t e s i n DOI: 10.4172/2167-0501.1000e180 A m c e c h e c s Open Access o i s Biochemistry & Pharmacology: B ISSN: 2167-0501 Editorial Open Access Mass Propagation of Plant Cells – An Emerging Technology Platform for Sustainable Production of Biopharmaceuticals Vasil Georgiev* Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA Editorial continuous supply of high quality biomass from exotic, rare, protected, or endangered plants, or plants growing in remote, barely accessible Plants have been used as a source of natural compounds with areas [15]. Recently, several PMIs obtained by PCCT have been released, unique chemical structures and wide range of biological activities since including anti-ageing, calming, and protecting cosmetic supplement time immemorial, and to this day, 11% of the essential drugs for human “ResistemTM” Sederma (www.sederma.fr); UV-protective additive application originate in plants [1]. The expanded demand for medicinal PhytoCellTec™ Solar Vitis, anti-aging and delaying the senescence of plants raise issues of concern about sustainability, conservation and hair follicles supplement PhytoCellTec™ Malus Domestica, and anti- the preservation of natural habitats. Overharvesting of some species aging and UV-protective supplement PhytoCellTec™ nunatak® from for commercial uses reduced the stocks of wild populations and has cell culture of rare and protected plant species Saponaria pumila placed some species under threat [2]. Moreover, most of the medicinal (recognized as an Eco breakthrough at the UN Conference Rio+20) by plants are rare or endemic species, growing under specific climate, Mibelle Biochemistry (www.mibellebiochemistry.com).
    [Show full text]