The Predominantly South American Clade of Lobeliaceae

Total Page:16

File Type:pdf, Size:1020Kb

The Predominantly South American Clade of Lobeliaceae Systematic Botany (2008), 33(2): pp. 462–468 © Copyright 2008 by the American Society of Plant Taxonomists The Predominantly South American Clade of Lobeliaceae Eric B. Knox,1,4 A. Muthama Muasya,2 and Nathan Muchhala3 1Department of Biology, Indiana University, Bloomington, Indiana 47405 U.S.A. 2Botany Department, University of Cape Town, 7701 Rondebosch, South Africa 3Department of Biology, University of Miami, Coral Gables, Florida 33143 U.S.A.; present address: Department of Ecology and Evolution, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5 Canada 4Author for correspondence ([email protected]) Communicating Editor: James F. Smith Abstract—A 3.7 kilobase region of chloroplast DNA that includes atpB, rbcL, and their intergenic spacer was sequenced in 61 samples from 45 species of South American Lobeliaceae plus two outgroup samples from Australia. A clade of four hexaploid Lobelia species from Chile is sister to a clade comprising Lysipomia, Siphocampylus, Centropogon, and Burmeistera. Lysipomia is a monophyletic group of small cushion- forming plants endemic to the high Andes, and is sister to the clade comprising the remaining three shrubby genera, which are most diverse in the Andes, but also extend to Central America, Mexico, and the West Indies. Siphocampylus has capsular fruit and is inferred to be paraphyletic relative to fleshy-fruited Centropogon and Burmeistera, but fleshy fruits have evidently evolved repeatedly, making Centropogon polyphyletic. Burmeistera is primarily bat-pollinated and monophyletic, having evolved from one group of species in Centropogon. The phylogenetic relationships within Burmeistera indicate that this genus underwent repeated episodes of rapid diversification when organismal diversification outpaced the accumulation of mutations in this region of chloroplast DNA. Keywords—atpB–rbcL, Burmeistera, Centropogon, Lobelia, Lysipomia, Siphocampylus. The Lobeliaceae comprise about 1,200 species in 31 genera. tion, and his infrageneric taxonomy occasionally belies the Lobelia L. is the ‘core genus’ of the family, being paraphyletic natural affinities. For example, the species of Centropogon are to the remaining segregate genera (Knox et al. 2006). The divided into two sections, Centropogon and Siphocampyloides Lobeliaceae originated in southern Africa (Knox et al. 2006) Benth. Wimmer’s keys frequently use a standardized pro- and have subsequently colonized all continents except Ant- gression of morphological features, which make them easy to arctica. South America has a diverse assemblage of autoch- use, but a compelling argument cannot be made that Wim- thonous lobelioids that includes: four hexaploid species of mer’s taxonomy was intended as a phylogenetic hypothesis Lobelia that grow in Chile [Lammers and Hensold 1992; Lam- suitable for testing. mers 2002; placed by Wimmer (1953) in section Tupa (G.Don) McVaugh (1949) and Lammers (1998) recognized many of Benth. subsection Primanae E.Wimm. (invalid; see Lammers the problems with Wimmer’s taxonomy for the shrubby neo- 2000)]; the genus Lysipomia Kunth, which comprises 30 spe- tropical genera. The capsular Siphocampylus is reasonably hy- cies of small, cushion-forming plants endemic to the high pothesized to be paraphyletic relative to the fleshy-fruited Andes (Lammers 2007); and three shrubby neotropical gen- genera (Lammers 1998). Burmeistera has well-circumscribed era (Centropogon C.Presl [212 spp.], Burmeistera Triana [102 generic features (McVaugh 1949) with an inflated corolla spp.], and Siphocampylus Pohl [231 spp.]; Lammers 2007; re- limb, filaments free from the corolla, and a dilated orifice of ferred to as the “CBS clade” by Batterman and Lammers the anther tube (Wimmer 1943), and is reasonably hypoth- 2004), which collectively comprise almost half of the species esized to be monophyletic (Lammers 1998). Centropogon, of Lobeliaceae, and are most diverse in the Andes. South however, is problematic. Section Centropogon is reasonably America is also home to: 11 Lobelia species derived from Af- hypothesized to be monophyletic because the two lower an- rican ancestry that are part of the pan-tropical radiation of thers are tipped with a single scale-like structure of concres- the giant lobelias (Knox et al. 1993; Knox and Palmer 1998); cent hairs (Wimmer 1943; McVaugh 1949; Jeppesen 1981; one species of Diastatea Scheidw. [D. micrantha (Kunth) Lammers 1998), but Wimmer’s section Siphocampyloides is re- McVaugh] and two species of Lobelia (L. nana Kunth and L. garded by McVaugh (1949) as “an agglomeration of several laxiflora Kunth) that have North American origins; and three species-groups which have little in common” and is reason- species previously placed in the problematic genera Pratia ably hypothesized to be polyphyletic (Lammers 1998). Work- and Hypsela, now treated as synonyms of L. oligophylla Lam- ing within the traditional circumscription of Centropogon, mers (see Lammers 1999), that had an Australian origin (E. McVaugh (1949) and Lammers (1998) revised section Sipho- Knox and A. Muasya, unpubl. data). This leaves only a dozen campyloides s.l. into perceived natural groups, recognizing herbaceous species of Lobelia growing in South America that four sections, two of which have two subsections. Plants in have uncertain phylogenetic affinities. section Wimmeriopsis McVaugh are glabrous or possess Wimmer’s (1943, 1953, 1968) monograph of these plants simple trichomes, with long corolla tubes that are red or followed Presl’s (1836) tribal delimitation based on whether orange, and the subsections are distinguished by whether the the fruit is fleshy (baccate) or dry (capsular). This single- corolla lobes are falcate and strongly deflexed (Falcati character taxonomy separates genera that otherwise share McVaugh) or triangular and erect or spreading (Columbiani coherent sets of morphological features and biogeographical McVaugh). Plants in sections Niveopsis Lammers and Sipho- provenance, including the shrubby neotropical genera with campyloides s.s. have stalked, branched trichomes, and the fleshy fruits (Burmeistera and Centropogon) and their obvious subsections of the latter are distinguished by whether the capsular relative, Siphocampylus. Wimmer’s (1943) introduc- corolla tube is significantly longer than the lobes (Brevilimbati tory discussion of the morphology and geographical distri- E.Wimm.) or about the same length (Peruviani McVaugh). bution of these plants indicates his awareness of this situa- Plants in section Burmeisteroides Gleason also lack the char- 462 2008] KNOX ET AL.: SOUTH AMERICAN LOBELIACEAE 463 acteristic trichomes of section Siphocampyloides s.s. and have identity. Source and voucher information for the 63 plants used in this corollas that are greenish or cream-colored; as the name im- study is presented in the Appendix. DNA Amplification and Sequencing—The adjacent chloroplast genes plies, they may be closely related to Burmeistera (McVaugh atpB and rbcL and their intergenic region were amplified as three over- 1949). lapping fragments (Table 1) that were purified using Elu-Quik (What- As is typical of the Lobeliaceae, plants in the “CBS clade” man, Brentford, U.K.), QIAquick columns (Qiagen, Valencia, California), have zygomorphic flowers with precise mechanisms of pol- or ExoSAP-IT (USB, Cleveland, Ohio). The sequencing reactions used len deposition (Erbar and Leins 1995; Muchhala 2007), and BigDye Terminator v3.1 (Applied Biosystems, Foster City, California) with various internal primers and were run on an Applied Biosystems are primarily pollinated by either bats or hummingbirds 3730. Primer 55202F is located in atpE, which overlaps atpB, and the (Feinsinger and Colwell 1978; Stein 1992; Buzato et al. 2000; sequences were trimmed at the end of atpB. The sequences were as- Muchhala 2003, 2006a). The extensive diversification of this sembled using Sequencher (GeneCodes, Ann Arbor, Michigan). Three group may have been driven by the combination of special- sequences are missing 2–6 nucleotides just before the primer at the end of rbcL (59002R; < 0.005%), but there is no variation at these positions among ized pollinator-mediated selection in microallopatric Andean the remaining sequences, and the phylogenetic results are unaffected by distributions and dramatic historical changes in geology and these missing data. The sequences were aligned manually, and 30 align- climate, as has been suggested for other diverse Andean- ment gaps were characterized and coded for inclusion in the phylogenetic centered taxa (Gentry 1982; Kay et al. 2005; Smith and Baum analyses. One alignment gap in the intergenic region, involving a variable 2006). Siphocampylus and Centropogon are predominantly number (6–11) of bases in a homonucleotide run, was not included in the gap coding because the nucleotide homology cannot be determined, but hummingbird-pollinated, with some bat-pollinated species all gaps are treated as missing data, and the variation in number has no known in Centropogon, whereas, Burmeistera is predominantly effect on the phylogenetic analysis. bat-pollinated, with one apparent reversion to hummingbird Maximum Parsimony Analysis—The aligned data matrix (comprising pollination (Muchhala 2006a, b). all 1,497 nucleotides of atpB, 934 positions in the intergenic region, the first 1,407 nucleotides of rbcL, and 30 coded alignment gaps) was ana- In this study we include all four hexaploid Chilean species lyzed using PAUP* (Swofford 2002). A heuristic search was conducted of Lobelia, two species
Recommended publications
  • Cunninghamia Date of Publication: February 2020 a Journal of Plant Ecology for Eastern Australia
    Cunninghamia Date of Publication: February 2020 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) The Australian paintings of Marianne North, 1880–1881: landscapes ‘doomed shortly to disappear’ John Leslie Dowe Australian Tropical Herbarium, James Cook University, Smithfield, Qld 4878 AUSTRALIA. [email protected] Abstract: The 80 paintings of Australian flora, fauna and landscapes by English artist Marianne North (1830-1890), completed during her travels in 1880–1881, provide a record of the Australian environment rarely presented by artists at that time. In the words of her mentor Sir Joseph Dalton Hooker, director of Kew Gardens, North’s objective was to capture landscapes that were ‘doomed shortly to disappear before the axe and the forest fires, the plough and the flock, or the ever advancing settler or colonist’. In addition to her paintings, North wrote books recollecting her travels, in which she presented her observations and explained the relevance of her paintings, within the principles of a ‘Darwinian vision,’ and inevitable and rapid environmental change. By examining her paintings and writings together, North’s works provide a documented narrative of the state of the Australian environment in the late nineteenth- century, filtered through the themes of personal botanical discovery, colonial expansion and British imperialism. Cunninghamia (2020) 20: 001–033 doi: 10.7751/cunninghamia.2020.20.001 Cunninghamia: a journal of plant ecology for eastern Australia © 2020 Royal Botanic Gardens and Domain Trust www.rbgsyd.nsw.gov.au/science/Scientific_publications/cunninghamia 2 Cunninghamia 20: 2020 John Dowe, Australian paintings of Marianne North, 1880–1881 Introduction The Marianne North Gallery in the Royal Botanic Gardens Kew houses 832 oil paintings which Marianne North (b.
    [Show full text]
  • Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations
    Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids.
    [Show full text]
  • Chromosome Numbers of the East African Giant Senecios and Giant Lobelias and Their Evolutionary Significancei
    American Journal of Botany 80(7): 847-853. 1993. CHROMOSOME NUMBERS OF THE EAST AFRICAN GIANT SENECIOS AND GIANT LOBELIAS AND THEIR EVOLUTIONARY SIGNIFICANCEI ERIC B. KNox2 AND ROBERT R, KOWAL Herbarium and Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048; and Department of Botany, University of Wisconsin, Madison, Wisconsin 53706-1981 The gametophytic chromosome number for the giant senecios (Asteraceae, Senecioneae, Dendrosenecio) is n = 50, and for the giant lobelias (Lobeliaceae, Lobelia subgenus Tupa section Rhynchopetalumi it is n = 14. Previous sporophytic counts are generally verified, but earlier reports for the giant senecios of2n = 20 and ca. 80, the bases for claims ofintraspecific polyploidy, are unsubstantiated. The 14 new counts for the giant senecios and the ten new counts for the giant lobelias are the first garnetophytic records for these plants and include the first reports for six and four taxa, respectively, for the two groups. Only five of the II species of giant senecio and three of the 21 species of giant lobelia from eastern Africa remain uncounted. Although both groups are polyploid, the former presumably decaploid and the latter more certainly tetraploid, their adaptive radiations involved no further change in chromosome number. The cytological uniformity within each group, while providing circumstantial evidence ofmonophyly and simplifying interpretations ofcladistic analyses, provides neither positive nor negative support for a possible role of polyploidy in evolving the giant-rosette growth-form. Since their discovery last century, the giant senecios MATERIALS AND METHODS (Dendrosenecio; Nordenstam, 1978) and giant lobelias (Lobelia subgenus Tupa section Rhynchopetalum; Mab­ Excised anthers or very young flower buds of Lobelia berley, 1974b) of eastern Africa have attracted consid­ and immature heads of Dendrosenecio were fixed in the erable attention from taxonomists and evolutionary bi­ field in Carnoy's solution (3 chloroform: 2 absolute eth­ ologists (cf.
    [Show full text]
  • Uribe-Convers Et Al. 2017
    Molecular Phylogenetics and Evolution 107 (2017) 551–563 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships of Burmeistera (Campanulaceae: Lobelioideae): Combining whole plastome with targeted loci data in a recent radiation ⇑ Simon Uribe-Convers a, , Monica M. Carlsen a,1, Laura P. Lagomarsino a,b, Nathan Muchhala a a University of Missouri-St. Louis, Biology Department, One University Blvd., Research Building, St. Louis, MO 63121, USA b University of Gothenburg, Department of Biological and Environmental Sciences, Carl Skottsbergs gata 22B, P.O. Box 461, SE 405 30 Göteborg, Sweden article info abstract Article history: The field of molecular systematics has benefited greatly with the advent of high-throughput sequencing Received 23 September 2016 (HTS), making large genomic datasets commonplace. However, a large number of targeted Sanger Revised 6 December 2016 sequences produced by many studies over the last two decades are publicly available and should not Accepted 9 December 2016 be overlooked. In this study, we elucidate the phylogenetic relationships of the plant genus Available online 21 December 2016 Burmeistera (Campanulaceae: Lobelioideae), while investigating how to best combine targeted Sanger loci with HTS data. We sequence, annotate, and analyze complete to nearly complete plastomes for a subset Keywords: of the genus. We then combine these data with a much larger taxonomic dataset for which only Sanger Andes sequences are available, making this the most comprehensively sampled study in the genus to date. We Bellflowers Character evolution show that using a phylogeny inferred from the species with plastome data as a topological constraint for Genome skimming the larger dataset increases the resolution of our data and produces a more robust evolutionary hypoth- Plastome esis for the group.
    [Show full text]
  • Vol 21, No 4, October
    THE LINNEAN N e wsletter and Pr oceedings of THE LINNEAN SOCIETY OF LONDON Bur lington House , Piccadill y, London W1J 0BF VOLUME 21 • NUMBER 4 • OCTOBER 2005 THE LINNEAN SOCIETY OF LONDON Burlington House, Piccadilly, London W1J 0BF Tel. (+44) (0)20 7434 4479; Fax: (+44) (0)20 7287 9364 e-mail: [email protected]; internet: www.linnean.org President Secretaries Council Professor Gordon McG Reid BOTANICAL The Officers and Dr John R Edmondson Dr Louise Allcock President-elect Prof John R Barnett Professor David F Cutler ZOOLOGICAL Prof Janet Browne Dr Vaughan R Southgate Dr J Sara Churchfield Vice-Presidents Dr John C David Professor Richard M Bateman EDITORIAL Prof Peter S Davis Dr Jenny M Edmonds Professor David F Cutler Mr Aljos Farjon Dr Vaughan R Southgate Dr Michael F Fay COLLECTIONS Dr D J Nicholas Hind Treasurer Mrs Susan Gove Dr Sandra D Knapp Professor Gren Ll Lucas OBE Dr D Tim J Littlewood Dr Keith N Maybury Executive Secretary Librarian & Archivist Dr Brian R Rosen Mr Adrian Thomas OBE Miss Gina Douglas Dr Roger A Sweeting Office/Facilities Manager Deputy Librarian Mr Dominic Clark Mrs Lynda Brooks Finance Library Assistant Conservator Mr Priya Nithianandan Mr Matthew Derrick Ms Janet Ashdown THE LINNEAN Newsletter and Proceedings of the Linnean Society of London Edited by B G Gardiner Editorial .................................................................................................................... 1 Society News ...........................................................................................................
    [Show full text]
  • Endemism As a Tool for Conservation. Podocarpus National Park a Case Study
    Pablo Lozano Tania Delgado y Zhofre Aguirre 44 Endemism as a tool for conservation. Podocarpus National Park a case study. Resumen El Parque Nacional Podocarpus (PNP), ubicado al sur del Ecuador, posee 211 especies endémicas de las registradas para el país. El presente estudio identificó 70 especies endémicas exclusivas, en 29 familias y 50 géneros. Se considera que algunos taxones tienen su centro de diversidad en el PNP (Brachyotum, Centropogon y Lysipomia). El mayor endemismo, se ubica principalmente entre 2800 a 3200 m, en la transición de páramo arbustivo a páramo herbáceo. De acuerdo al análisis TWINSPAN, se encontraron dos comunidades vegetales subdivididas y cinco asociaciones. En las dos primeras comunidades de páramos y arbustales naturales y antrópicos que comprende la franja altitudinal 2300-3400 m, se distribuyen las endémicas, aumentando su presencia a medida que haciende la gradiente. Este estudio reconoce 22 unidades de paisaje, considerándose el área con endemismo extremadamente alto al tipo de vegetación de bosque chaparro, que corresponde a la franja de sub-páramo, con prioridad para conservar, las áreas de bajo endemismo, son bosque abierto/matorral/pastizal; tienen la misma importancia por su exclusividad y posición fuera del PNP. El sitio con mayor número de endémicas es Cajanuma con 40 especies, mientras que el sitio con mayor acumulación de endémicas por superficie muestreada es Cerro Toledo, con 12 especies en 175 m². Todas las especies tienen una amplia distribución en los páramos del parque, con algunas excepciones de distribución restringida como el caso de Puya obconica en el sector de Sabanilla con un rango no mayor a 10 km².
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • 2021 Wholesale Catalog Pinewood Perennial Gardens Table of Contents
    2021 Wholesale Catalog Pinewood Perennial Gardens Table of Contents In Our Catalog ........................................................................................................................................2 Quart Program ........................................................................................................................................3 Directions ..............................................................................................................................................3 New Plants for 2021 ...............................................................................................................................4 Native Plants Offered for Sale ..................................................................................................................4 L.I. Gold Medal Plant Program .................................................................................................................5 Characteristics Table ..........................................................................................................................6-10 Descriptions of Plants Achillea to Astilboides .........................................................................................................11-14 Baptisia to Crocosmia ..........................................................................................................14-16 Delosperma to Eupatorium ...................................................................................................16-18 Gaillardia to Helleborus
    [Show full text]
  • Biodiversity Offset Strategy Appendix C Appendix Strategy Offset Biodiversity
    Appendix C Strategy Appendix C – Biodiversity Offset Biodiversity Offset Strategy Moorebank Intermodal Terminal – Biodiversity Offset Strategy April 2015 Moorebank Intermodal Company Parsons Brinckerhoff Australia Pty Limited ABN 80 078 004 798 Level 27, Ernst & Young Centre 680 George Street Sydney NSW 2000 GPO Box 5394 Sydney NSW 2001 Australia Telephone +61 2 9272 5100 Facsimile +61 2 9272 5101 Email [email protected] Certified to ISO 9001, ISO 14001, AS/NZS 4801 2103829A-PR_6144 Rev_K A+ GRI Rating: Sustainability Report 2010 Moorebank Intermodal Terminal – Biodiversity Offsets Strategy Contents Page number 1. Introduction 1 2. Avoidance of impacts on biodiversity values 3 2.1 Avoidance and minimisation of direct impacts on biodiversity 3 2.1.1 Site selection 4 2.1.2 Planning 6 2.1.3 Construction 8 2.1.4 Operation 8 2.1.5 Mitigation and avoidance measures 9 2.2 Avoidance and minimisation of indirect impacts on biodiversity 10 3. Residual biodiversity impacts to be offset 11 3.1 Residual Impacts under the FBA 13 3.1.1 Ecosystem credits 13 3.1.2 Species credits 13 3.1.3 Impacts for further consideration by the consent authority 14 4. Proposed offset package 17 4.1 Identification of off-site offset areas 17 4.1.1 Biodiversity and landscape characteristics 17 4.1.2 Preliminary desktop identification of possible sites 19 4.1.3 Assessment and ranking of potential sites 20 4.1.4 Site inspection and identification of preferred site/s 20 4.1.5 Assessment against offsetting principles 20 4.2 Proposed offset sites 21 4.2.1 Moorebank Conservation
    [Show full text]
  • Burmeistera Quimiensis (Lobelioideae, Campanulaceae): a New Species from the Cordillera Del Cóndor Range in Southeast Ecuador
    Phytotaxa 433 (1): 067–074 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.433.1.7 Burmeistera quimiensis (Lobelioideae, Campanulaceae): A new species from the Cordillera del Cóndor range in southeast Ecuador BROCK MASHBURN1, ÁLVARO J. PÉREZ2, CLAES PERSSON3, NICOLÁS ZAPATA2, DANIELA CEVALLOS2 & NATHAN MUCHHALA1 1Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri 63121, U.S.A. E-mail: [email protected] 2Herbario QCA, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Apartado 17-01-2184, Quito, Ecuador 3Department of Biological and Environmental Sciences, University of Gothenburg, P. O. Box 461, 40530 Göteborg, Sweden Abstract A new taxon belonging to the genus Burmeistera (Campanulaceae, Lobelioideae) is described from El Quimi Biological Reserve in Morona Santiago Province, southeast Ecuador. Burmeistera quimiensis is characterized by its red-violet stems and veins, spiral phyllotaxy, bullate, ascending leaves with a revolute margin, puberulous abaxial leaf surface, cupuliform hypanthia, and thick-walled white to red-violet fruits with reflexed pedicels. Photos of the new species are given, as well as a distribution map of known collection localities, and its relationships with other species are discussed. Resumen Un taxón nuevo del género Burmeistera (Campanulaceae, Lobelioideae) es descrito de la Reserva Biológica El Quimi, en la provincia de Morona Santiago, en el sur-este del Ecuador. Burmeistera quimiensis se caracteriza por sus tallos y venas rojo- violetas, arreglo espiralado, hojas ascendentes y buladas con el margen revoluto, la superficie abaxial es pubérula, hipantio cupuliforme, y frutos con el pedicelo reflexo y paredes gruesas blancas a rojo-violetas.
    [Show full text]
  • Adaptive Radiation, Correlated and Contingent Evolution, and Net Species Diversification in Bromeliaceae
    Molecular Phylogenetics and Evolution 71 (2014) 55–78 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae Thomas J. Givnish a,*, Michael H.J. Barfuss b, Benjamin Van Ee c, Ricarda Riina d, Katharina Schulte e,f, Ralf Horres g, Philip A. Gonsiska a, Rachel S. Jabaily h, Darren M. Crayn f, J. Andrew C. Smith i, Klaus Winter j, Gregory K. Brown k, Timothy M. Evans l, Bruce K. Holst m, Harry Luther n, Walter Till b, Georg Zizka e, Paul E. Berry o, Kenneth J. Sytsma a a Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA b Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna A-1030, Austria c School of Natural Sciences, Black Hills State University, Spearfish, SD 57799, USA d Real Jardín Botánico, CSIC, Plaza de Murillo 2, Madrid 28014, Spain e Department of Botany and Molecular Evolution, Research Institute Senckenberg and J.W. Goethe University, Frankfurt am Main D-60325, Germany f Australian Tropical Herbarium, James Cook University, Cairns, QLD 4878, Australia g GenXPro, Frankfurt am Main 60438, Germany h Department of Biology, Rhodes College, Memphis, TN 38112, USA i Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom j Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama k Department of Botany, University of Wyoming, Laramie, WY 82071, USA l Department of Biology, Grand Valley State University, Allendale, MI 49401, USA m Marie Selby Botanical Gardens, Sarasota, FL 34236, USA n Gardens By The Bay, National Parks Board Headquarters, Singapore 259569, Singapore o Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: We present an integrative model predicting associations among epiphytism, the tank habit, entangling Received 22 May 2013 seeds, C3 vs.
    [Show full text]
  • Campanulaceae): Review, Phylogenetic and Biogeographic Analyses
    PhytoKeys 174: 13–45 (2021) A peer-reviewed open-access journal doi: 10.3897/phytokeys.174.59555 RESEARCH ARTICLE https://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics of Lobelioideae (Campanulaceae): review, phylogenetic and biogeographic analyses Samuel Paul Kagame1,2,3, Andrew W. Gichira1,3, Ling-Yun Chen1,4, Qing-Feng Wang1,3 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China 4 State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China Corresponding author: Ling-Yun Chen ([email protected]); Qing-Feng Wang ([email protected]) Academic editor: C. Morden | Received 12 October 2020 | Accepted 1 February 2021 | Published 5 March 2021 Citation: Kagame SP, Gichira AW, Chen L, Wang Q (2021) Systematics of Lobelioideae (Campanulaceae): review, phylogenetic and biogeographic analyses. PhytoKeys 174: 13–45. https://doi.org/10.3897/phytokeys.174.59555 Abstract Lobelioideae, the largest subfamily within Campanulaceae, includes 33 genera and approximately1200 species. It is characterized by resupinate flowers with zygomorphic corollas and connate anthers and is widely distributed across the world. The systematics of Lobelioideae has been quite challenging over the years, with different scholars postulating varying theories. To outline major progress and highlight the ex- isting systematic problems in Lobelioideae, we conducted a literature review on this subfamily. Addition- ally, we conducted phylogenetic and biogeographic analyses for Lobelioideae using plastids and internal transcribed spacer regions.
    [Show full text]