ZOO REPORT PROFI Leopard Tortoises Breeding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beaded Lizard
Beaded lizard PHYSICAL DESCRIPTION: NATIVE HABITAT: • Their base color is black and marked with • Beaded lizards are found in a variety of varying amounts of yellow spots or bands, with habitats in Mexico and Guatemala. the exception of “H. alvarezi” which are all • They are most often found in tropical black in color! deciduous forest, but are also found in thorn • The beaded lizards have short tails which are forests, tropical scrubland and pine-oak forest. used to store fat so they can survive during months of estivation (hibernation that occurs DIET: in summer). • They feed primarily on reptile and bird eggs! • They have forked, pink tongues which they use to smell, with the help of a Jacobson’s organ. • They are semi-arboreal, and will climb trees to get into the nests of other animals. • The “beads” all over their body are called osteoderms, and can be seen on their skeleton! • They occasionally prey upon small birds, mammals, frogs, lizards, and insects. • SIZE AND LIFESPAN: • Adult beaded lizards range from 22inch to REPRODUCTION: 36inch in length. • The beaded lizard becomes sexually mature • Their average weight is around 4lbs! at six to eight years and mates between September and October. • Although males are slightly larger than females, the beaded lizards are not sexually • The female lays her clutch of two to 30 eggs dimorphic. between October and December, the clutch hatching the following June or July. • They have a long life span, living 30 years typically but can possibly live to 50 plus years!! • Young lizards are seldom seen. They are believed to spend much of their early lives underground, emerging at two to three years of age after gaining considerable size!! FUN FACTS: • The venom glands of the beaded lizard are modified salivary glands located in the reptile’s lower jaw. -
An Intial Estimation of the Numbers and Identification of Extant Non
Answers Research Journal 8 (2015):171–186. www.answersingenesis.org/arj/v8/lizard-kinds-order-squamata.pdf $Q,QLWLDO(VWLPDWLRQRIWKH1XPEHUVDQG,GHQWLÀFDWLRQRI Extant Non-Snake/Non-Amphisbaenian Lizard Kinds: Order Squamata Tom Hennigan, Truett-McConnell College, Cleveland, Georgia. $EVWUDFW %LRV\VWHPDWLFVLVLQJUHDWÁX[WRGD\EHFDXVHRIWKHSOHWKRUDRIJHQHWLFUHVHDUFKZKLFKFRQWLQXDOO\ UHGHÀQHVKRZZHSHUFHLYHUHODWLRQVKLSVEHWZHHQRUJDQLVPV'HVSLWHWKHODUJHDPRXQWRIGDWDEHLQJ SXEOLVKHGWKHFKDOOHQJHLVKDYLQJHQRXJKNQRZOHGJHDERXWJHQHWLFVWRGUDZFRQFOXVLRQVUHJDUGLQJ WKHELRORJLFDOKLVWRU\RIRUJDQLVPVDQGWKHLUWD[RQRP\&RQVHTXHQWO\WKHELRV\VWHPDWLFVIRUPRVWWD[D LVLQJUHDWIOX[DQGQRWZLWKRXWFRQWURYHUV\E\SUDFWLWLRQHUVLQWKHILHOG7KHUHIRUHWKLVSUHOLPLQDU\SDSHU LVmeant to produce a current summary of lizard systematics, as it is understood today. It is meant to lay a JURXQGZRUNIRUFUHDWLRQV\VWHPDWLFVZLWKWKHJRDORIHVWLPDWLQJWKHQXPEHURIEDUDPLQVEURXJKWRQ WKH $UN %DVHG RQ WKH DQDO\VHV RI FXUUHQW PROHFXODU GDWD WD[RQRP\ K\EULGL]DWLRQ FDSDELOLW\ DQG VWDWLVWLFDO EDUDPLQRORJ\ RI H[WDQW RUJDQLVPV D WHQWDWLYH HVWLPDWH RI H[WDQW QRQVQDNH QRQ DPSKLVEDHQLDQOL]DUGNLQGVZHUHWDNHQRQERDUGWKH$UN,WLVKRSHGWKDWWKLVSDSHUZLOOHQFRXUDJH IXWXUHUHVHDUFKLQWRFUHDWLRQLVWELRV\VWHPDWLFV Keywords: $UN(QFRXQWHUELRV\VWHPDWLFVWD[RQRP\UHSWLOHVVTXDPDWDNLQGEDUDPLQRORJ\OL]DUG ,QWURGXFWLRQ today may change tomorrow, depending on the data Creation research is guided by God’s Word, which and assumptions about that data. For example, LVIRXQGDWLRQDOWRWKHVFLHQWLÀFPRGHOVWKDWDUHEXLOW naturalists assume randomness and universal 7KHELEOLFDODQGVFLHQWLÀFFKDOOHQJHLVWRLQYHVWLJDWH -
Changes to CITES Species Listings
NOTICE TO THE WILDLIFE IMPORT/EXPORT COMMUNITY December 21, 2016 Subject: Changes to CITES Species Listings Background: Party countries of the Convention on International Trade in Endangered Species (CITES) meet approximately every two years for a Conference of the Parties. During these meetings, countries review and vote on amendments to the listings of protected species in CITES Appendix I and Appendix II. Such amendments become effective 90 days after the last day of the meeting unless Party countries agree to delay implementation. The most recent Conference of the Parties (CoP 17) was held in Johannesburg, South Africa, September 24 – October 4, 2016. Action: Except as noted below, the amendments to CITES Appendices I and II that were adopted at CoP 17, will be effective on January 2, 2017. Any specimens of these species imported into, or exported from, the United States on or after January 2, 2017 will require CITES documentation as specified under the amended listings. The import, export, or re-export of shipments of these species that are accompanied by CITES documents reflecting a pre-January 2 listing status or that lack CITES documents because no listing was previously in effect must be completed by midnight (local time at the point of import/export) on January 1, 2017. Importers and exporters can find the official revised CITES appendices on the CITES website. Species Added to Appendix I . Abronia anzuetoi (Alligator lizard) . Abronia campbelli (Alligator lizard) . Abronia fimbriata (Alligator lizard) . Abronia frosti (Alligator lizard) . Abronia meledona (Alligator lizard) . Cnemaspis psychedelica (Psychedelic rock gecko) . Lygodactylus williamsi (Turquoise dwarf gecko) . Telmatobius coleus (Titicaca water frog) . -
Monster of the Desert by Guy Belleranti
Name: __________________________________ Monster of the Desert by Guy Belleranti Imagine a monster with a big head, a powerful bite, strong digging claws, and a forked tongue. The monster is black with yellow or pink scales all over it's body. If you've been to the deserts of southwestern U.S. and northwestern Mexico, you may have seen such an animal, known as the Gila (HEE-la) monster. Growing up to two feet long, it is the largest of all lizards native to the United States. The Gila monster is one of only two venomous lizards living in North America. The other is the similar looking Mexican beaded lizard. Named after Arizona’s Gila River, the colorful Gila monster makes its home in hot, dry, rocky desert landscapes. Despite its scary name the Gila monster is actually a shy animal. It doesn’t bravely leap out at people, spitting venom. Instead, the solitary Gila monster spends most of its time in underground burrows or hiding under rocks. A Gila monster can go for months without eating. How can it do this? Well, it lives on the fat it has stored in its tail and abdomen. The most likely time to see this animal is in the spring when it comes out to hunt for food. While it is nocturnal (coming out at night) for most of the year, the Gila monster does occasionally venture out in the sunshine during the spring months to sun itself on desert rocks. The Gila monster doesn’t consider people food. We’re way too big. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Lizard Facts Lizards Are One of the Biggest, Most Diverse and Widespread Groups of Reptiles Found on Earth
Lizard Facts Lizards are one of the biggest, most diverse and widespread groups of reptiles found on Earth. They are found on all continents, except Antarctica. ▪ Lizard (suborder Sauria) refer to any of the more than 5,500 species of reptiles belonging in the order Squamata (which also includes snakes). They feature in a wide variety of colors, appearance, and size. ▪ It comprises 40 different families. According to the San Diego Zoo, there are currently over 4,675 lizard species, including iguanas, chameleons, geckos, Gila monsters, monitors, and skinks. Their ancestors appeared on Earth over 200 million years ago. ▪ Lizards are scaly-skinned reptiles that are usually distinguished from snakes by the possession of legs, movable eyelids, and external ear openings. However, some traditional (that is, non-snake) lizards lack one or more of these features. ▪ Due to their smooth and shiny appearance, some lizards can appear slimy or slippery. However, their skin – like all reptiles – is actually very dry due to a lack of pores to excrete water and oils. Class: Reptilia Higher classification: Scaled reptiles Kingdom: Animalia Order: Squamata Phylum: Chordata KIDSKONNECT.COM Lizard Facts MOBILITY All lizards are capable of swimming, and a few are quite comfortable in aquatic environments. Many are also good climbers and fast sprinters. Some can even run on two legs, such as the Collared Lizard and the Spiny-Tailed Iguana. LIZARDS AND HUMANS Most lizard species are harmless to humans. Only the very largest lizard species pose any threat of death. The chief impact of lizards on humans is positive, as they are the main predators of pest species. -
Vernacular Name GILA MONSTER
1/6 Vernacular Name GILA MONSTER GEOGRAPHIC RANGE Southwestern U.S. and northwestern Mexico. HABITAT Succulent desert and dry sub-tropical scrubland, hillsides, rocky slopes, arroyos and canyon bottoms (mainly those with streams). CONSERVATION STATUS IUCN: Near Threatened (2016). Population Trend: Decreasing. Threats: - illegal exploitation by commercial and private collectors. - habitat destruction due to urbanization and agricultural development. COOL FACTS Their common name “Gila” refers to the Gila River Basin in the southwest U.S. Their skin consists of many round, bony scales, a feature that was common among dinosaurs, but is unusual in today's reptiles. The Gila monster and the Mexican beaded lizard are the only lizards known to be venomous. Both live in North America. Gila monsters are the largest lizards native to the U.S. Gila monsters may bite and not let go, continuing to chew and, thereby, inject more venom into their victims. Venom is released from the venom glands (modified salivary glands) into the lower jaws and travels up grooves on the outside of the teeth and into the victims as the Gila monsters bite. The lizards lack the musculature to forcibly inject the venom; instead the venom is propelled from the gland to the tooth by chewing. Capillary action brings the venom out of the tooth and into the victim. Gila monsters have been observed to flip over while biting the victim, presumably to aid the flow of the venom into the wound. Bites are painful, but rarely fatal to humans in good health. While the bites can overpower predators and prey, they are rarely fatal to humans in good health although humans may suffer pain, edema, bleeding, nausea and vomiting. -
Evaluation of the Captive Breeding Potential of Selected Reptile Taxa Included in Appendices I and II at CITES Cop17
Evaluation of the Captive Breeding Potential of selected Reptile Taxa included in Appendices I and II at CITES CoP17 Christian Langner Beate Pfau Ronny Bakowskie Clara Arranz Axel Kwet Title: Shinisaurus crocodilurus (Photo: Axel Kwet) Addresses of authors: Deutsche Gesellschaft für Herpetologie und Terrarienkunde e. V. (DGHT) Dr. Axel Kwet Haldenstraße 28 70736 Fellbach E-Mail: [email protected] Christian Langner Allwetterzoo Münster Altätte 23 48727 Billerbeck E-Mail: [email protected] Dr. Beate Pfau Rathenaustrasse 14 65326 Aarbergen E-Mail: [email protected] Ronny Bakowskie Täubchenweg 12 04317 Leipzig E-Mail: [email protected] Dr. Clara Arranz Heimatstrasse 5 79102 Freiburg E-Mail: [email protected] Supervision BfN: Dr. Mona van Schingen Fachgebiet II 1.1 „Wildlife Conservation“ Federal Agency for Nature Conservation, CITES Scientific Authority (BfN) 2 Contents Prefeace ………………………………………………………………………………………………………………………………………………………4 Aims of the project ……………………………………………………………………………………………………………….………….………… 5 Methods ………………………………………………………………………………………………………………………………………………..…… 6 Target Species ……………………………………………………………………………………………………………………………………………. 7 Glossary …………………………………………………………………………………………………………………………………………….………. 8 Lizards Anguidae …………………………………………………………………………………………………………………………………..………… 13 Chamaeleonidae ………………………………………………………………………………………………….…………………….…..…… 99 Gekkonidae …………………………………………………………………………………………………………………………………..…… 152 Lanthanotidae …………………………………………………………………………………….….…………………………………….…… 162 Shinisauridae ……………………………………………………………………………………………………………………………..……… -
Can Humans Share Spaceship Earth?
Copyright: © 2012 Pianka. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the Amphibian and Reptile Conservation 6(1):1-24. original author and source are credited. POINT OF VIEW Can humans share spaceship earth? Eric R. Pianka Section of Integrative Biology C0930, University of Texas at Austin, Austin, Texas, USA Abstract.—Earth was a pretty durable spaceship, but we have managed to trash its life support systems, the atmosphere, and the oceans. Humans have also destroyed vast areas of habitats and !"#$%&'(&)*%#'+*,(-&"./*0&*-#1&*%,)23&)*(-&*#(%,.4-&"&*#')*2'*),2'$*.,*-#1&*2'5"&#.&)*(-&* greenhouse effect, which has changed the climate to produce ever increasing maximum tempera- tures. Increased temperatures threaten some lizard species in highly biodiverse tropical and sub- tropical regions. Many lizards are also threatened by habitat loss and over-harvesting. Although lizards are ectotherms and might therefore be expected to be resilient to global warming, evidence strongly suggests that many species could be threatened by warming. Some, such as fossorial or nocturnal species or those in cold temperate regions, may be little affected by climate warming but many others such as thermoconformer species in tropical forests and live bearers appear to be particularly vulnerable. The 2011 IUCN Red List of Threatened Species lists 12 lizard species as ex- tinct and another 462 species as Critically Endangered, Endangered, or Vulnerable. Together, these constitute at least 8.4%, probably more, of all described lizard species. The highly biodiverse lizard fauna of Madagascar is especially threatened mostly due to habitat loss from extensive deforesta- tion by humans. -
The Beaded Lizard (Heloderma Horridum) and Gila Monster (Heloderma Suspectum): a Bibliography of the Family Helodermatidae
THE BEADED LIZARD (HELODERMA HORRIDUM) AND GILA MONSTER (HELODERMA SUSPECTUM): A BIBLIOGRAPHY OF THE FAMILY HELODERMATIDAE 1 2 3 KENT R. BEAMAN , DANIEL D. BECK & BRIAN M. MCGURTY 1Ichthyology and Herpetology Natural History Museum Los Angeles 2Department of Biological Sciences Central Washington University 3Diamond Bar, California SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 136 2006 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The first number of the SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE series appeared in 1968. SHIS number 1 was a list of herpetological publications arising from within or through the Smithsonian Institution and its collections entity, the United States National Museum (USNM). The latter exists now as little more than an occasional title for the registration activities of the National Museum of Natural History. No. 1 was prepared and printed by J. A. Peters, then Curator-in-Charge of the Division of Amphibians & Reptiles. The availability of a NASA translation service and assorted indices encouraged him to continue the series and distribute these items on an irregular schedule. The series continues under that tradition. Specifically, the SHIS series prints and distributes translations, bibliographies, checklists, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, and unlikely to be published in the normal technical journals. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such an item, please contact George Zug for its consideration for distribution through the SHIS series. Contributors receive a pdf file for personal distribution. Single printed copies are available to interested individuals at $5 per issue. -
Enter the Dragon: the Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms
Article Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms Ivan Koludarov 1, Timothy NW Jackson 1,2, Bianca op den Brouw 1, James Dobson 1, Daniel Dashevsky 1, Kevin Arbuckle 3, Christofer J. Clemente 4, Edward J. Stockdale 5, Chip Cochran 6, Jordan Debono 1, Carson Stephens 7, Nadya Panagides 1, Bin Li 8, Mary‐Louise Roy Manchadi 9, Aude Violette 10, Rudy Fourmy 10, Iwan Hendrikx 1, Amanda Nouwens 11, Judith Clements 7, Paolo Martelli 12, Hang Fai Kwok 8 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia; [email protected] (I.K.); [email protected] (T.N.W.J.); [email protected] (B.o.d.B.); [email protected] (J.D.); [email protected] (D.D.); [email protected] (J.D.); [email protected] (N.P.); [email protected] (I.H.) 2 Australian Venom Research Unit, School of Biomedical Sciences, Level 2 Medical Building, University of Melbourne, Victoria 3010, Australia 3 Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK; [email protected] 4 University of the Sunshine Coast, School of Science and Engineering, Sippy Downs, Queensland 4558, Australia; [email protected] 5 Gradient Scientific and Technical Diving, Rye, Victoria 3941, Australia; [email protected] (E.J.S.) 6 Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; [email protected] 7 School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia; [email protected] (C.S.); [email protected] (J.C.) 8 Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; [email protected] (B. -
Species Transformations in Northern Mexico: Explorations in Raramuri Zoology William L
Species Transformations in Northern Mexico: Explorations in Raramuri Zoology William L. Merrill In nova fert animus mutatas dicere formas corpora... Ovid, Metamorphoseon, book 1, 1-2, XXXX Because of Bill Sturtevant's interest in the ethnobotany of the against his body, he described the process whereby two species Indians of the southeastern United States, I had the opportu of squirrels, upon reaching old age, would gradually lose their nity—in the summer of 1972—to complete a research project fur and legs, become more elongated, and emerge as two differ under his direction on a Southeastern Indian ceremonial bever ent kinds of snakes. age and emetic called "black drink.'" Over the course of that Intrigued by this view of zoological possibilities, my wife, summer, Bill shared his unparalleled knowledge of American Cecilia Troop, and I began compiling information on Raramuri Indian ethnobotany and ethnology with me. He also loaned me ideas about animals. Through both formal interviews and infor his copy oi Purity and Danger, Mary Douglas's path-breaking mal conversations with a number of people in Rejogochi, we study of the relationship between the social construction of re worked out the basic structure of their zoological taxonomy ality and cultural practices. In this work, Douglas (1970) ex and recorded a rich corpus of ethological and ecological plored, among many other topics, the linkages between the knowledge along with a number of stories in which animals classificatory status of certain animals and the special treat figured as the protagonists.3 In the process, we discovered that ment afforded them in diverse cultural settings, proposing, in the Raramuri people in this community agreed on eight differ the best-known example, that the ancient Hebrews had prohib ent sets of species transformations that Western zoologists do ited some kinds of animals as food because these animals were not acknowledge as valid (Table 1).