Atom-Light Interaction and Basic Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acols Acoft Ds 2009
ACOLS ACOFT DS 2009 29th November – 3rd December 2009 The University of Adelaide, South Australia Book of Abstracts Typeset by: Causal Productions Pty Ltd www.causalproductions.com [email protected] Table of Contents Plenary Elder Hall, 08:45 – 10:30 Monday 101 The Power of Light — The Fiber Laser Revolution .....................................................20 David Richardson, University of Southampton, UK 102 Single Molecule Laser Spectroscopy — From Probes to Polymers ....................................20 Kenneth P. Ghiggino, Toby D.M. Bell, University of Melbourne, Australia 1A ACOLS: Xray & XUV N102, 11:10 – 12:30 Monday 103 Crystal Growth to Fully Digital Systems — A New Enabling Technology for Imaging X-Rays and Gammas ...................................................................................................20 Ralph B. James, Brookhaven National Laboratory, USA 104 Core-Electron Localization Effects in a Diatomic Molecule Interacting with Intense Ultrashort-Pulse XUV Radiation: Quantum-Dynamic Simulations . ........................................20 Olena Ponomarenko, Harry Morris Quiney, University of Melbourne, Australia 105 High Harmonic Generation of Extreme Ultraviolet Radiation from Diatomic Molecules ............20 K.B. Dinh, Peter Hannaford, L.V. Dao, Swinburne University of Technology, Australia 1B ACOLS: Metamaterials G03, 11:10 – 12:30 Monday 106 Functional Metamaterials and Nonlinear Plasmonics . ................................................20 Ilya V. Shadrivov, Australian National University, -
Atom-Light Interaction and Basic Applications
ICTP-SAIFR school 16.-27. of September 2019 on the Interaction of Light with Cold Atoms Lecture on Atom-Light Interaction and Basic Applications Ph.W. Courteille Universidade de S~aoPaulo Instituto de F´ısicade S~aoCarlos 07/01/2021 2 . 3 . 4 Preface The following notes have been prepared for the ICTP-SAIFR school on 'Interaction of Light with Cold Atoms' held 2019 in S~aoPaulo. They are conceived to support an introductory course on 'Atom-Light Interaction and Basic Applications'. The course is divided into 5 lectures. Cold atomic clouds represent an ideal platform for studies of basic phenomena of light-matter interaction. The invention of powerful cooling and trapping techniques for atoms led to an unprecedented experimental control over all relevant degrees of freedom to a point where the interaction is dominated by weak quantum effects. This course reviews the foundations of this area of physics, emphasizing the role of light forces on the atomic motion. Collective and self-organization phenomena arising from a cooperative reaction of many atoms to incident light will be discussed. The course is meant for graduate students and requires basic knowledge of quan- tum mechanics and electromagnetism at the undergraduate level. The lectures will be complemented by exercises proposed at the end of each lecture. The present notes are mostly extracted from some textbooks (see below) and more in-depth scripts which can be consulted for further reading on the website http://www.ifsc.usp.br/∼strontium/ under the menu item 'Teaching' −! 'Cursos 2019-2' −! 'ICTP-SAIFR pre-doctoral school'. The following literature is recommended for preparation and further reading: Ph.W. -
Taxonomy of Belarusian Educational and Research Portal of Nuclear Knowledge
Taxonomy of Belarusian Educational and Research Portal of Nuclear Knowledge S. Sytova� A. Lobko, S. Charapitsa Research Institute for Nuclear Problems, Belarusian State University Abstract The necessity and ways to create Belarusian educational and research portal of nuclear knowledge are demonstrated. Draft tax onomy of portal is presented. 1 Introduction President Dwight D. Eisenhower in December 1953 presented to the UN initiative "Atoms for Peace" on the peaceful use of nuclear technology. Today, many countries have a strong nuclear program, while other ones are in the process of its creation. Nowadays there are about 440 nuclear power plants operating in 30 countries around the world. Nuclear reac tors are used as propulsion systems for more than 400 ships. About 300 research reactors operate in 50 countries. Such reactors allow production of radioisotopes for medical diagnostics and therapy of cancer, neutron sources for research and training. Approximately 55 nuclear power plants are under construction and 110 ones are planned. Belarus now joins the club of countries that have or are building nu clear power plant. Our country has a large scientific potential in the field of atomic and nuclear physics. Hence it is obvious the necessity of cre ation of portal of nuclear knowledge. The purpose of its creation is the accumulation and development of knowledge in the nuclear field as well as popularization of nuclear knowledge for the general public. *E-mail:[email protected] 212 Wisdom, enlightenment Figure 1: Knowledge management 2 Nuclear knowledge Since beginning of the XXI century the International Atomic Energy Agen cy (IAEA) gives big attention to the nuclear knowledge management (NKM) [1]-[3] . -
Canadian-Built Laser Chills Antimatter to Near Absolute Zero for First Time Researchers Achieve World’S First Manipulation of Antimatter by Laser
UNDER EMBARGO UNTIL 8:00 AM PT ON WED MARCH 31, 2021 DO NOT DISTRIBUTE BEFORE EMBARGO LIFT Canadian-built laser chills antimatter to near absolute zero for first time Researchers achieve world’s first manipulation of antimatter by laser Vancouver, BC – Researchers with the CERN-based ALPHA collaboration have announced the world’s first laser-based manipulation of antimatter, leveraging a made-in-Canada laser system to cool a sample of antimatter down to near absolute zero. The achievement, detailed in an article published today and featured on the cover of the journal Nature, will significantly alter the landscape of antimatter research and advance the next generation of experiments. Antimatter is the otherworldly counterpart to matter; it exhibits near-identical characteristics and behaviours but has opposite charge. Because they annihilate upon contact with matter, antimatter atoms are exceptionally difficult to create and control in our world and had never before been manipulated with a laser. “Today’s results are the culmination of a years-long program of research and engineering, conducted at UBC but supported by partners from across the country,” said Takamasa Momose, the University of British Columbia (UBC) researcher with ALPHA’s Canadian team (ALPHA-Canada) who led the development of the laser. “With this technique, we can address long-standing mysteries like: ‘How does antimatter respond to gravity? Can antimatter help us understand symmetries in physics?’. These answers may fundamentally alter our understanding of our Universe.” Since its introduction 40 years ago, laser manipulation and cooling of ordinary atoms have revolutionized modern atomic physics and enabled several Nobel-winning experiments. -
Atomic Physicsphysics AAA Powerpointpowerpointpowerpoint Presentationpresentationpresentation Bybyby Paulpaulpaul E.E.E
ChapterChapter 38C38C -- AtomicAtomic PhysicsPhysics AAA PowerPointPowerPointPowerPoint PresentationPresentationPresentation bybyby PaulPaulPaul E.E.E. Tippens,Tippens,Tippens, ProfessorProfessorProfessor ofofof PhysicsPhysicsPhysics SouthernSouthernSouthern PolytechnicPolytechnicPolytechnic StateStateState UniversityUniversityUniversity © 2007 Objectives:Objectives: AfterAfter completingcompleting thisthis module,module, youyou shouldshould bebe ableable to:to: •• DiscussDiscuss thethe earlyearly modelsmodels ofof thethe atomatom leadingleading toto thethe BohrBohr theorytheory ofof thethe atom.atom. •• DemonstrateDemonstrate youryour understandingunderstanding ofof emissionemission andand absorptionabsorption spectraspectra andand predictpredict thethe wavelengthswavelengths oror frequenciesfrequencies ofof thethe BalmerBalmer,, LymanLyman,, andand PashenPashen spectralspectral series.series. •• CalculateCalculate thethe energyenergy emittedemitted oror absorbedabsorbed byby thethe hydrogenhydrogen atomatom whenwhen thethe electronelectron movesmoves toto aa higherhigher oror lowerlower energyenergy level.level. PropertiesProperties ofof AtomsAtoms ••• AtomsAtomsAtoms areareare stablestablestable andandand electricallyelectricallyelectrically neutral.neutral.neutral. ••• AtomsAtomsAtoms havehavehave chemicalchemicalchemical propertiespropertiesproperties whichwhichwhich allowallowallow themthemthem tototo combinecombinecombine withwithwith otherotherother atoms.atoms.atoms. ••• AtomsAtomsAtoms emitemitemit andandand absorbabsorbabsorb -
Eindhoven University of Technology BACHELOR Creating Rydberg
Eindhoven University of Technology BACHELOR Creating Rydberg crystals in ultra-cold gases using stimulated Raman adiabatic passage schemes Plantz, N.W.M.; van der Wurff, E.C.I. Award date: 2012 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology Department of Applied Physics Coherence and Quantum Technology group CQT 2012-08 Creating Rydberg crystals in ultra-cold gases using Stimulated Raman Adiabatic Passage Schemes N.W.M. Plantz & E.C.I. van der Wurff July 2012 Supervisors: ir. R.M.W. van Bijnen dr. ir. S.J.J.M.F. Kokkelmans dr. ir. E.J.D. Vredenbregt Abstract This report is the result of a bachelor internship of two applied physics students. -
Arxiv:1709.00790V3 [Physics.Atom-Ph] 23 Nov 2017 Initial Loading Stage of the Trap
Two-dimensional magneto-optical trap as a source for cold strontium atoms Ingo Nosske,1, 2 Luc Couturier,1, 2 Fachao Hu,1, 2 Canzhu Tan,1, 2 Chang Qiao,1, 2 Jan Blume,1, 2, 3 Y. H. Jiang,4, ∗ Peng Chen,1, 2, y and Matthias Weidem¨uller1, 2, 3, z 1Hefei National Laboratory for Physical Sciences at the Microscale and Shanghai Branch, University of Science and Technology of China, Shanghai 201315, China 2CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China 3Physikalisches Institut, Universit¨atHeidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany 4Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China (Dated: November 27, 2017) We report on the realization of a transversely loaded two-dimensional magneto-optical trap serving as a source for cold strontium atoms. We analyze the dependence of the source's properties on various parameters, in particular the intensity of a pushing beam accelerating the atoms out of the source. An atomic flux exceeding 109 atoms=s at a rather moderate oven temperature of 500 ◦C is achieved. The longitudinal velocity of the atomic beam can be tuned over several tens of m/s by adjusting the power of the pushing laser beam. The beam divergence is around 60 mrad, determined by the transverse velocity distribution of the cold atoms. The slow atom source is used to load a three- dimensional magneto-optical trap realizing loading rates up to 109 atoms=s without indication of saturation of the loading rate for increasing oven temperature. -
Manipulating Atoms with Photons
Manipulating Atoms with Photons Claude Cohen-Tannoudji and Jean Dalibard, Laboratoire Kastler Brossel¤ and Coll`ege de France, 24 rue Lhomond, 75005 Paris, France ¤Unit¶e de Recherche de l'Ecole normale sup¶erieure et de l'Universit¶e Pierre et Marie Curie, associ¶ee au CNRS. 1 Contents 1 Introduction 4 2 Manipulation of the internal state of an atom 5 2.1 Angular momentum of atoms and photons. 5 Polarization selection rules. 6 2.2 Optical pumping . 6 Magnetic resonance imaging with optical pumping. 7 2.3 Light broadening and light shifts . 8 3 Electromagnetic forces and trapping 9 3.1 Trapping of charged particles . 10 The Paul trap. 10 The Penning trap. 10 Applications. 11 3.2 Magnetic dipole force . 11 Magnetic trapping of neutral atoms. 12 3.3 Electric dipole force . 12 Permanent dipole moment: molecules. 12 Induced dipole moment: atoms. 13 Resonant dipole force. 14 Dipole traps for neutral atoms. 15 Optical lattices. 15 Atom mirrors. 15 3.4 The radiation pressure force . 16 Recoil of an atom emitting or absorbing a photon. 16 The radiation pressure in a resonant light wave. 17 Stopping an atomic beam. 17 The magneto-optical trap. 18 4 Cooling of atoms 19 4.1 Doppler cooling . 19 Limit of Doppler cooling. 20 4.2 Sisyphus cooling . 20 Limits of Sisyphus cooling. 22 4.3 Sub-recoil cooling . 22 Subrecoil cooling of free particles. 23 Sideband cooling of trapped ions. 23 Velocity scales for laser cooling. 25 2 5 Applications of ultra-cold atoms 26 5.1 Atom clocks . 26 5.2 Atom optics and interferometry . -
22. Atomic Physics and Quantum Mechanics
22. Atomic Physics and Quantum Mechanics S. Teitel April 14, 2009 Most of what you have been learning this semester and last has been 19th century physics. Indeed, Maxwell's theory of electromagnetism, combined with Newton's laws of mechanics, seemed at that time to express virtually a complete \solution" to all known physical problems. However, already by the 1890's physicists were grappling with certain experimental observations that did not seem to fit these existing theories. To explain these puzzling phenomena, the early part of the 20th century witnessed revolutionary new ideas that changed forever our notions about the physical nature of matter and the theories needed to explain how matter behaves. In this lecture we hope to give the briefest introduction to some of these ideas. 1 Photons You have already heard in lecture 20 about the photoelectric effect, in which light shining on the surface of a metal results in the emission of electrons from that surface. To explain the observed energies of these emitted elec- trons, Einstein proposed in 1905 that the light (which Maxwell beautifully explained as an electromagnetic wave) should be viewed as made up of dis- crete particles. These particles were called photons. The energy of a photon corresponding to a light wave of frequency f is given by, E = hf ; where h = 6:626×10−34 J · s is a new fundamental constant of nature known as Planck's constant. The total energy of a light wave, consisting of some particular number n of photons, should therefore be quantized in integer multiples of the energy of the individual photon, Etotal = nhf. -
Lorentz's Electromagnetic Mass: a Clue for Unification?
Lorentz’s Electromagnetic Mass: A Clue for Unification? Saibal Ray Department of Physics, Barasat Government College, Kolkata 700 124, India; Inter-University Centre for Astronomy and Astrophysics, Pune 411 007, India; e-mail: [email protected] Abstract We briefly review in the present article the conjecture of electromagnetic mass by Lorentz. The philosophical perspectives and historical accounts of this idea are described, especially, in the light of Einstein’s special relativistic formula E = mc2. It is shown that the Lorentz’s elec- tromagnetic mass model has taken various shapes through its journey and the goal is not yet reached. Keywords: Lorentz conjecture, Electromagnetic mass, World view of mass. 1. Introduction The Nobel Prize in Physics 2004 has been awarded to D. J. Gross, F. Wilczek and H. D. Politzer [1,2] “for the discovery of asymptotic freedom in the theory of the strong interaction” which was published three decades ago in 1973. This is commonly known as the Standard Model of mi- crophysics (must not be confused with the other Standard Model of macrophysics - the Hot Big Bang!). In this Standard Model of quarks, the coupling strength of forces depends upon distances. Hence it is possible to show that, at distances below 10−32 m, the strong, weak and electromagnetic interactions are “different facets of one universal interaction”[3,4]. This instantly reminds us about another Nobel Prize award in 1979 when S. Glashow, A. Salam and S. Weinberg received it “for their contributions to the theory of the unified weak and electro- magnetic interaction between elementary particles, including, inter alia, the prediction of the arXiv:physics/0411127v4 [physics.hist-ph] 31 Jul 2007 weak neutral current”. -
Two-Element Zeeman Slower for Rubidium and Lithium
PHYSICAL REVIEW A 81, 043424 (2010) Two-element Zeeman slower for rubidium and lithium G. Edward Marti,1 Ryan Olf,1 Enrico Vogt,1,* Anton Ottl,¨ 1 and Dan M. Stamper-Kurn1,2 1Department of Physics, University of California, Berkeley, California 94720, USA 2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 8 February 2010; published 29 April 2010) We demonstrate a two-element oven and Zeeman slower that produce simultaneous and overlapped slow beams of rubidium and lithium. The slower uses a three-stage design with a long, low-acceleration middle stage for decelerating rubidium situated between two short, high-acceleration stages for aggressive deceleration of lithium. This design is appropriate for producing high fluxes of atoms with a large mass ratio in a simple, robust setup. DOI: 10.1103/PhysRevA.81.043424 PACS number(s): 37.10.De, 37.20.+j I. INTRODUCTION single apparatus that produces simultaneous high-brightness beams of two atomic elements with a large mass ratio. This In recent years, experiments that produce quantum gases paper demonstrates our success at producing continuous and comprised of multiple atomic elements have enabled a wide overlapped slow beams of rubidium (87Rb) and lithium (7Li) range of new investigations. In some cases, the gaseous mixture using a specially designed Zeeman slower and two-element is used as a technical means to perform improved studies of oven. a single-element gas, for example allowing for sympathetic evaporative cooling of an atomic element with unfavorable collisional properties [1–4] or by allowing one element to II. DESIGN AND CONSTRUCTION act as a collocated detector for a second quantum gas (a We summarize the operating principle and some design thermometer in Refs. -
Strontium Laser Cooling and Trapping Apparatus
Contents 1 Introduction 1 2 Doppler Cooling 3 2.1 Scattering Force . 3 2.2 Optical Molasses . 5 2.3 Doppler Cooling Limit . 6 2.4 Strontium Level Structure . 6 3 Apparatus Design 9 3.1 Vacuum Chamber Overview . 9 3.2 Strontium Oven Nozzle . 10 3.3 2D-Collimator . 11 3.4 Zeeman Slower . 12 3.5 Magneto-Optical Trap . 15 3.6 Magnetic Trap . 18 4 461nm Diode Laser System 21 4.1 Optical Layout . 21 4.2 Frequency Locking Scheme . 24 5 Measurements 27 5.1 Atom Number . 27 5.2 Magnetic Trap Atom Loss . 28 5.3 Zeeman Slower Optimization . 31 5.4 MOT Optimization . 32 5.5 Loading Rate . 35 5.6 Temperature . 37 5.7 Conclusion . 38 i ii CONTENTS Appendices 39 A Vacuum Viewport AR Coatings 41 B Machine Drawings 43 C Oven Nozzle Assembly 53 D Obtaining Ultra-High Vacuum 55 List of Figures 2.1 Relevant energy levels for Doppler-cooling on broad strontium transition. 3 2.2 Photon scattering rate as a function of total detuning at different values of intensity. 4 2.3 Damping coefficient as a function of laser detuning at different intensities in 3-D. 5 2.4 Energy level spectrum of strontium. Decay rates are shown in addition to the wavelengths of the trapping and repumping beams. 7 3.1 Listed are the various vacuum chamber components of the apparatus: the oven nozzle (cyan), 2D-Collimator (red), differential pumping tube (green), Zeeman Slower (orange), MOT cham- ber (blue), anti-Helmholtz coils (pink), ion pumps (purple), non-evaporable getter (dark green).