Soil Sampling in Permafrost Areas Johnston, G

Total Page:16

File Type:pdf, Size:1020Kb

Soil Sampling in Permafrost Areas Johnston, G NRC Publications Archive Archives des publications du CNRC Soil sampling in permafrost areas Johnston, G. H. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/20375580 Technical Paper (National Research Council of Canada. Division of Building Research), 1963-07 NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=f93d9669-41db-43e7-b87e-72319ff4da7c https://publications-cnrc.canada.ca/fra/voir/objet/?id=f93d9669-41db-43e7-b87e-72319ff4da7c Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected]. NnrroNeL ResEARcH CouNclt- CANADA . DIVISION OF BUILDING RESEARCH SOILSAMPLINC IN t, PERMAFROSTAREAS + i BUILDIi,,JGRESEARCH I F,- { -\, - | i-':- il AUG13 1963 NATIONAL RESEARCH COUNCIL ANATYZED G. H. Johnston Northern ResearchCroup, Soil Mechnnics Section, Diuision of Buildine Research, National Research Courwil, Ottausa, Canada TECHNICAL PAPER NO. 155 OF THE DIVISION OF BUILDING RESEARCH Permission to publish this article must be obtained from the Engineering Institute of Canada, 2050 Mansfield Street, Montreal, Canada. : o:'^1ffi OTTAWA PRICE 10 CENTS JULY 1963 NRC 7417 _z 61.3 cc5 r-l-'tHE OCCURRENCE of perenni- perennially frozen ground, the depth -l ally {r'ozen ground, more common- of the active layer and the depth of ly known as permafrost, throughout seasonal frost penetration should be much of northern Canada creates determined durine the course of sub- special problems for engineering ron- surface investigati,ons. This is of par- struction. With the great increase in ticular importance in the region at construction activity in Arctic and the southern boundaly of permafrost Subarctic regions, the diificulties rn'here perennially frozen ground may encountered in both the construction occur at several feet below the and maintenance of buildings, roads, ground surface. airstrips and other structures have The relative inaccessibility of many emphasized the need for thorough Fig. 3, Test pit excavation by natural northern areas and climatic limita- thawing. Removing thawed material site investigations prior to the design tions may dictate to a large extent from test pit excavated in gravel. of such structures in areas underlain what fornl a subsurface investigation, by permafrost. may take.uThe purpose of this papei- natural exposures such as those occur- Permafrost is not a new material is to outline the various nlocedures ring along stream and lake banks, in but is simply the frozen equivalent of and techniques that *"y b" used in gullies and, as a result of local slump- materials found in more southerly engineering soil surveys to obtain ing, (Figs. I and 2) on steep, gener- regions. It is a thermal condition of representative samples of perennially ally south-facing slopes. By late sum- the ground, and the engineering prob- frozen ground in northern areas, so mer, thawing has usually penetrated lems associated with it arise mainll, that subsurface conditions may be well into the face of the exposure because of the variable nature of soil adequately determined. so that representative samples can be properties from the frozen to thb easily obtained. thawed state. Perennially frozen If a complete profile of the ex- ground which may contain a great posule is required, colluvial material deal of moisture in the form of ice must be removed by digging a narrow may, upon thawing, Iose much of its trench down the slope. Deeper supporting stlength, resulting in large ex- cavation into the slope is carried out settlements and even failures of vari- at intelvals when the soil type ous structures erected upon it. changes, and samples for classification A knowledge o{ the ice phase in and identificatior-r testine are taken. {rozen soils is most important to the Colluvial material is uiually easilv engineer for it is this factor that has recognized because it is a heterogene- the greatest effect on the perforrn- ous mixture of most of the soils ance of any structure. Ice segregation Fig. 2. Natural exposure following a Iocal slide in side of hill showing large found in the exposure. It is. most may occur in many ways ranging masses or lenses of ice. Note large easily t'ecognized by its disturbed from coatings on individual soil par- boulders in the predominantly fine- structure rvhile the parent material is ticles and minute hairline lenses, grained soil. more orderly. scarcely visible to the naked eye, to On large (deep) exposures, exca- large inclusions of ice up to several vating to obtain a continuous profile feet thick. These different forms of METHODS OF'OBTAINING is a tedious and time-consuming task. icc segregation can and do occur in SOIL SAMPLES Frequently, colluvial material is only all types of soil, even in gravel and Engineering soils and permafrost removed at the top, middle and bot- coarse sand. The most serious diffi- investigations may be carried out to tom of the slope with small test pits culties. however. arise from fine- depths of only 10 ft. or as much as at each of these locations. Where grained soils in which the moisture 100 ft. depending on the purpose of irregularities or distinct changes oc- content may be very large but where the survey. Such investigations may cur: on the slope, additional excava- the ice segregation may be difficult use one or more of the following tion should be carried out at these to discern. All soils must be ex- methods to obtain representative points. amined and sampled, therefore, to samples for the determination of soil determine the form and distribution In all soil exposure excavations, :rnd permafrost characteristics: of ice in them, in addition to the soil the slope orientation and depth to (a) type. sampling natural exposlrres, frozen ground (at right angles to (b) hand borings, the slope) should be noted. In many Although it is not always easy to (c) cases, frozen soil may be encountered distinguish between seasonally and test pits, (d) core drilling. relatively close to the face of the slope and a careful examination Fig, 1. Natural exposure on bank of The first two methods are generally should be made to determine the stream-thawing occurring accompanied applicable for shallower depths and ertent and types of ice segregation for general information, while the occurring in the material. Caution last trvo will give detailed information should be exercised, however, in de- to greater depths. Each method will scribing the ice phase for it has been be discussed separatelv. A list of found that the ice structure in these equipment requiled to carry out each locations is often disturbed and modi- of the above methods of erplolation fied by its proximity to and the effect is given in Appendir A. o{ the slope. If frozen soil is not en- countered in the excavation, then its Sampling Natural Exposures location u'ith reference to the face of N{uch irrfolmation irborrt soil cal l;c the slope should be established by gainell with little effort by examining means of probing. The expenditure of much energy to obtain frozen Drioing Pipe samples from an exposure is not usu- Core samples of frozen fine-grained ally iustified. materials can sometimes be obtained Accepting the limitations of this by driving a heavy walled steel pipe method in providing reliable informa- into the ground with a sledge ham- tion on ice segregation, the investiga- mer. The pipe used should be about tion of natural soil exposures is still I to 2 in. in diameter and about 5 ft. one of the most effective means of in length. The upper or striking end obtaining much exploratory soil in- of the p,pe shoutrd be fitted with an formation in northern areas with a extra heavy coupling or pipe cap to minimum of effort. The method plevent splaying of the pipe when should be used wherever possible for struck. The cutting edge of the pipe a preliminary assessment of soil and can be specially hard tipped but permafrost conditions in any area generally this is not warranted. The under consideration as a consuuc- cutting edge can be kept relatively tion site. sharp using a file. As the pipe is struck, it is rotated by pipe wrenches. Hand Borings It should not be driven more than Obtaining soil samples of perenni- 6 to 9 in. into the ground at one time, ally frozen ground using conventionarl since the removal of the pipe can be hand-boring equipment is difficult difficult. The soil core is removed and at times impossible because of from inside the pipe by gently tap- its rock-like nature. Hand borings ping the outer wall with the hammer'. are not practicable in frozen granular Holes have been produced by this Fig.
Recommended publications
  • A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used As a Training Tool
    A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Item Type Report Authors Darrow, Margaret M.; Huang, Scott L.; Obermiller, Kyle Publisher Alaska University Transportation Center Download date 26/09/2021 04:55:55 Link to Item http://hdl.handle.net/11122/7546 A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Final Report December 2011 Prepared by PI: Margaret M. Darrow, Ph.D. Co-PI: Scott L. Huang, Ph.D. Co-author: Kyle Obermiller Institute of Northern Engineering for Alaska University Transportation Center REPORT CONTENTS TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................ 1 2.0 REVIEW OF UNSTABLE SOIL SLOPES IN PERMAFROST AREAS ............................... 1 3.0 THE NELCHINA SLIDE ..................................................................................................... 2 4.0 THE RICH113 SLIDE ......................................................................................................... 5 5.0 THE CHITINA DUMP SLIDE .............................................................................................. 6 6.0 SUMMARY ......................................................................................................................... 9 7.0 REFERENCES ................................................................................................................. 10 i A STUDY OF UNSTABLE SLOPES IN PERMAFROST AREAS 1.0 INTRODUCTION
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs Molards as an indicator of permafrost degradation and landslide processes Journal Item How to cite: Morino, Costanza; Conway, Susan J.; Sæmundsson, Þorsteinn; Kristinn Helgason, Jón; Hillier, John; Butcher, Frances E.G.; Balme, Matthew R.; Jordan, Colm and Argles, Tom (2019). Molards as an indicator of permafrost degradation and landslide processes. Earth and Planetary Science Letters, 516 pp. 136–147. For guidance on citations see FAQs. c 2019 Elsevier B.V. https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.epsl.2019.03.040 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Earth and Planetary Science Letters 516 (2019) 136–147 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Molards as an indicator of permafrost degradation and landslide processes ∗ Costanza Morino a,b, , Susan J. Conway b, Þorsteinn Sæmundsson c, Jón Kristinn Helgason d, John Hillier e, Frances E.G. Butcher f, Matthew R. Balme f, Colm Jordan g, Tom Argles a a School of Environment, Earth & Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK b Laboratoire de Planétologie et Géodynamique
    [Show full text]
  • The Distribution of Silty Soils in the Grayling Fingers Region of Michigan: Evidence for Loess Deposition Onto Frozen Ground
    Geomorphology 102 (2008) 287–296 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The distribution of silty soils in the Grayling Fingers region of Michigan: Evidence for loess deposition onto frozen ground Randall J. Schaetzl ⁎ Department of Geography, 128 Geography Building, Michigan State University, East Lansing, MI, 48824-1117, USA ARTICLE INFO ABSTRACT Article history: This paper presents textural, geochemical, mineralogical, soils, and geomorphic data on the sediments of the Received 12 September 2007 Grayling Fingers region of northern Lower Michigan. The Fingers are mainly comprised of glaciofluvial Received in revised form 25 March 2008 sediment, capped by sandy till. The focus of this research is a thin silty cap that overlies the till and outwash; Accepted 26 March 2008 data presented here suggest that it is local-source loess, derived from the Port Huron outwash plain and its Available online 10 April 2008 down-river extension, the Mainstee River valley. The silt is geochemically and texturally unlike the glacial fl Keywords: sediments that underlie it and is located only on the attest parts of the Finger uplands and in the bottoms of Glacial geomorphology upland, dry kettles. On sloping sites, the silty cap is absent. The silt was probably deposited on the Fingers Loess during the Port Huron meltwater event; a loess deposit roughly 90 km down the Manistee River valley has a Permafrost comparable origin. Data suggest that the loess was only able to persist on upland surfaces that were either Kettles closed depressions (currently, dry kettles) or flat because of erosion during and after loess deposition.
    [Show full text]
  • Virtual Reality Modeling of the CRREL Permafrost Tunnel, Alaska
    VIRTUAL REALITY MODELING OF THE CRREL PERMAFROST TUNNEL, ALASKA Conner Truskowski, Margaret Rudolf, and Cassidy Phillips [email protected] [email protected] [email protected] Background Discussion The main problem faced while taking photos was low and As of today, few real, small-scale locations have been modeled for variable light. While we did have smaller lights to add to what is Virtual Reality (VR). One location, perfect for modeling, is the currently in the tunnel, more would be needed in the future to Permafrost Tunnel between Fairbanks and Fox, Alaska. The improve upon the model. Nevertheless, the end product has Tunnel was originally made between 1963 and 1969 by the Army about 97% coverage with the remining 3% of the tunnel appearing Corps of Engineers as a bunker and storage experiment. Since as holes due to surfaces being too smooth or dark for Metashape then, the tunnel has been used extensively for permafrost, to recognize. A faster, more biology, geology, climate, mining, and engineering research. It is powerful computer would cut currently owned by the U.S. Army Cold Regions Research and down on processing time and Engineering Laboratory (CRREL). We set out to develop a useable could result in a higher VR model of the Permafrost Tunnel for educational use. We used resolution model. a 360-degree camera, Agisoft Metashape, and the Unity game engine to generate a Variable lighting, dust, and smooth Location of the useable model. Upon surfaces in the tunnel tunnel. (Modified completion, students Illustrated goggle view of the tunnel from Explore Fairbanks Photo: (Shelby Lum / Alaska Dispatch News) Aurora Tracker) from around the world and people with disabilities or illnesses Conclusion will have access to the Permafrost Tunnel.
    [Show full text]
  • Changes in Peat Chemistry Associated with Permafrost Thaw Increase Greenhouse Gas Production
    Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production Suzanne B. Hodgkinsa,1, Malak M. Tfailya, Carmody K. McCalleyb, Tyler A. Loganc, Patrick M. Crilld, Scott R. Saleskab, Virginia I. Riche, and Jeffrey P. Chantona,1 aDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306; bDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; cAbisko Scientific Research Station, Swedish Polar Research Secretariat, SE-981 07 Abisko, Sweden; dDepartment of Geological Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; and eDepartment of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721 Edited by Nigel Roulet, McGill University, Montreal, Canada, and accepted by the Editorial Board March 7, 2014 (received for review August 1, 2013) 13 Carbon release due to permafrost thaw represents a potentially during CH4 production (10–12, 16, 17), δ CCH4 also depends on 13 major positive climate change feedback. The magnitude of carbon δ CCO2,soweusethemorerobustparameterαC (10) to repre- loss and the proportion lost as methane (CH4) vs. carbon dioxide sent the isotopic separation between CH4 and CO2.Despitethe ’ (CO2) depend on factors including temperature, mobilization of two production pathways stoichiometric equivalence (17), they previously frozen carbon, hydrology, and changes in organic mat- are governed by different environmental controls (18). Dis- ter chemistry associated with environmental responses to thaw. tinguishing these controls and further mapping them is therefore While the first three of these effects are relatively well under- essential for predicting future changes in CH4 formation under stood, the effect of organic matter chemistry remains largely un- changing environmental conditions.
    [Show full text]
  • The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory
    water Article The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory Dawei Lei 1,2, Yugui Yang 1,2,* , Chengzheng Cai 1,2, Yong Chen 3 and Songhe Wang 4 1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China; [email protected] (D.L.); [email protected] (C.C.) 2 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China 3 State Key Laboratory of Coal Resource and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China; [email protected] 4 Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China; [email protected] * Correspondence: [email protected] Received: 2 September 2020; Accepted: 22 September 2020; Published: 25 September 2020 Abstract: The freezing process of saturated soil is studied under the condition of water replenishment. The process of soil freezing was simulated based on the theory of the energy and mass conservation equations and the equation of mechanical equilibrium. The accuracy of the model was verified by comparison with the experimental results of soil freezing. One-side freezing of a saturated 10-cm-high soil column in an open system with different parameters was simulated, and the effects of the initial void ratio, hydraulic conductivity, and thermal conductivity of soil particles on soil frost heave, freezing depth, and ice lenses distribution during soil freezing were explored. During the freezing process, water migrates from the warm end to the frozen fringe under the actions of the temperature gradient and pore pressure.
    [Show full text]
  • Chapter 7 Seasonal Snow Cover, Ice and Permafrost
    I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.
    [Show full text]
  • DISSERTATION LANDSLIDE RESPONSE to CLIMATE CHANGE in DENALI NATIONAL PARK, ALASKA, and OTHER PERMAFROST REGIONS Submitted By
    DISSERTATION LANDSLIDE RESPONSE TO CLIMATE CHANGE IN DENALI NATIONAL PARK, ALASKA, AND OTHER PERMAFROST REGIONS Submitted by Annette Patton Department of Geosciences In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2019 Doctoral Committee: Advisor: Sara Rathburn Ellen Wohl John Singleton Jeffrey Niemann Copyright by Annette Patton 2019 All Rights Reserved ABSTRACT LANDSLIDE RESPONSE TO CLIMATE CHANGE IN DENALI NATIONAL PARK, ALASKA, AND OTHER PERMAFROST REGIONS Rapid permafrost thaw in the high-latitude and high-elevation areas increases hillslope susceptibility to landsliding by altering geotechnical properties of hillslope materials, including reduced cohesion and increased hydraulic connectivity. The overarching goal of this study is to improve the understanding of geomorphic controls on landslide initiation at high latitudes. In this dissertation, I present a literature review, surficial mapping and a landslide inventory, and site-specific landslide monitoring to evaluate landslide processes in permafrost regions. Following an introduction to landslides in permafrost regions (Chapter 1), the second chapter synthesizes the fundamental processes that will increase landslide frequency and magnitude in permafrost regions in the coming decades with observational and analytical studies that document landslide regimes in high latitudes and elevations. In Chapter 2, I synthesize the available literature to address five questions of practical importance,
    [Show full text]
  • A Combined Experimental and Numerical Study of Pore Water Pressure Variations in Sub -Permafrost Groundwater Agnès Rivière, Anne Jost, Julio Goncalvès
    A combined experimental and numerical study of pore water pressure variations in sub -permafrost groundwater Agnès Rivière, Anne Jost, Julio Goncalvès To cite this version: Agnès Rivière, Anne Jost, Julio Goncalvès. A combined experimental and numerical study of pore water pressure variations in sub -permafrost groundwater. AGU Fall Meeting 2013, Dec 2013, San Francisco, United States. pp.abstract C53A-0551. hal-01396681 HAL Id: hal-01396681 https://hal.archives-ouvertes.fr/hal-01396681 Submitted on 15 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A combined experimental and numerical study of pore water pressure variations in sub-permafrost groundwater. Agnès Rivière1 Anne Jost2, and Julio Goncalvès 3 1 Department of Geoscience, University of Calgary,T2N1N4, Calgary, Alberta, Canada 2 UPMC University Paris VI, UMR 7619, SISYPHE, F-75005, Paris, France, CNRS, UMR 7619, Sisyphe, F-75005, Paris, France. 3 CNRS, UMR 7330, CEREGE, F-13100, Aix-en-Provence, France. The past few decades have seen a rapid development and progress in research on past and current hydrologic impacts of permafrost evolution. In permafrost area, groundwater is subdivided into two zones: supra-permafrost and sub-permafrost which are separated by permafrost.
    [Show full text]
  • Permafrost Soils and Carbon Cycling
    SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile.
    [Show full text]
  • Peatland Permafrost Thaw and Landform Type Along a Climatic Gradient
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Peatland permafrost thaw and landform type along a climatic gradient D.W. Beilman* Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada S.D. Robinson Department of Geology, St. Lawrence University, Canton, USA ABSTRACT: Recent change in the areal extent of permafrost at the individual peatland scale was determined from aerial photographs and Ikonos satellite imagery. Nine peatland sites were mapped from across the Discontinuous Permafrost Zone (DPZ) of western Canada, from the southern limit of permafrost in the prairie provinces to the northern part of the DPZ in the Mackenzie Valley, NWT. Sites span a mean annual air tempera- ture (MAAT) gradient from 0.2 to Ϫ4.3°C. At five southern sites between 30 and 65% of localized permafrost has degraded over the last 100–150 years. Total thaw is significantly correlated to MAAT and stability appears positively related to the size of remaining permafrost landforms. At four northern sites as much as 50% of peat plateau permafrost has thawed over 50 years, and total thaw can be greater than in the south. Results suggest that localized permafrost at the southern limit of the DPZ respond more directly to climate, whereas response of peat plateaus in the north may be more complex. 1 INTRODUCTION mounds in the south (Vitt et al. 1994). Permafrost has been thawing and sometimes completely dissappear- Northern circumpolar air temperatures have warmed ing from many northern peatlands across western in the recent past, as evidenced by the instrument North America from Alaska (Jorgensen et al.
    [Show full text]
  • A Simplified Permafrost-Carbon Model for Long-Term Climate Studies
    Geosci. Model Dev., 7, 3111–3134, 2014 www.geosci-model-dev.net/7/3111/2014/ doi:10.5194/gmd-7-3111-2014 © Author(s) 2014. CC Attribution 3.0 License. A simplified permafrost-carbon model for long-term climate studies with the CLIMBER-2 coupled earth system model K. A. Crichton1,2, D. M. Roche3,4, G. Krinner1,2, and J. Chappellaz1,2 1CNRS, LGGE (UMR5183), 38041 Grenoble, France 2Univ. Grenoble Alpes, LGGE (UMR5183), 38041 Grenoble, France 3CEA/INSU-CNRS/UVSQ, LSCE (UMR8212), Centre d’Etudes de Saclay CEA-Orme des Merisiers, bat. 701 91191 Gif-sur-Yvette CEDEX, France 4Cluster Earth and Climate, Department of Earth Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands Correspondence to: K. A. Crichton ([email protected]) Received: 27 June 2014 – Published in Geosci. Model Dev. Discuss.: 30 July 2014 Revised: 7 November 2014 – Accepted: 24 November 2014 – Published: 18 December 2014 Abstract. We present the development and validation of a latitudes (Tarnocai et al., 2009) and its potential release on simplified permafrost-carbon mechanism for use with the thaw (Schuur et al., 2008; Harden et al., 2012) make per- land surface scheme operating in the CLIMBER-2 earth sys- mafrost and permafrost-related carbon an important area of tem model. The simplified model estimates the permafrost study. Thus far permafrost models that have been coupled fraction of each grid cell according to the balance between within land-surface schemes have relied on thermal heat dif- modelled cold (below 0 ◦C) and warm (above 0 ◦C) days in fusion calculations from air temperatures into the ground to a year.
    [Show full text]