Open Research Online Oro.Open.Ac.Uk

Total Page:16

File Type:pdf, Size:1020Kb

Open Research Online Oro.Open.Ac.Uk Open Research Online The Open University’s repository of research publications and other research outputs Molards as an indicator of permafrost degradation and landslide processes Journal Item How to cite: Morino, Costanza; Conway, Susan J.; Sæmundsson, Þorsteinn; Kristinn Helgason, Jón; Hillier, John; Butcher, Frances E.G.; Balme, Matthew R.; Jordan, Colm and Argles, Tom (2019). Molards as an indicator of permafrost degradation and landslide processes. Earth and Planetary Science Letters, 516 pp. 136–147. For guidance on citations see FAQs. c 2019 Elsevier B.V. https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.epsl.2019.03.040 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Earth and Planetary Science Letters 516 (2019) 136–147 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Molards as an indicator of permafrost degradation and landslide processes ∗ Costanza Morino a,b, , Susan J. Conway b, Þorsteinn Sæmundsson c, Jón Kristinn Helgason d, John Hillier e, Frances E.G. Butcher f, Matthew R. Balme f, Colm Jordan g, Tom Argles a a School of Environment, Earth & Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK b Laboratoire de Planétologie et Géodynamique de Nantes UMR-CNRS 6112, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France c Department of Geography and Tourism, University of Iceland, Askja, Sturlugata 7, IS-101 Reykjavík, Iceland d Icelandic Meteorological Office, Avalanche Centre, Suðurgata 12, Ísafjörður, Iceland e Geography and Environment, Loughborough University, Loughborough, LE11 3TU, UK f School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK g British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, UK a r t i c l e i n f o a b s t r a c t Article history: Molards have been defined in the past as conical mounds of debris that can form part of a landslide’s Received 15 February 2018 deposits. We present the first conclusive evidence that molards in permafrost terrains are cones of loose Received in revised form 20 March 2019 debris that result from thawing of frozen blocks of ice-rich sediments mobilised by a landslide, and hence Accepted 27 March 2019 propose a rigorous definition of this landform in permafrost environments. We show that molards can Available online xxxx be used as an indicator of permafrost degradation, and that their morphometry and spatial distribution Editor: J.P. Avouac give valuable insights into landslide dynamics in permafrost environments. We demonstrate that molards Keywords: are readily recognisable not only in the field, but also in remote sensing data; surveys of historic aerial molards imagery allow the recognition of relict molards, which can be used as an indicator of current and past permafrost permafrost conditions. The triggering of landslides as a result of permafrost degradation will arguably landslide occur more often as global atmospheric temperatures increase, so molards should be added to our Iceland armoury for tracking climate change, as well as helping us to understand landslide-related hazards. Mars Finally, we have also identified candidate molards on Mars, so molards can inform about landscape evolution on Earth and other planetary bodies. © 2019 Elsevier B.V. All rights reserved. 1. Introduction Jermyn and Geertsema, 2015), up to 12 m wide (Milana, 2016), have a single, central, rounded to pointed summit (Jermyn and Geertsema, 2015;Xu et al., 2012), and flank slope angles of Glacial and periglacial environments are particularly sensitive ◦ ◦ to the effects of climate change (Haeberli and Beniston, 1998; 27 -45 (Cassie et al., 1988; McConnell and Brock, 1903). Molards Hinzman et al., 2005). However, few easily recognisable land- have been found in the distal zones, at the margins of the dis- forms in cold landscapes are reliable indicators of increasing placed mass, and/or below the main scarp of landslides (Cruden, atmospheric temperature. Here, we propose that molards, land- 1982; Geertsema et al., 2006b). forms poorly reported in the literature, can help to fill this Molards have recently been identified in a variety of periglacial gap. Molards have been defined as conical mounds occurring environments, including northern Canada, the Andes, and the in landslide deposits (Brideau et al., 2009; Cassie et al., 1988; peaks of south-east Tibet (Jermyn and Geertsema, 2015; Milana, Cruden, 1982; Geertsema et al., 2006b;Goguel and Pachoud, 1972; 2016;Xu et al., 2012). Three recent studies have hypothesised Jermyn and Geertsema, 2015;Lyle et al., 2004; McConnell and a link between molards and permafrost degradation (Brideau et Brock, 1903; Milana, 2016; Mollard and Janes, 1984;Xu et al., al., 2009;Lyle et al., 2004; Milana, 2016). It is proposed that 2012). They are generally ∼0.3-12 m high (Brideau et al., 2009; movement of landslide material in permafrost regimes causes blocks of frozen material to detach and be transported downs- lope (Brideau et al., 2009;Lyle et al., 2004). When the blocks come to rest, the ground ice cementing them thaws, leaving con- * Corresponding author at: Laboratoire de Planétologie et Géodynamique, Univer- sité de Nantes, Bâtiment 4, 2 Chemin de la Houssinière, 44300 Nantes, France. ical mounds of rocks and debris. Although no previous studies E-mail address: [email protected] (C. Morino). have observed the full cycle of molard evolution, original ground https://doi.org/10.1016/j.epsl.2019.03.040 0012-821X/© 2019 Elsevier B.V. All rights reserved. C. Morino et al. / Earth and Planetary Science Letters 516 (2019) 136–147 137 Fig. 1. The field sites. In the centre, an inset of the coastline of Iceland, with the location of the Móafellshyrna landslide as “a” and of the Árnesfjall landslide as “b”. a,The Móafellshyrna landslide photographed in summer 2015, with an inset showing the molards. b,The Árnesfjall landslide photographed in summer 2016, with an inset showing the molards. c, A molard in Árnesfjall photographed 2yrs after the landslide event and preserving the original preferential orientation of the source material (field notebook 19 × 13 cm as scale); note that the surface is clast-supported. d, A molard few days after the occurrence of Árnesfjall landside, preserving abundant fine deposits, person for scale. ice contents of 50-80% have been estimated (Brideau et al., 2009; ity in the release of the Móafellshyrna landslide (Morino, 2018; Milana, 2016)as sufficient for blocks of ice-cemented sediments to Sæmundsson et al., 2018). Both landslides could be simply clas- survive both initial failure and transport. sified as debris slides (Varnes, 1978), but we show that molards We studied molards found in two different landslides in Ice- allow the identification of additional failure dynamics. land: the first is located on the north-western side of Móafell- We combine field and remote sensing studies of molards to shyrna Mountain (Tröllaskagi peninsula, Fig. 1a), and the second constrain their complete evolution, providing the first observations on the north-facing side of the Árnesfjall Mountain (Westfjords, before and after ice loss. These observations allow us to propose a Fig. 1b). The bedrock of both areas falls within the Tertiary Basalt definition of the term to adopt for molards in permafrost terrains: Formation (Miocene-Lower Pliocene) (Jóhannesson, 2014), and is cones of loose debris that result from thawing of frozen blocks composed of basalts, rhyolites and weathered tephra layers. Both of ice-rich sediments mobilised by a landslide in permafrost ter- landslides originated from ice-cemented talus deposits perched rains. Our data dispel any lingering doubts about the direct link on topographic benches. The Móafellshyrna landslide occurred on between these landforms and permafrost degradation in cold en- 20th September 2012 at 873 m a.s.l., travelled ∼1,300 m and mo- vironments. We show that molards in permafrost environments bilised ∼310,000 m3 of material, while the Árnesfjall landslide are a critical indicator of permafrost degradation, and they can occurred on 14th July 2014 at 418 m a.s.l., travelled ∼560 m and reveal important information on the mobility of landslides in ter- had a volume of ∼130,000 m3. The preparatory factor for both rains affected by permafrost. We finally detail characteristics that landslides was intense precipitation, whilst permafrost degradation can be used to identify them in the field and from remote sensing was the main triggering factor, with a minor role of seismic activ- data. 138 C. Morino et al. / Earth and Planetary Science Letters 516 (2019) 136–147 2. Methods the GCPs in the image set, importing their coordinates recorded in the field by dGPS. The model was georeferenced using the 19 GCPs, 2.1. Fieldwork for which we obtained a horizontal uncertainty of 0.05 m to 0.08 m, and a vertical uncertainty of 0.05 to 0.15 m. The 3D model has We conducted fieldwork of the Móafellshyrna landslide nine reconstruction errors of 0.9–1.8 pixels and an absolute precision of days after its occurrence and of the Árnesfjall landslide one day af- 0.5–1.5 m. We then imported the DEM and the orthomosaic into ter the event. We revisited the Móafellshyrna site in summer 2015, ArcGIS for further analysis. three years after the landslide event, to perform field observations and ground-support for the collection of airphotos and airborne 2.4. Morphometric analysis of molards LiDAR (Light Detection And Ranging) data. We revisited the Árnes- fjall site in summer 2016 to perform field observations and collect In order to link the landslides’ processes to the morphology of a Structure from Motion (SfM) photogrammetry dataset.
Recommended publications
  • A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used As a Training Tool
    A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Item Type Report Authors Darrow, Margaret M.; Huang, Scott L.; Obermiller, Kyle Publisher Alaska University Transportation Center Download date 26/09/2021 04:55:55 Link to Item http://hdl.handle.net/11122/7546 A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Final Report December 2011 Prepared by PI: Margaret M. Darrow, Ph.D. Co-PI: Scott L. Huang, Ph.D. Co-author: Kyle Obermiller Institute of Northern Engineering for Alaska University Transportation Center REPORT CONTENTS TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................ 1 2.0 REVIEW OF UNSTABLE SOIL SLOPES IN PERMAFROST AREAS ............................... 1 3.0 THE NELCHINA SLIDE ..................................................................................................... 2 4.0 THE RICH113 SLIDE ......................................................................................................... 5 5.0 THE CHITINA DUMP SLIDE .............................................................................................. 6 6.0 SUMMARY ......................................................................................................................... 9 7.0 REFERENCES ................................................................................................................. 10 i A STUDY OF UNSTABLE SLOPES IN PERMAFROST AREAS 1.0 INTRODUCTION
    [Show full text]
  • The Distribution of Silty Soils in the Grayling Fingers Region of Michigan: Evidence for Loess Deposition Onto Frozen Ground
    Geomorphology 102 (2008) 287–296 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The distribution of silty soils in the Grayling Fingers region of Michigan: Evidence for loess deposition onto frozen ground Randall J. Schaetzl ⁎ Department of Geography, 128 Geography Building, Michigan State University, East Lansing, MI, 48824-1117, USA ARTICLE INFO ABSTRACT Article history: This paper presents textural, geochemical, mineralogical, soils, and geomorphic data on the sediments of the Received 12 September 2007 Grayling Fingers region of northern Lower Michigan. The Fingers are mainly comprised of glaciofluvial Received in revised form 25 March 2008 sediment, capped by sandy till. The focus of this research is a thin silty cap that overlies the till and outwash; Accepted 26 March 2008 data presented here suggest that it is local-source loess, derived from the Port Huron outwash plain and its Available online 10 April 2008 down-river extension, the Mainstee River valley. The silt is geochemically and texturally unlike the glacial fl Keywords: sediments that underlie it and is located only on the attest parts of the Finger uplands and in the bottoms of Glacial geomorphology upland, dry kettles. On sloping sites, the silty cap is absent. The silt was probably deposited on the Fingers Loess during the Port Huron meltwater event; a loess deposit roughly 90 km down the Manistee River valley has a Permafrost comparable origin. Data suggest that the loess was only able to persist on upland surfaces that were either Kettles closed depressions (currently, dry kettles) or flat because of erosion during and after loess deposition.
    [Show full text]
  • Virtual Reality Modeling of the CRREL Permafrost Tunnel, Alaska
    VIRTUAL REALITY MODELING OF THE CRREL PERMAFROST TUNNEL, ALASKA Conner Truskowski, Margaret Rudolf, and Cassidy Phillips [email protected] [email protected] [email protected] Background Discussion The main problem faced while taking photos was low and As of today, few real, small-scale locations have been modeled for variable light. While we did have smaller lights to add to what is Virtual Reality (VR). One location, perfect for modeling, is the currently in the tunnel, more would be needed in the future to Permafrost Tunnel between Fairbanks and Fox, Alaska. The improve upon the model. Nevertheless, the end product has Tunnel was originally made between 1963 and 1969 by the Army about 97% coverage with the remining 3% of the tunnel appearing Corps of Engineers as a bunker and storage experiment. Since as holes due to surfaces being too smooth or dark for Metashape then, the tunnel has been used extensively for permafrost, to recognize. A faster, more biology, geology, climate, mining, and engineering research. It is powerful computer would cut currently owned by the U.S. Army Cold Regions Research and down on processing time and Engineering Laboratory (CRREL). We set out to develop a useable could result in a higher VR model of the Permafrost Tunnel for educational use. We used resolution model. a 360-degree camera, Agisoft Metashape, and the Unity game engine to generate a Variable lighting, dust, and smooth Location of the useable model. Upon surfaces in the tunnel tunnel. (Modified completion, students Illustrated goggle view of the tunnel from Explore Fairbanks Photo: (Shelby Lum / Alaska Dispatch News) Aurora Tracker) from around the world and people with disabilities or illnesses Conclusion will have access to the Permafrost Tunnel.
    [Show full text]
  • Changes in Peat Chemistry Associated with Permafrost Thaw Increase Greenhouse Gas Production
    Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production Suzanne B. Hodgkinsa,1, Malak M. Tfailya, Carmody K. McCalleyb, Tyler A. Loganc, Patrick M. Crilld, Scott R. Saleskab, Virginia I. Riche, and Jeffrey P. Chantona,1 aDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306; bDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; cAbisko Scientific Research Station, Swedish Polar Research Secretariat, SE-981 07 Abisko, Sweden; dDepartment of Geological Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; and eDepartment of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721 Edited by Nigel Roulet, McGill University, Montreal, Canada, and accepted by the Editorial Board March 7, 2014 (received for review August 1, 2013) 13 Carbon release due to permafrost thaw represents a potentially during CH4 production (10–12, 16, 17), δ CCH4 also depends on 13 major positive climate change feedback. The magnitude of carbon δ CCO2,soweusethemorerobustparameterαC (10) to repre- loss and the proportion lost as methane (CH4) vs. carbon dioxide sent the isotopic separation between CH4 and CO2.Despitethe ’ (CO2) depend on factors including temperature, mobilization of two production pathways stoichiometric equivalence (17), they previously frozen carbon, hydrology, and changes in organic mat- are governed by different environmental controls (18). Dis- ter chemistry associated with environmental responses to thaw. tinguishing these controls and further mapping them is therefore While the first three of these effects are relatively well under- essential for predicting future changes in CH4 formation under stood, the effect of organic matter chemistry remains largely un- changing environmental conditions.
    [Show full text]
  • The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory
    water Article The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory Dawei Lei 1,2, Yugui Yang 1,2,* , Chengzheng Cai 1,2, Yong Chen 3 and Songhe Wang 4 1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China; [email protected] (D.L.); [email protected] (C.C.) 2 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China 3 State Key Laboratory of Coal Resource and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China; [email protected] 4 Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China; [email protected] * Correspondence: [email protected] Received: 2 September 2020; Accepted: 22 September 2020; Published: 25 September 2020 Abstract: The freezing process of saturated soil is studied under the condition of water replenishment. The process of soil freezing was simulated based on the theory of the energy and mass conservation equations and the equation of mechanical equilibrium. The accuracy of the model was verified by comparison with the experimental results of soil freezing. One-side freezing of a saturated 10-cm-high soil column in an open system with different parameters was simulated, and the effects of the initial void ratio, hydraulic conductivity, and thermal conductivity of soil particles on soil frost heave, freezing depth, and ice lenses distribution during soil freezing were explored. During the freezing process, water migrates from the warm end to the frozen fringe under the actions of the temperature gradient and pore pressure.
    [Show full text]
  • Chapter 7 Seasonal Snow Cover, Ice and Permafrost
    I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.
    [Show full text]
  • DISSERTATION LANDSLIDE RESPONSE to CLIMATE CHANGE in DENALI NATIONAL PARK, ALASKA, and OTHER PERMAFROST REGIONS Submitted By
    DISSERTATION LANDSLIDE RESPONSE TO CLIMATE CHANGE IN DENALI NATIONAL PARK, ALASKA, AND OTHER PERMAFROST REGIONS Submitted by Annette Patton Department of Geosciences In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2019 Doctoral Committee: Advisor: Sara Rathburn Ellen Wohl John Singleton Jeffrey Niemann Copyright by Annette Patton 2019 All Rights Reserved ABSTRACT LANDSLIDE RESPONSE TO CLIMATE CHANGE IN DENALI NATIONAL PARK, ALASKA, AND OTHER PERMAFROST REGIONS Rapid permafrost thaw in the high-latitude and high-elevation areas increases hillslope susceptibility to landsliding by altering geotechnical properties of hillslope materials, including reduced cohesion and increased hydraulic connectivity. The overarching goal of this study is to improve the understanding of geomorphic controls on landslide initiation at high latitudes. In this dissertation, I present a literature review, surficial mapping and a landslide inventory, and site-specific landslide monitoring to evaluate landslide processes in permafrost regions. Following an introduction to landslides in permafrost regions (Chapter 1), the second chapter synthesizes the fundamental processes that will increase landslide frequency and magnitude in permafrost regions in the coming decades with observational and analytical studies that document landslide regimes in high latitudes and elevations. In Chapter 2, I synthesize the available literature to address five questions of practical importance,
    [Show full text]
  • A Combined Experimental and Numerical Study of Pore Water Pressure Variations in Sub -Permafrost Groundwater Agnès Rivière, Anne Jost, Julio Goncalvès
    A combined experimental and numerical study of pore water pressure variations in sub -permafrost groundwater Agnès Rivière, Anne Jost, Julio Goncalvès To cite this version: Agnès Rivière, Anne Jost, Julio Goncalvès. A combined experimental and numerical study of pore water pressure variations in sub -permafrost groundwater. AGU Fall Meeting 2013, Dec 2013, San Francisco, United States. pp.abstract C53A-0551. hal-01396681 HAL Id: hal-01396681 https://hal.archives-ouvertes.fr/hal-01396681 Submitted on 15 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A combined experimental and numerical study of pore water pressure variations in sub-permafrost groundwater. Agnès Rivière1 Anne Jost2, and Julio Goncalvès 3 1 Department of Geoscience, University of Calgary,T2N1N4, Calgary, Alberta, Canada 2 UPMC University Paris VI, UMR 7619, SISYPHE, F-75005, Paris, France, CNRS, UMR 7619, Sisyphe, F-75005, Paris, France. 3 CNRS, UMR 7330, CEREGE, F-13100, Aix-en-Provence, France. The past few decades have seen a rapid development and progress in research on past and current hydrologic impacts of permafrost evolution. In permafrost area, groundwater is subdivided into two zones: supra-permafrost and sub-permafrost which are separated by permafrost.
    [Show full text]
  • Permafrost Soils and Carbon Cycling
    SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile.
    [Show full text]
  • Peatland Permafrost Thaw and Landform Type Along a Climatic Gradient
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Peatland permafrost thaw and landform type along a climatic gradient D.W. Beilman* Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada S.D. Robinson Department of Geology, St. Lawrence University, Canton, USA ABSTRACT: Recent change in the areal extent of permafrost at the individual peatland scale was determined from aerial photographs and Ikonos satellite imagery. Nine peatland sites were mapped from across the Discontinuous Permafrost Zone (DPZ) of western Canada, from the southern limit of permafrost in the prairie provinces to the northern part of the DPZ in the Mackenzie Valley, NWT. Sites span a mean annual air tempera- ture (MAAT) gradient from 0.2 to Ϫ4.3°C. At five southern sites between 30 and 65% of localized permafrost has degraded over the last 100–150 years. Total thaw is significantly correlated to MAAT and stability appears positively related to the size of remaining permafrost landforms. At four northern sites as much as 50% of peat plateau permafrost has thawed over 50 years, and total thaw can be greater than in the south. Results suggest that localized permafrost at the southern limit of the DPZ respond more directly to climate, whereas response of peat plateaus in the north may be more complex. 1 INTRODUCTION mounds in the south (Vitt et al. 1994). Permafrost has been thawing and sometimes completely dissappear- Northern circumpolar air temperatures have warmed ing from many northern peatlands across western in the recent past, as evidenced by the instrument North America from Alaska (Jorgensen et al.
    [Show full text]
  • A Simplified Permafrost-Carbon Model for Long-Term Climate Studies
    Geosci. Model Dev., 7, 3111–3134, 2014 www.geosci-model-dev.net/7/3111/2014/ doi:10.5194/gmd-7-3111-2014 © Author(s) 2014. CC Attribution 3.0 License. A simplified permafrost-carbon model for long-term climate studies with the CLIMBER-2 coupled earth system model K. A. Crichton1,2, D. M. Roche3,4, G. Krinner1,2, and J. Chappellaz1,2 1CNRS, LGGE (UMR5183), 38041 Grenoble, France 2Univ. Grenoble Alpes, LGGE (UMR5183), 38041 Grenoble, France 3CEA/INSU-CNRS/UVSQ, LSCE (UMR8212), Centre d’Etudes de Saclay CEA-Orme des Merisiers, bat. 701 91191 Gif-sur-Yvette CEDEX, France 4Cluster Earth and Climate, Department of Earth Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands Correspondence to: K. A. Crichton ([email protected]) Received: 27 June 2014 – Published in Geosci. Model Dev. Discuss.: 30 July 2014 Revised: 7 November 2014 – Accepted: 24 November 2014 – Published: 18 December 2014 Abstract. We present the development and validation of a latitudes (Tarnocai et al., 2009) and its potential release on simplified permafrost-carbon mechanism for use with the thaw (Schuur et al., 2008; Harden et al., 2012) make per- land surface scheme operating in the CLIMBER-2 earth sys- mafrost and permafrost-related carbon an important area of tem model. The simplified model estimates the permafrost study. Thus far permafrost models that have been coupled fraction of each grid cell according to the balance between within land-surface schemes have relied on thermal heat dif- modelled cold (below 0 ◦C) and warm (above 0 ◦C) days in fusion calculations from air temperatures into the ground to a year.
    [Show full text]
  • The History and Future of the Permafrost Tunnel Near Fox, Alaska
    The History and Future of the Permafrost Tunnel near Fox, Alaska Margaret Cysewski, Kevin Bjella & Matthew Sturm U.S. Army Cold Regions Research and Engineering Laboratory, Fairbanks, Alaska, USA ABSTRACT The Fox Permafrost Tunnel, now almost 50 years old, will be expanded in the next few years to stimulate research in key permafrost areas. More than 70 technical papers have been written about the tunnel, including topics on mining and geotechnical engineering, surface geophysics, geocryology, geology, biology, paleontology, paleoclimatology, and Mars permafrost studies. The expanded tunnel will more than double the current tunnel’s length, and is designed to incorporate research needs. Laboratories, offices, cold rooms, and a learning center will also be built on site. Combined, these will form the Alaska Permafrost Research Center (APRC). RÉSUMÉ La Fox Permafrost Tunnel, maintenant presque 50 ans, sera élargi dans les prochaines années pour stimuler la recherche dans des domaines clés du pergélisol. Plus de 70 documents techniques ont été écrits sur le tunnel, y compris des sujets sur l’exploitation minière et géotechnique, géophysique de surface, géocryologie, la géologie, la biologie, la paléontologie, paléoclimatologie, et des etudes du pergélisol Mars. Le tunnel élargi va plus que doubler la longueur du tunnel en cours, et vise à intégrer les besoins de recherche. Laboratoires, bureaux, chambres froides, et un centre d'apprentissage seront également construits sur le site. Ensemble, ces feront l'Alaska Permafrost Research Center (APRC). 1 INTRODUCTION The Permafrost Tunnel has two sections called the adit and the winze, seen below in Figure 2. The adit is the The Permafrost Tunnel is located 17 kilometers from 110-meter horizontal section that passes through frozen Fairbanks, shown in Figure 1.
    [Show full text]