Meio-Epifauna of Costa Rican Cold Seeps

Total Page:16

File Type:pdf, Size:1020Kb

Meio-Epifauna of Costa Rican Cold Seeps Meio-epifauna of Costa Rican Cold Seeps María Adriana Gracia Clavijo Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Biología Instituto de Estudios en Ciencias del Mar – CECIMAR Santa Marta D.T.C.H., Colombia 2018 Meio-epifauna of Costa Rican Cold Seeps María Adriana Gracia Clavijo Tesis de investigación presentada como requisito parcial para optar al título de: Doctor en Ciencias - Biología Director: Sven Zea, Ph.D. Codirectora: Lisa A. Levin, Ph.D. Línea de Investigación: Biología Marina Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Biología Instituto de Estudios en Ciencias del Mar – CECIMAR Santa Marta D.T.C.H., Colombia 2018 A mi madre……… A Nelson y la pequeña gran familia que formamos… Acknowledgements In a very special way, I want to thank my two thesis directors Professors, Dr. Sven Zea, and Dr. Lisa Levin. Thanks to both of them for their dedication and effort in this thesis. I appreciate receiving from two of the greatest marine researchers all their knowledge and guidance always to be better. Several people have contributed to this study through their participation. To Dr. Javier Sellanes (Universidad de Concepción), and the professors Dr. Arturo Acero and Dr. Nestor Campos (Instituto de Estudios en Ciencias del Mar – CECIMAR, Universidad Nacional de Colombia, Caribbean Campus) for their support in the first part of the elaboration of my thesis project. To Ana Milena Cardenas (Universidad Nacional de Colombia) for her excellent collaboration in all the administrative processes of the University. This doctoral dissertation was supported by Colciencias- Colfuturo National Scholarship Grant N° 528. Thanks to Dr. Lisa Levin for let me be a part of her research developed at Scripps Institution of Oceanography - UC San Diego. Also, to Dr. Ben Grupe, who was one of the leaders of the macro project in which this thesis was involved. To Jennifer Gonzales for all her support and collaboration in the laboratory and sample management. Also, to all personnel involved in the cruises conducted by Scripps Institution. The research was supported by the National Science Foundation (NSF grants OCE 0826254 and OCE 0939557). To Dr. Gustavo Fonseca and colleagues for their support during the internship in nematodes carried out in his laboratory (Instituto do Mar - UNIFESP, Santos, Brazil). To Emeritus Professor Dr. William Neal (Grand Valley State University) for his contributions and improvements to Chapter 3. To José Manuel Gonzales (Universidad Nacional de Colombia) for his friendship, and all his guidance and support in the management of information, specifically in Chapter 4. To Fernando Dorado (Invemar) for his support, comments, and improvements to Chapter 4. To Dr. Carlos Neira (Scripps Institution) for his comments and improvements to Chapter 5. To Nadia Santodomingo for her friendship and good advice. To my colleagues at Invemar for their support and good timeshare at the Museum. Especially to Andrea Polanco, Erika Montoya and Miguel Martelo. I would like to thank Nelson Guillermo and his infinite effort for understanding some of what I've done over the years. Everything has been words of encouragement and support. Abstract & Resumen IX Abstract Reducing marine environments include hydrothermal vents, cold seeps, whale carcasses, oxygen minimum zones, sunken wood, accumulated loose seagrasses and other organic remains. Cold seeps are ocean floor areas where pore waters rich in CH4 and H2S, wich reach the upper sediment layer; Temperatures are usually at ambient deep-sea values. Macrofaunal and megafaunal species exhibit symbiotic associations with methane-oxidizing and sulfur-oxidizing bacteria. In this environment, there also are meiofaunal communities (> 42 µm) which throphically link bacterial and macrofaunal food webs. Although ubiquitous and more abundant compared to larger-sized invertebrates, meiofaunal communities are among the least studied and understood components of the deep-sea benthos. The best known meiofaunal community dwells within sea-floor sediments, but an important community, called meio-epifauna, inhabits solid surfaces (i.e., rocks, wood, biogenic material) usually present in these reducing environments, is almost unknown. The presence of these substrates can influence diversity at the microscale through the provision of habitat, food, shelter, and various biotic interactions. In the eastern Pacific, the Costa Rican continental margin has heterogeneous areas with different combinations of reducing systems. This work at seep areas of Costa Rica's Pacific Ocean (between ~380 and 1800 m deep) employed natural substrate samples and in situ experiments (for 10.5 months) to investigate at several scales the relationships between locations, seepage activity, habitats, and substrates with taxon richness, abundance, and community structure of meio-epifaunal metazoans, and the controls over their presence and functions. This dissertation covers a broad range of colonization topics. The first chapter provides an introduction to the study area including some meiofaunal biological aspects. The second chapter looks for understanding on a large scale (six locations) meio-epifauna colonization processes associated with inorganic substrates (authigenic rocks) deployed at actively seeping and inactive sites. The analysis was carried out on both natural and experimental rocks. A rich community was found consisting of 27 meio- epifaunal taxa in natural rocks. Nematodes (58.1 %) followed by copepods (24.9 %) were the most abundant. Inactive areas supported for the highest mean number of individuals (19.2±17.6 (1 SD) ind.10cm-2, n=17). Significant differences in higher taxa composition and abundance were found between locations (Jaco scar, Jaco wall, Mound 11, Mound 12, Mound Quepos, Quepos landslide) and between habitats (Bacterial mats, carbonates, hard coral, mussel beds, near clam beds, Oxygen Minimum Zone, sediments, tubeworms), but not between seepage activities. Different locations exhibit different hydrographic characteristics, with depth and temperature being the variables that best explain the biological scheme found. After 10.5 months of colonization of authigenic rocks, the community was comprised of 14 meio-epifaunal taxa. Copepods accounted for the highest abundances (69 %), followed by nematodes (18 %). Also, the highest mean density was found in inactive areas (26.3±11.3 ind. 10cm-2, n=5) compared to active areas (16.4±16.4 ind. 10cm-2, n=6). As in natural rocks, in Mound 12 carbonate colonizers, significant differences were found between habitats but not between seepage activities. Nematodes were thus confirmed to be the dominant meio-epifaunal group inhabitants of deep-sea environments, but our colonization experiments suggest that copepods are better represented in the early stages of colonization. Chapter 3 discussed colonization on a smaller scale (Mound 12) using organic substrates (wood blocks). In this case, a less diverse community was found with nine meio-epifaunal higher taxa and a total of 9,951 individuals. Copepods accounted for the highest abundances (75 %), followed by nauplii larvae (12 %), and nematodes (10 %). The maximum number of individuals (26.3 ind.10cm-2) was found in wood blocks placed in inactive areas (near active mussel beds). Analysis grouped blocks according to seepage activity and not to habitat, but tests of similarity showed no significant differences in higher taxon composition and abundances, probably owing either to substrate homogeneity or low sample size. Contrary to previous studies, where nematodes appeared as the dominant colonizers in deep-sea environments, in the wood blocks used, copepods were the most abundant representatives, suggesting that this group is one of the most successful colonizing hard-wood substrates that are not yet decomposed. Chapter 4 dealt with copepods in experimental substrates (i.e., wood blocks, carbonates rocks, polychaetes tubes, and clam shells). A total of 24,467 individuals belonging to five orders and 15 families were identified. The order Harpacticoida was the best-represented with respect to families (7) and density (87.5 %). Miraciidae (38.6 %), Ectinosomatidae (34.2 %), Tegastidae (9.4 %) and Ameiridae (4.9 %), accounted for approximately 87.1 % of all copepods density. The highest densities of copepods occur in inactive areas, regardless of the type of experimental substrate, had the highest densities of copepods (16.4±9.9 (1 SD) ind.10cm-2, n=9) compared to active areas (8.8±9.9 ind.10cm-2, n=11). The cluster analysis revealed the presence of a typical configuration (stepped) of assemblages, related to environmental gradients. At the family level analyzed, the assemblage responds to characteristics given by the seepage activity. Also, a turnover in family dominance between Miraciidae and Ectinosomatidae according to seepage activity was observed. Lastly, Chapter 5 used nematodes to examine trophic structure and habitat relationships on natural rocks at Mounds 11 and 12. Nematode faunas were represented by two classes, six orders, 17 families, and 27 genera. The family Xyalidae was most abundant (30.1 %) followed by Comesomatidae (21.2 %) and Linhomoeidae (20.9 %). Daptonema and Metalinhomoeus were the genera reaching the highest density (29.3 % and 18.2 % respectively) in all surveys. The results demonstrate the existence of slight differences between habitats regarding nematode assemblage structure. On the substrates, the assemblages were composed of nematode taxa with different
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Biology Two DOL38 - 41
    III. Phylum Platyhelminthes A. General characteristics All About Worms! 1. flat worms a. distinct head & tail ends 2. bilateral symmetry 3. habitat = free-living aquatic or parasitic *a. Parasite = heterotroph that gets its nutrients from the living organisms in/on which they live Ph. Platyhelminthes Ph. Nematoda Ph. Annelida 4. motile 5. carnivores or detritivores 6. reproduce sexually & asexually Biology Two DOL38 - 41 7/4/2016 B. Anatomy 3. Simple nervous system 1. have 3 body layers w/ true tissues a. brain-like ganglia in head & organs b. 2 longitudinal nerves with a. inner = endoderm transverse nerves across body b. middle = mesoderm 4. Lack respiratory, circulatory systems c. outer = ectoderm 5. Parasitic forms lack digestive & excretory systems 2. are acoelomates - lack a coelom around internal organs a. use diffusion to supply needs from host organisms a. digestive tract is formed of endoderm 6. Planaria anat. 7. Tapeworm anat. a. flat body w/ arrow-shaped head & a. head = scolex tapered tail 1) has hooks to help hold onto host b. light-sensitive eyespots on head 2) has suckers to ingest food c. body covered in cilia & mucus to aid b. body segments = proglottids movement 1) new ones form right behind head d. digestive tract only open at mouth 2) each segment produces gametes 1) in center of ventral surface 3) each houses excretory organs 2) used for feeding, excretion C. Physiology 1. Digestion (free-living) a. pharynx extends out of mouth b. sucks food into intestines for digestion c. excretory pores & mouth/pharynx remove wastes 2. Reproduction varies a. Sexual for free-living (& some parasites) 1) hermaphrodites a) cross-fertilize or self-fertilize internally b.
    [Show full text]
  • Classification of Parasites BLY 459 First Lab Test (October 10, 2010)
    Classification of Parasites BLY 459 First Lab Test (October 10, 2010) If a taxonomic name is not in bold type, you will not be held responsible for it on the lab exam. Terms and common names that may be asked are also listed. I have attempted to be consistent with the taxonomic schemes in your text as well as to list all slides and live specimens that were displayed. In addition to highlighted taxa, be familiar with, material in lab handouts (especially proper nomenclature), lab display sheets, as well as material presented in lecture. Questions about vectors and locations within hosts will be asked. Be able to recognize healthy from infected tissue. Phylum Platyhelminthes (Flatworms) Class Turbellaria Dugesia (=Planaria ) Free-living, anatomy, X-section Bdelloura horseshoe crab gills Class Monogenea Gyrodactylus , Neobenedenis, Ergocotyle gills of freshwater fish Neopolystoma urinary bladder of turtles Class Trematoda ( Flukes ) Subclass Digenea Life-cycle stages: Recognize miracidia, sporocyst, redia, cercaria , metacercaria, adults & anatomy, model Order ?? Hirudinella ventricosa wahoo stomach Nasitrema nasal cavity of bottlenose dolphin Order Strigeiformes Family Schistosomatidae Schistosoma japonicum adults, male & female, liver granuloma & healthy liver, ova, cercariae, no metacercariae, adults in mesenteric intestinal veins Order Echinostomatiformes Family Fasciolidae Fasciola hepatica sheep & human liver, liver fluke Order Plagiorchiformes Family Dicrocoeliidae Dicrocoelium & Eurytrema Cure for All Diseases by Hulda Clark, Paragonimus
    [Show full text]
  • Kinomes of Selected Parasitic Helminths - Fundamental and Applied Implications
    KINOMES OF SELECTED PARASITIC HELMINTHS - FUNDAMENTAL AND APPLIED IMPLICATIONS Andreas Julius Stroehlein BSc (Bingen am Rhein, Germany) MSc (Berlin, Germany) ORCID ID 0000-0001-9432-9816 Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy July 2017 Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne Produced on archival quality paper ii SUMMARY ________________________________________________________________ Worms (helminths) are a large, paraphyletic group of organisms including free-living and parasitic representatives. Among the latter, many species of roundworms (phylum Nematoda) and flatworms (phylum Platyhelminthes) are of major socioeconomic importance worldwide, causing debilitating diseases in humans and livestock. Recent advances in molecular technologies have allowed for the analysis of genomic and transcriptomic data for a range of helminth species. In this context, studying molecular signalling pathways in these species is of particular interest and should help to gain a deeper understanding of the evolution and fundamental biology of parasitism among these species. To this end, the objective of the present thesis was to characterise and curate the protein kinase complements (kinomes) of parasitic worms based on available transcriptomic data and draft genome sequences using a bioinformatic workflow in order to increase our understanding of how kinase signalling regulates fundamental biology and also to gain new insights into the evolution of protein kinases in parasitic worms. In addition, this work also aimed to investigate protein kinases with regard to their potential as useful targets for the development of novel anthelmintic small-molecule agents. This thesis consists of a literature review, four chapters describing original research findings and a general discussion.
    [Show full text]
  • The Transcriptome of Trichuris Suis – First Molecular Insights Into a Parasite with Curative Properties for Key Immune Diseases of Humans
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchOnline at James Cook University The Transcriptome of Trichuris suis – First Molecular Insights into a Parasite with Curative Properties for Key Immune Diseases of Humans Cinzia Cantacessi1*, Neil D. Young1, Peter Nejsum2, Aaron R. Jex1, Bronwyn E. Campbell1, Ross S. Hall1, Stig M. Thamsborg2, Jean-Pierre Scheerlinck1,3, Robin B. Gasser1* 1 Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia, 2 Departments of Veterinary Disease Biology and Basic Animal and Veterinary Science, University of Copenhagen, Frederiksberg, Denmark, 3 Centre for Animal Biotechnology, The University of Melbourne, Parkville, Australia Abstract Background: Iatrogenic infection of humans with Trichuris suis (a parasitic nematode of swine) is being evaluated or promoted as a biological, curative treatment of immune diseases, such as inflammatory bowel disease (IBD) and ulcerative colitis, in humans. Although it is understood that short-term T. suis infectioninpeoplewithsuchdiseases usually induces a modified Th2-immune response, nothing is known about the molecules in the parasite that induce this response. Methodology/Principal Findings: As a first step toward filling the gaps in our knowledge of the molecular biology of T. suis, we characterised the transcriptome of the adult stage of this nematode employing next-generation sequencing and bioinformatic techniques. A total of ,65,000,000 reads were generated and assembled into
    [Show full text]
  • Proposal for Practical Multi-Kingdom Classification of Eukaryotes Based on Monophyly 2 and Comparable Divergence Time Criteria
    bioRxiv preprint doi: https://doi.org/10.1101/240929; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proposal for practical multi-kingdom classification of eukaryotes based on monophyly 2 and comparable divergence time criteria 3 Leho Tedersoo 4 Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia 5 Contact: email: [email protected], tel: +372 56654986, twitter: @tedersoo 6 7 Key words: Taxonomy, Eukaryotes, subdomain, phylum, phylogenetic classification, 8 monophyletic groups, divergence time 9 Summary 10 Much of the ecological, taxonomic and biodiversity research relies on understanding of 11 phylogenetic relationships among organisms. There are multiple available classification 12 systems that all suffer from differences in naming, incompleteness, presence of multiple non- 13 monophyletic entities and poor correspondence of divergence times. These issues render 14 taxonomic comparisons across the main groups of eukaryotes and all life in general difficult 15 at best. By using the monophyly criterion, roughly comparable time of divergence and 16 information from multiple phylogenetic reconstructions, I propose an alternative 17 classification system for the domain Eukarya to improve hierarchical taxonomical 18 comparability for animals, plants, fungi and multiple protist groups. Following this rationale, 19 I propose 32 kingdoms of eukaryotes that are treated in 10 subdomains. These kingdoms are 20 further separated into 43, 115, 140 and 353 taxa at the level of subkingdom, phylum, 21 subphylum and class, respectively (http://dx.doi.org/10.15156/BIO/587483).
    [Show full text]
  • Nematodes in Aquatic Environments Adaptations and Survival Strategies
    Biodiversity Journal , 2012, 3 (1): 13-40 Nematodes in aquatic environments: adaptations and survival strategies Qudsia Tahseen Nematode Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India; e-mail: [email protected]. ABSTRACT Nematodes are found in all substrata and sediment types with fairly large number of species that are of considerable ecological importance. Despite their simple body organization, they are the most complex forms with many metabolic and developmental processes comparable to higher taxa. Phylum Nematoda represents a diverse array of taxa present in subterranean environment. It is due to the formative constraints to which these individuals are exposed in the interstitial system of medium and coarse sediments that they show pertinent characteristic features to survive successfully in aquatic environments. They represent great degree of mor - phological adaptations including those associated with cuticle, sensilla, pseudocoelomic in - clusions, stoma, pharynx and tail. Their life cycles as well as development seem to be entrained to the environment type. Besides exhibiting feeding adaptations according to the substrata and sediment type and the kind of food available, the aquatic nematodes tend to wi - thstand various stresses by undergoing cryobiosis, osmobiosis, anoxybiosis as well as thio - biosis involving sulphide detoxification mechanism. KEY WORDS Adaptations; fresh water nematodes; marine nematodes; morphology; ecology; development. Received 24.01.2012; accepted 23.02.2012;
    [Show full text]
  • Genes with Spiralian-Specific Protein Motifs Are Expressed In
    ARTICLE https://doi.org/10.1038/s41467-020-17780-7 OPEN Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands Longjun Wu1,6, Laurel S. Hiebert 2,7, Marleen Klann3,8, Yale Passamaneck3,4, Benjamin R. Bastin5, Stephan Q. Schneider 5,9, Mark Q. Martindale 3,4, Elaine C. Seaver3, Svetlana A. Maslakova2 & ✉ J. David Lambert 1 Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental 1234567890():,; program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralian- specific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the mollusc Tritia (also known as Ilyanassa). Their expression patterns in representative species from five more spiralian phyla—the annelids, nemerteans, phoronids, brachiopods and rotifers—show that at least one of these, lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages. 1 Department of Biology, University of Rochester, Rochester, NY 14627, USA. 2 Oregon Institute of Marine Biology, University of Oregon, Charleston, OR 97420, USA. 3 Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA. 4 Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA.
    [Show full text]
  • The Mitochondrial Genomes of the Acoelomorph Worms Paratomella Rubra and Isodiametra Pulchra
    bioRxiv preprint doi: https://doi.org/10.1101/103556; this version posted January 26, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The mitochondrial genomes of the acoelomorph worms Paratomella rubra and Isodiametra pulchra Helen E Robertson1, François Lapraz1,2, Bernhard Egger1,3, Maximilian J Telford1 and Philipp H. Schiffer1 1Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT 2CNRS/UMR 7277, institut de Biologie Valrose, iBV, Université de Nice Sophia Antipolis, Parc Valrose, Nice cedex 2, France (current address) oute de Narbonne, Toulouse, France (current address) 3Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria (current address) *Authors for communication: [email protected], [email protected] ORCiDs HER: 0000-0001-7951-0473 FL: 0000-0001-9209-2018 MJT: 0000-0002-3749-5620 PHS: 0000-0001-6776-0934 Abstract Acoels are small, ubiquitous, but understudied, marine worms with a very simple body plan. Their internal phylogeny is still in parts unresolved, and the position of their proposed phylum Xenacoelomorpha (Xenoturbella+Acoela) is still debated. Here we describe mitochondrial genome sequences from two acoel species: Paratomella rubra and Isodiametra pulchra. The 14,954 nucleotide-long P. rubra sequence is typical for metazoans in size and gene content. The larger I. pulchra mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes.
    [Show full text]
  • Thalassic Rotifers from the United States: Descriptions of Two New Species and Notes on the Effect of Salinity and Ecosystem on Biodiversity
    diversity Article Thalassic Rotifers from the United States: Descriptions of Two New Species and Notes on the Effect of Salinity and Ecosystem on Biodiversity Francesca Leasi 1,* and Willem H. De Smet 2 1 Department of Biology, Geology and Environmental Science, University of Tennessee, Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA 2 Department of Biology. ECOBE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; [email protected] * Correspondence: [email protected] http://zoobank.org:pub:7679CE0E-11E8-4518-B132-7D23F08AC8FA Received: 26 November 2019; Accepted: 7 January 2020; Published: 13 January 2020 Abstract: This study shows the results of a rotifer faunistic survey in thalassic waters from 26 sites located in northeastern U.S. states and one in California. A total of 44 taxa belonging to 21 genera and 14 families were identified, in addition to a group of unidentifiable bdelloids. Of the fully identified species, 17 are the first thalassic records for the U.S., including Encentrum melonei sp. nov. and Synchaeta grossa sp. nov., which are new to science, and Colurella unicauda Eriksen, 1968, which is new to the Nearctic region. Moreover, a refined description of Encentrum rousseleti (Lie-Pettersen, 1905) is presented. During the survey, we characterized samples by different salinity values and ecosystems and compared species composition across communities to test for possible ecological correlations. Results indicate that both salinities and ecosystems are a significant predictor of rotifer diversity, supporting that biodiversity estimates of small species provide fundamental information for biomonitoring. Finally, we provide a comprehensive review of the diversity and distribution of thalassic rotifers in the United States.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • IB 103LF: Invertebrate Zoology
    IB 103LF: Invertebrate Zoology Course Instructor TBD Graduate Student Instructors TBD COURSE DESCRIPTION AND GOALS Invertebrate zoology includes the biology of all animal organisms that do not have vertebrae, which means more than 95% of all described species of animals. This 5-credit course includes 3h of lecture and 6h of laboratory section per week. Lectures will concentrate on organizing and interpreting information about invertebrates to illustrate (1) evolutionary relationships within and among taxa, (2) morphology, reproduction, development and physiology of major phyla, and (3) adaptations that permit species to inhabit particular environments. Laboratories will be a hands-on opportunity for you to learn about the structure and function of the major invertebrate body plans; and field trips will bring all information together, with living examples. My primary objective in this course is to present the invertebrate diversity that has evolved on Earth (at least of the ones we are aware of); not in depth, but with an overview and selected highlights. By the end of the course you should be able to (1) identify major invertebrate phyla and the morphological characters that define them; (2) apply basic concepts of zoological classification and interpret phylogenetic trees; and (3) discuss current hypotheses for the origin of major invertebrate groups and the relationships among them. Along with introducing you to the diversity and evolution of animal body plans, my goal is also (4) to develop your written and oral communication skills. I also hope you will teach and learn from one another, especially when studying course materials and completing laboratory exercises. ASSIGNMENTS AND GRADING The final grade will be scaled according to course units: 60% for lecture (3 units) and 40% for laboratory (2 units) assignments.
    [Show full text]