Redalyc.Higher-Level Molecular Phylogeny of Snakes: Conflicts And
Total Page:16
File Type:pdf, Size:1020Kb
Darwiniana ISSN: 0011-6793 [email protected] Instituto de Botánica Darwinion Argentina Gobbi Grazziotin, Felipe; Zaher, Hussam; Ferrarezzi, Hebert; Klaczko, Julia; Bonatto, Sandro L.; Wilkinson, Mark Higher-level molecular phylogeny of snakes: conflicts and congruence Darwiniana, vol. 45, núm. Sup, noviembre, 2007, pp. 17-19 Instituto de Botánica Darwinion Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=66909908 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative VII Reunión Argentina de Cladística y Biogeografía. Simposio “Problemas Empíricos” compararon los soportes de los grupos para "D" y Goloboff, P. A. 1993. Estimating character weights during tree para el "set" de datos combinados "C+D" para search. Cladistics 9: 83-91. Goloboff, P. A., J. Farris & K. Nixon. 2003a. T.N.T. Tree Analysis evaluar el aporte de los caracteres continuos al Using New Technology. Program & documentation, available análisis. Cuando se agregan los caracteres conti- from the authors, and at http://www.zmuc.dk/public/phylogeny/tnt nuos existe un aumento global de 22 en la diferen- Goloboff, P. A., M. Källersjö, B. Oxelmann, M. Ramírez & C. cia de frecuencias, mostrando que la inclusión de Szumik. 2003b. Improvements to resampling measures of group support. Cladistics 19: 324-332. los caracteres continuos otorga soporte adicional a Goloboff, P. A., C. I. Mattoni & A. S. Quinteros. 2006. Conti- la topología. Se concluye que los caracteres verte- nuous characters analyzed as such. Cladistics 22: 1-13. brales continuos de serpientes resultan filogenéti- Johnson, R. G. 1955. The adaptive and phylogenetic significan- camente informativos y se recomienda su inclu- ce of vertebral form in snakes. Evolution 9: 367-388. Lee, M. S. Y. & J. D. Scanlon. 2002. Snake phylogeny based on sión como tales en análisis cladísticos. osteology, soft anatomy and ecology. Biol. Rev. 77: 333-401. Rage, J. C. 1984. Serpentes, en: P. Wellnhofer (ed.), Handbuch der Paläoherpetologie, Tomo 11, xii + 80 pp. Stuttgart/New York: Gustav Fischer Verlag. BIBLIOGRAFÍA Rieppel, O., A. G. Kluge & H. Zaher. 2002. Testing the phylo- genetic relationships of the Pleistocene snake Wonambi Apesteguía, S. & H. Zaher. 2006. A Cretaceous terrestrial naracoortensis Smith. J. Vertebr. Paleontol. 22: 812-829. snake with robust hindlimbs and a sacrum. Nature 440: Rohlf, J. F. 2004. Tps Dig 1.40. State University of New York, 1037-104. Stony Brook, New York. http://life.bio.sunysb.edu/morph/. Auffenberg, W. 1963. The fossil snakes of Florida. Tulane Stud. Szyndlar, Z. 1984. Fossil snakes from Poland. Acta Zool. Cra- Zool. 10: 131-216. cov. 28: 1-156. HIGHER-LEVEL MOLECULAR PHYLOGENY OF SNAKES: CONFLICTS AND CONGRUENCE Felipe Gobbi Grazziotin1,2,3, Hussam Zaher2, Hebert Ferrarezzi4, Julia Klaczko2, Sandro L. Bonatto3, Mark Wilkinson5 1São Paulo State University, Brazil; [email protected] (author for correspondence). 2Museum of Zoology of São Paulo University, Brazil. 3Pontifical Catholic University of Rio Grande do Sul, Brazil. 4Butantan Institute, Brazil. 5Natural History Museum, United Kingdom. The monophyly of snakes can be considered a years, a significant number of studies exclusively well-corroborated hypothesis. However, phyloge- based on DNA sequence analyses produced phylo- netic relationships among the major groups of sna- genies that conflict in several respect with some of kes remain unclear, despite the recent debate on the clades traditionally recognized by morphologi- snake origins and evolution. Important disagree- cally based analyses. Although these studies have ments persist on several phylogenetic issues, with generated a considerable amount of comparative contrasting results emerging from both molecular data to snake phylogeny, the complete information and morphological analyses. The most relevant produced cannot be satisfactorily compared, issues are: 1) the sister-group relationships of sna- because several taxa used by some studies were kes within Squamates, 2) the phylogenetic posi- not included in others, and data sets for some key tion of the fossil snakes Pachyrhachis, Haasio- taxa are missing for nearly all approaches. We pre- phis, Eupodophis, Dinilysia, and Wonambi, 3) the sent here a molecular phylogenetic analysis of monophyly of the macrostomatans and Tropido- snake interrelationships based on sequences from phiidae, 4) the interrelationships of booid lineages, nine genes (12S, 16S, cytb, nd4, c-mos, RAG1, and 4) the sister-group relationships of caenophi- 28S, NT3, BDNF) comprising a total of 10,666 dians within macrostomatan snakes. In the last few bps and 4,638 parsimony informative sites for 17 DARWINIANA 45(suplemento) 14-23. 2007 Fig. 1. Phylogenetic tree based on the total evidence approach showing the relationship among the higher families of Squamata. Numbers above branches are Bremer and Bootstrap values, respectively. 18 VII Reunión Argentina de Cladística y Biogeografía. Simposio “Problemas Empíricos” seventy Squamate taxa representing all higher the clade "Amerophidia" is not statically suppor- groups of snakes and lizards. Our results show a ted and should not be recognized (Table 1). On the clear saturation sign for some genes (mitochon- other hand, the nested position within higher drial genes cytb and nd4) and an inconsistent pat- macrostomatans of the clade formed by Cylindro- tern where almost all genes produce an idiosyncra- phis+Anomochilus+Uropeltinae (microstomata tic tree in a Maximum Parsimony approach. minus Anilius) is statistically well supported Depending on the method used to construct the (Table 1). Finally, we performed a total evidence matrix (DNA, Amino Acids, mitochondrial or nuclear DNA, etc), different trees were produced, Table 1. Results of Kishino-Hasegawa test for molecu- although some topologies had been always recove- lar data. red. Among these topologies, three of them repre- Tree Length Length diff P* sent singular results that are very similar to the MP tree 32117 (best) molecular results published in the last few years Microstomata 32209 92 <0.0001* and, in particular, supports the paraphyly of Paraphiletic 32124 7 0.3994 Macrostomatan and Anilioid snakes and the fami- "Amerophidia" lies Boidae and Erycidae, four traditionally recog- nized clades in morphological studies. Additio- nally, our molecular results also suggest that the analysis (TBR search under 100 random addition family Tropidophiidae and the anilioid genus Ani- trees conducted using Maximum Parsimony in lius form a monophyletic assemblage, recently PAUP*4) where the Boinae and Erycinae are reco- named formally as "Amerophidia" by Vidal et al. vered as monophyletic and the "Amerophidians" (2007). We suggest that some of the conflicting are rejected as a clade (Fig. 1). A clearer picture of results obtained in molecular studies, including snake phylogeny would be possible only through a ours, can be interpreted as a problem of taxon sam- total evidence approach that includes morphology pling that produce spurious signals due to the and fossil information. relictual condition of the extant snake fauna (with the notable exception of Colubroids), which repre- sents only a small and heterogeneous portion of BIBLIOGRAPHY the past diversity of the group. In order to test the molecularly supported clades, we performed a Vidal, N.; A. S. Delmas & S. B. Hedges. 2007. The higher-level series of Kishino-Hasegawa tests implemented in relationships of alethinophidian snakes inferred from seven nuclear and mitochondrial genes. R. W. Henderson and R. PAUP*4 using constrained topologies to reprodu- Powell (eds.), Biology of the boas and pythons. Eagle ce the preferred morphological tree. It resulted that Mountain Publishing, Eagle Mountain, Utah. Pp. 27-33. FILOGENIA DE CHARACIDAE (TELEOSTEI, CHARACIFORMES) Y OPTIMIZACIÓN AUTOPESADA J. Marcos Mirande Fundación Miguel Lillo, Miguel Lillo 251, 4000 San Miguel de Tucumán, Tucumán, Argentina En una filogenia de la familia Characidae caracteres. Las optimizaciones bajo OA son cal- (Mirande, en prep.) el autor realizó un análisis culadas heurísticamente y son más lentas que bajo pesos implicados (PI) ["Implied weighting"; bajo pesos iguales o implicados; aquí se descri- (Goloboff, 1993)] y optimización autopesada ben las estrategias utilizadas para analizar esta (OA) ["Self-weighted optimization"; (Goloboff, matriz y se comparan los resultados con los obte- 1997)] con una matriz de 160 especies y 360 nidos bajo PI. 19.