ERK1/2 Signalling and Protein Ubiquitylation in the Control of Apoptosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of BIRC6 As a Novel Intervention Target For
Lamers et al. BMC Cancer 2012, 12:285 http://www.biomedcentral.com/1471-2407/12/285 RESEARCH ARTICLE Open Access Identification of BIRC6 as a novel intervention target for neuroblastoma therapy Fieke Lamers1, Linda Schild1, Jan Koster1, Frank Speleman2, Ingrid ra3, Ellen M Westerhout1, Peter van Sluis1, Rogier Versteeg1, Huib N Caron4 and Jan J Molenaar1,5* Abstract Background: Neuroblastoma are pediatric tumors of the sympathetic nervous system with a poor prognosis. Apoptosis is often deregulated in cancer cells, but only a few defects in apoptotic routes have been identified in neuroblastoma. Methods: Here we investigated genomic aberrations affecting genes of the intrinsic apoptotic pathway in neuroblastoma. We analyzed DNA profiling data (CGH and SNP arrays) and mRNA expression data of 31 genes of the intrinsic apoptotic pathway in a dataset of 88 neuroblastoma tumors using the R2 bioinformatic platform (http://r2.amc.nl). BIRC6 was selected for further analysis as a tumor driving gene. Knockdown experiments were performed using BIRC6 lentiviral shRNA and phenotype responses were analyzed by Western blot and MTT-assays. In addition, DIABLO levels and interactions were investigated with immunofluorescence and co-immunoprecipitation. Results: We observed frequent gain of the BIRC6 gene on chromosome 2, which resulted in increased mRNA expression. BIRC6 is an inhibitor of apoptosis protein (IAP), that can bind and degrade the cytoplasmic fraction of the pro-apoptotic protein DIABLO. DIABLO mRNA expression was exceptionally high in neuroblastoma but the protein was only detected in the mitochondria. Upon silencing of BIRC6 by shRNA, DIABLO protein levels increased and cells went into apoptosis. Co-immunoprecipitation confirmed direct interaction between DIABLO and BIRC6 in neuroblastoma cell lines. -
Knock-In of a 25-Kilobase Pair BAC-Derived Donor Molecule By
ManuscriptbioRxiv preprint doi: https://doi.org/10.1101/076612; this version posted SeptemberClick here23, 2016. to download The copyright Manuscript holder for this BIM preprint CRISPR (which Paper.docxwas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 5 6 7 8 Knock-In of a 25-Kilobase Pair BAC-Derived Donor Molecule 9 by Traditional and CRISPR/Cas9-Stimulated Homologous Recombination 10 11 Short title: 25-Kilobase Pair Traditional and CRISPR/Cas9-Stimulated Knock-Ins 12 13 14 15 16 17 18 19 20 Tiffany Leidy-Davis1, Kai Cheng1,†, Leslie O. Goodwin1, Judith L. Morgan1, Wen Chun Juan2,‡, Xavier Roca3, 21 Sin-Tiong Ong4-7, David E. Bergstrom1,8,* 22 23 24 25 26 27 28 29 30 31 32 33 1Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA 34 2Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 35 3 School of Biological Sciences, Nanyang Technological University, Singapore 36 4Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore 37 5Department of Haematology, Singapore General Hospital, Singapore 38 6Department of Medical Oncology, National Cancer Centre Singapore, Singapore 39 7Department of Medicine, Duke University Medical Center, Durham, NC, USA 40 8Cancer Center, The Jackson Laboratory, Bar Harbor, ME, USA 41 42 43 44 †Current address: Genetically Engineered Models and Services, Charles River Laboratories, Wilmington, MA, 45 USA 46 47 48 49 ‡ Current address: MSD Pharma (Singapore) Private Limited, Singapore 50 51 52 53 *To whom correspondence should be addressed at [email protected] 54 55 1 bioRxiv preprint doi: https://doi.org/10.1101/076612; this version posted September 23, 2016. -
Synergy of Bcl2 and Histone Deacetylase Inhibition Against Leukemic Cells from Cutaneous T-Cell Lymphoma Patients Benoit Cyrenne
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine January 2018 Synergy Of Bcl2 And Histone Deacetylase Inhibition Against Leukemic Cells From Cutaneous T-Cell Lymphoma Patients Benoit Cyrenne Follow this and additional works at: https://elischolar.library.yale.edu/ymtdl Recommended Citation Cyrenne, Benoit, "Synergy Of Bcl2 And Histone Deacetylase Inhibition Against Leukemic Cells From Cutaneous T-Cell Lymphoma Patients" (2018). Yale Medicine Thesis Digital Library. 3388. https://elischolar.library.yale.edu/ymtdl/3388 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. i Synergy of BCL2 and histone deacetylase inhibition against leukemic cells from cutaneous T-cell lymphoma patients A Thesis Submitted to the Yale University School of Medicine in Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine Benoit M. Cyrenne 2018 ii SYNERGY OF BCL2 AND HISTONE DEACETYLASE INHIBITION AGAINST LEUKEMIC CELLS FROM CUTANEOUS T-CELL LYMPHOMA PATIENTS. Benoit Cyrenne, Julia Lewis, Jason Weed, Kacie Carlson, Fatima Mirza, Francine Foss, and Michael Girardi. Department of Dermatology, Yale University, School of Medicine, New Haven, CT. The presence and degree of peripheral blood involvement in patients with cutaneous T-cell lymphoma (CTCL) portend a worse clinical outcome. Available systemic therapies for CTCL may variably decrease tumor burden and improve quality of life, but offer limited effects on survival; thus, novel approaches to the treatment of advanced stages of this non-Hodgkin lymphoma are clearly warranted. -
Tgfβ-Activated USP27X Deubiquitinase Regulates Cell Migration And
Author Manuscript Published OnlineFirst on October 19, 2018; DOI: 10.1158/0008-5472.CAN-18-0753 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 TGFβ-activated USP27X deubiquitinase regulates cell migration and 2 chemoresistance via stabilization of Snail1 3 4 Guillem Lambies1,2, Martina Miceli1, Catalina Martínez-Guillamon1, Rubén 5 Olivera-Salguero1, Raúl Peña1, Carolina-Paola Frías1, Irene Calderón1, Boyko S. 6 Atanassov3, Sharon Y. R. Dent4, Joaquín Arribas5,6,7, Antonio García de 7 Herreros1,2*, and Víctor M. Díaz1,2*. 8 1 9 Programa de Recerca en Càncer, Institut Hospital del Mar d’Investigacions Mèdiques 10 (IMIM), Unidad Asociada CSIC, Barcelona, Spain. 2 11 Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra 12 (UPF), Barcelona, Spain. 3 13 Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer 14 Center, Buffalo, NY 15 4 Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer 16 Epigenetics, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 17 5 Preclinical Research Program, Vall d’Hebron Institute of Oncology (VHIO) 18 CIBERONC, Barcelona, Spain 19 6 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain 20 7 Department of Biochemistry and Molecular Biology, Universitat Autònoma de 21 Barcelona, Campus de la UAB, Bellaterra, Spain 22 23 Running title: USP27X deubiquitinates Snail1 in tumor cells. 24 1 Downloaded from cancerres.aacrjournals.org on October 5, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 19, 2018; DOI: 10.1158/0008-5472.CAN-18-0753 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
Exploring the Metastatic Role of the Inhibitor of Apoptosis BIRC6 in Breast Cancer
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.438518; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exploring the metastatic role of the inhibitor of apoptosis BIRC6 in Breast 2 Cancer 3 Corresponding author: Matias Luis Pidre, Pringles 3010, Lanús, Buenos Aires, Argentina, CP 1824 4 [email protected], mobile: +54 9 221 364 6836 5 AUTHORS 6 Santiago M. Gómez Bergna1; Abril Marchesini1; Leslie C. Amorós Morales1; Paula N. Arrías1; Hernán 7 G. Farina2; Víctor Romanowski1; M. Florencia Gottardo2*; Matias L. Pidre1*. 8 *Both authors equally contributed to this work. 9 AUTHOR AFFILIATIONS 10 1Instituto de Biotecnología y biología molecular (IBBM-CONICET-UNLP) 11 2Center of Molecular & Translational Oncology, Department of Science and Technology, 12 National University of Quilmes, Buenos Aires, Argentina. 13 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.438518; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 14 Abstract 15 Breast cancer is the most common cancer as well as the first cause of death by cancer in 16 women worldwide. BIRC6 (baculoviral IAP repeat-containing protein 6) is a member of the 17 inhibitors of apoptosis protein family thought to play an important role in the progression or 18 chemoresistance of many cancers. The aim of the present work was to investigate the role of 19 apoptosis inhibitor BIRC6 in breast cancer, focusing particularly on its involvement in the 20 metastatic cascade. -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells S
Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2020/05/03/mol.120.119776.DC1 1521-0111/98/1/24–37$35.00 https://doi.org/10.1124/mol.120.119776 MOLECULAR PHARMACOLOGY Mol Pharmacol 98:24–37, July 2020 Copyright ª 2020 The Author(s) This is an open access article distributed under the CC BY Attribution 4.0 International license. The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells s Philipp Y. Maximov, Balkees Abderrahman, Yousef M. Hawsawi, Yue Chen, Charles E. Foulds, Antrix Jain, Anna Malovannaya, Ping Fan, Ramona F. Curpan, Ross Han, Sean W. Fanning, Bradley M. Broom, Daniela M. Quintana Rincon, Jeffery A. Greenland, Geoffrey L. Greene, and V. Craig Jordan Downloaded from Departments of Breast Medical Oncology (P.Y.M., B.A., P.F., D.M.Q.R., J.A.G., V.C.J.) and Computational Biology and Bioinformatics (B.M.B.), University of Texas, MD Anderson Cancer Center, Houston, Texas; King Faisal Specialist Hospital and Research (Gen.Org.), Research Center, Jeddah, Kingdom of Saudi Arabia (Y.M.H.); The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois (R.H., S.W.F., G.L.G.); Center for Precision Environmental Health and Department of Molecular and Cellular Biology (C.E.F.), Mass Spectrometry Proteomics Core (A.J., A.M.), Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core (A.M.), and Dan L. Duncan molpharm.aspetjournals.org -
NATURAL KILLER CELLS, HYPOXIA, and EPIGENETIC REGULATION of HEMOCHORIAL PLACENTATION by Damayanti Chakraborty Submitted to the G
NATURAL KILLER CELLS, HYPOXIA, AND EPIGENETIC REGULATION OF HEMOCHORIAL PLACENTATION BY Damayanti Chakraborty Submitted to the graduate degree program in Pathology and Laboratory Medicine and the Graduate Faculty of the University of Kansas in partial fulfillment ofthe requirements for the degree of Doctor of Philosophy. ________________________________ Chair: Michael J. Soares, Ph.D. ________________________________ Jay Vivian, Ph.D. ________________________________ Patrick Fields, Ph.D. ________________________________ Soumen Paul, Ph.D. ________________________________ Michael Wolfe, Ph.D. ________________________________ Adam J. Krieg, Ph.D. Date Defended: 04/01/2013 The Dissertation Committee for Damayanti Chakraborty certifies that this is the approved version of the following dissertation: NATURAL KILLER CELLS, HYPOXIA, AND EPIGENETIC REGULATION OF HEMOCHORIAL PLACENTATION ________________________________ Chair: Michael J. Soares, Ph.D. Date approved: 04/01/2013 ii ABSTRACT During the establishment of pregnancy, uterine stromal cells differentiate into decidual cells and recruit natural killer (NK) cells. These NK cells are characterized by low cytotoxicity and distinct cytokine production. In rodent as well as in human pregnancy, the uterine NK cells peak in number around mid-gestation after which they decline. NK cells associate with uterine spiral arteries and are implicated in pregnancy associated vascular remodeling processes and potentially in modulating trophoblast invasion. Failure of trophoblast invasion and vascular remodeling has been shown to be associated with pathological conditions like preeclampsia syndrome, hypertension in mother and/or fetal growth restriction. We hypothesize that NK cells fundamentally contribute to the organization of the placentation site. In order to study the in vivo role of NK cells during pregnancy, gestation stage- specific NK cell depletion was performed in rats using anti asialo GM1 antibodies. -
Characterization of the Cellular Network of Ubiquitin Conjugating and Ligating Enzymes Ewa Katarzyna Blaszczak
Characterization of the cellular network of ubiquitin conjugating and ligating enzymes Ewa Katarzyna Blaszczak To cite this version: Ewa Katarzyna Blaszczak. Characterization of the cellular network of ubiquitin conjugating and ligating enzymes. Cellular Biology. Université Rennes 1, 2015. English. NNT : 2015REN1S116. tel-01547616 HAL Id: tel-01547616 https://tel.archives-ouvertes.fr/tel-01547616 Submitted on 27 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNÉE 2015 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : BIOLOGIE École doctorale Vie-Agro-Santé présentée par Ewa Katarzyna Blaszczak Préparée à l’unité de recherche UMR 6290, IGDR Institut de Génétique et Développement de Rennes Université Rennes 1 Thèse soutenue à Rennes le 26.06.2015 Characterization of devant le jury composé de : Aude ECHALIER-GLAZER the cellular network Maître de conférence University of Leicester / rapporteur of ubiquitin Lionel PINTARD Directeur de recherche -
The Role of Dubs in the Post-Translational Control of Cell Migration
Essays in Biochemistry (2019) 63 579–594 https://doi.org/10.1042/EBC20190022 Review Article The role of DUBs in the post-translational control of cell migration Guillem Lambies1,2, Antonio Garc´ıade Herreros1,2 and V´ıctor M. D´ıaz1,2,3 1Programa de Recerca en Cancer,` Institut Hospital del Mar d’Investigacions Mediques` (IMIM), Unidad Asociada CSIC, Barcelona, Spain; 2Departament de Ciencies` Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain; 3Faculty of Medicine and Health Sciences, International University of Catalonia, Sant Cugat del Valles,` Barcelona, Spain Downloaded from https://portlandpress.com/essaysbiochem/article-pdf/63/5/579/859061/ebc-2019-0022c.pdf by guest on 05 November 2019 Correspondence: V.M. Dıaz´ ([email protected])orA.Garcıa´ de Herreros ([email protected]) Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulat- ing Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full mi- gratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degra- dation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT. -
Repaglinide Silences the FOXO3/Lumican Axis and Represses the Associated Metastatic Potential of Neuronal Cancer Cells
cells Article Repaglinide Silences the FOXO3/Lumican Axis and Represses the Associated Metastatic Potential of Neuronal Cancer Cells Stefan Salcher 1 , Gilles Spoden 1, Julia M. Huber 1, Georg Golderer 2, Herbert Lindner 3 , Michael J. Ausserlechner 4 , Ursula Kiechl-Kohlendorfer 5 , Kathrin Geiger 1 and Petra Obexer 1,5,* 1 Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; stefan.salcher@tkfi.at (S.S.); [email protected] (G.S.); [email protected] (J.M.H.); [email protected] (K.G.) 2 Division of Biological Chemistry, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria; [email protected] 3 Division of Clinical Biochemistry, Medical University Innsbruck, 6020 Innsbruck, Austria; [email protected] 4 Department of Pediatrics I, Medical University Innsbruck, 6020 Innsbruck, Austria; [email protected] 5 Department of Pediatrics II, Medical University Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-512-504-25439 Received: 30 October 2019; Accepted: 16 December 2019; Published: 18 December 2019 Abstract: The transcription factor FOXO3 is associated with poor outcome in high-stage neuroblastoma (NB), as it facilitates chemoprotection and tumor angiogenesis. In other tumor entities, FOXO3 stimulates metastasis formation, one of the biggest challenges in the treatment of aggressive NB. However, the impact of FOXO3 on the metastatic potential of neuronal tumor cells remains largely unknown. In the present study, we uncover the small leucine-rich proteoglycan family member lumican (LUM) as a FOXO3-regulated gene that stimulates cellular migration in NB. -
Expression Profile of BCL-2, BCL-XL and MCL-1 Predicts Pharmacological
Author Manuscript Published OnlineFirst on March 3, 2016; DOI: 10.1158/1535-7163.MCT-15-0730 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Expression profile of BCL-2, BCL-XL and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models Elizabeth Punnoose1*, Joel D Leverson2*, Franklin Peale3, Erwin R Boghaert4, Lisa Belmont5, Nguyen Tan5, Amy Young6, Michael Mitten4, Ellen Ingalla6, Walter Darbonne1, Anatol Oleksijew4, Paul Tapang4, Peng Yue5, Jason Oeh6, Leslie Lee6, Sophie Maiga7, Wayne J Fairbrother8, Martine Amiot7, Andrew J Souers4, Deepak Sampath6# 1Oncology Biomarkers, Genentech 2Oncology Development, AbbVie, Inc. 3Research Pathology, Genentech 4Oncology Discovery, AbbVie, Inc. 5Discovery Oncology, Genentech 6Translational Oncology, Genentech 7INSERM UMR892, CNRS UMR6299, University of Nantes, France 8Early Discovery Biochemistry, Genentech *These authors contributed equally #Address correspondence to Deepak Sampath, Genentech, 1 DNA Way, South San Francisco, CA 94080. [email protected] Running Title: Predictive biomarkers of venetoclax efficacy in myeloma 1 Downloaded from mct.aacrjournals.org on September 24, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 3, 2016; DOI: 10.1158/1535-7163.MCT-15-0730 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Keywords: BCL-2 pro-survival proteins, multiple myeloma, drug resistance, predictive biomarkers Abbreviations: BCL-2 (B-cell lymphoma 2), BCL-XL (B-cell lymphoma-extra large or BCL2-like 1 isoform 1), MCL-1 (Myeloid Cell Leukemia 1), BIM (BCL-2-like protein 11), MM (Multiple Myeloma), HMCL (human myeloma cell line).