Approches Moléculaires De La Diversité Microbienne De Deux Environnements Extrêmes : Les Sources Hydrothermales Profondes Et Les Réservoirs Pétroliers Erwan Corre

Total Page:16

File Type:pdf, Size:1020Kb

Approches Moléculaires De La Diversité Microbienne De Deux Environnements Extrêmes : Les Sources Hydrothermales Profondes Et Les Réservoirs Pétroliers Erwan Corre Approches moléculaires de la diversité microbienne de deux environnements extrêmes : les sources hydrothermales profondes et les réservoirs pétroliers Erwan Corre To cite this version: Erwan Corre. Approches moléculaires de la diversité microbienne de deux environnements extrêmes : les sources hydrothermales profondes et les réservoirs pétroliers. Biologie moléculaire. Université de Bretagne Occidentale, 2000. Français. tel-01115381 HAL Id: tel-01115381 https://hal.sorbonne-universite.fr/tel-01115381 Submitted on 12 Feb 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Avertissement Au vu de la législation sur les droits d'auteur, ce travail de thèse demeure la propriété de son auteur, et toute reproduction de cette oeuvre doit faire l'objet d'une autorisation de l'auteur. (cf Loi n°92-597; 1/07/1992. Journal Officiel, 2/07/1992) THESE présentée pour l'obtention du grade de Docteur de l'Université de Bretagne Occidentale (Mention Microbiologie) Erwan CORRE Approches moléculaires de la diversité microbienne de deux environnements extrêmes : les sources hydrothermales profondes et les réservoirs pétroliers Soutenue le Mercredi 2 Février 2000 devant le jury composé de : MM. P. CAUMETTE, Professeur, Université de Pau Examinateur M. MAGOT, Responsable de Laboratoire, Sanofi, Labège Rapporteur P. NORMAND, Directeur de Recherche CNRS, Université Lyon I Rapporteur B. PICARD, Professeur, Université de Bretagne Occidentale Président D. PRIEUR, Professeur, Université de Bretagne Occidentale Examinateur A.L. REYSENBACH, Professeur, Université de Portland, USA Examinatrice Remerciements Le travail présenté dans ce mémoire a été réalisé avec le soutien financier de la Communauté Urbaine de Brest Je remercie tout d'abord Daniel Prieur pour m'avoir accueilli dans son équipe de recherche, d'abords en DEA puis en thèse et de m'avoir fait confiance tout au long de ces années. Mes remerciements s'adressent tout particulièrement à Christian Jeanthon pour son soutien, sa patience et sa disponibilité. Je tiens à lui exprimer ici ma reconnaissance pour toutes les discussions enrichissantes, les conseils avisés et les directives salutaires qu'il a su m'indiquer tout au long de ce travail. Merci profondément pour le temps consacré à la correction des articles. Je remercie également Anna-Louise Reysenbach pour m'avoir accueilli dans son laboratoire à Rutgers et de m'avoir permis de travailler sur les échantillons de Vent Cap. Son expérience en biologie moléculaire, ses conseils en phylogénie m'ont été grandement utiles. Je la remercie également de m'avoir fait partager durant mon séjour à Rutgers sa passion pour les chevaux et pour le trafic de fromages et de vins français. Je remercie également les membres du jury : Pierre Caumette, Philippe Normand, Michel Magot et Bertrand Picard d'avoir accepté de juger mon travail de thèse. Je tiens à adresser mes plus profonds remerciements à l'ensemble des étudiants avec qui j'ai eu la joie de travailler : Cédric Hobel (qui a essuyé les plâtres), la brillante Anne Postec, l'inénarrable mais néanmoins charmante Catherine Charpentier et enfin le précieux Laurent Toffin avec qui j'ai passé une année de travail formidable. Une grande partie des résultats présentés dans ce manuscrit sont le fruit de leur acharnement et de leur persévérance. J'adresse un remerciement tout particulier à Tristan Barbeyron pour m'avoir formé aux techniques moléculaires, pour sa disponibilité et son savoir intemporel sur tout ce qui à trait la biologie moléculaire, la microbiologie, la radioactivité, Serge Lama et les 24 heures du Mans. Merci également à Hermie Harmsen pour ses conseils avisés à la paillasse comme à l'e-mail. Je remercie tout particulièrement Olivier Collin, Stéphan Jouannic et Jean Ranc pour les heures qu'ils ont accepté de passer à lire et corriger ce manuscrit. Spéciale dédicace à Stéphane et Olivier pour leur travail de pionniers dans la jungle des fautes d'orthographes et les marais fangeux des accords mal à propos. Je remercie également tous les membres du laboratoire. En particulier Stéphane et Edmond pour leur amitié, les foulées et la sueur que nous avons partagé (enfin surtout eux) sur de nombreux kilomètres. Jenny pour m'avoir supporté et pour nous être épaulé mutuellement dans la dernière (longue, très longue) ligne droite. Marc, Patrick, Olivier, Jean-Louis, Laurent, Viggo, Soizick et Valérie pour avoir survécu dans les bureaux que nous avons partagés. Enfin je remercie les membres de la Station Biologique de Roscoff pour leur accueil, leurs compétences et la formidable ambiance qu'ils savent entretenir dans leur laboratoire et dans les couloirs de la station. Merci à Odile, Claire, Catherine's, Jeff's, Didier, Vincent et Lolo, à la famille Collin à 2 jambes ou 4 pattes pour leur soutient moral et véliplanchesque ainsi que pour leur accueil tout au long de mon travail. Merci à l'ensemble de ma famille, à Juliette de m'avoir aiguillé vers la Station Biologique, à mes parents, "beaux"-parents et grands-parents de leur soutien. Merci enfin à Anne d'avoir su supporter au quotidien mes sautes d'humeurs, mes absences et d'avoir finalement, plus qu'aucune autre personne, contribué à ce que je mène à bien ce travail. Introduction générale La microbiologie de l'environnement est une discipline jeune, qui a pour vocation d'étudier les relations qu'entretiennent les micro-organismes avec leur biotope. Si l'adage populaire n'accorde que peu d'influence à ce qui est invisible à l'oeil et si la présence de micro-organismes est souvent associée à une nuisance plutôt qu'à un bienfait, le rôle des micro-organismes est pourtant prépondérant dans le fonctionnement de nombreux écosystèmes naturels et anthropiques. L'étude des micro-organismes a longtemps été liée à la capacité des microbiologistes à recréer in vitro des conditions favorables à la croissance des communautés microbiennes. Or, des écosystèmes complexes, soumis à des contraintes physico-chimiques extrêmes telles que, de fortes températures, de fortes pressions ou l'absence d'oxygène, ou à des fluctuations de sources de nutriments ou d'énergie, sont particulièrement difficiles à simuler au laboratoire. Aussi, dans ces écosystèmes ,comme dans d'autres étudiés déjà depuis fort longtemps tels que le sol où l'eau de mer, un grand nombre de micro-organismes ont échappé à toute méthode de culture. Le développement des techniques de biologie moléculaire et l'utilisation de la molécule d'ARN ribosomique comme marqueur évolutif a permis de s'affranchir des étapes de culture et a permis d'asseoir sur des bases phylogénétiques les relations taxinomiques s'établissant entre les différents organismes vivants. Le travail présenté dans ce mémoire a pour objet l'étude de la diversité microbienne de deux écosystèmes considérés comme extrêmes : les sources hydrothermales profondes et les réservoirs pétroliers. Les techniques mises en oeuvre sont fondées soit sur l'analyse des ARN ribosomiques (ARNr) sans étape préalable de culture, par séquençage ou hybridation in situ, soit sur le positionnement phylogénétique de souches isolées de ces environnements. Avant de présenter les résultats de ce travail sous la forme d'articles en préparation, soumis ou publiés, je me propose : - de présenter une revue des techniques d'écologie microbienne classiques et moléculaires couramment utilisées pour accéder à la diversité des écosystèmes microbiens, de présenter des moyens d'accéder à la diversité fonctionnelle de ces écosystèmes et d'insister sur les biais inhérents à chacune de ces techniques, - d'effectuer un tour d'horizon des différents habitats microbiens qui ont été étudiés ces dernières années et de présenter pour chacun de ces habitats les apports des techniques moléculaires dans la description de la diversité et la découverte de nouveaux groupes phylogénétiques, et enfin - de présenter et de discuter les différentes techniques que nous avons mises en oeuvre pour étudier la diversité microbienne d'un écosystème pétrolier continental et d'un site hydrothermal profond. ii Abréviations IPTG : isopropylthio-ß-D-galactoside ISRT : In Situ Reverse Transcription A : Adénosine Knuc : distance phylogénétique ADN: Acide désoxyribonucléique Kpb : Kilo paires de bases ADNc : ADN cloné LB (milieu liquide ou gélose) : Luria-Bertani ADNr 16S : ADN codant pour la sous unité 16S de l'ARN ribosomal LFRFA : Low Frequency Restriction Fragment Analysis ADNr : ADN codant pout l'ARN ribosomal LMW RNA: ARN de faible poids moléculaire AFLP : Amplified Fragment Length Polymorphism LPS : Lipopolysaccharides APS : Ammonium Persulfate LUCA : Last Unversal Common Ancestor ARDRA : Amplified rDNA Restriction Analysis. MAR : Middle Atlantic Ride ARN : Acide ribonucléique MPN : Most probable number ARNm : ARN messagé NPP : Nombre le plus probable ARNr 16S : sous unité 16S de l'ARN ribosomal OTU : Operational Taxonomic Unit ARNr : ARN ribosomale p/v : (masse à volume) ATP : Adénosine tri-phosphate pb : paire de base BrdU : bromodéoxyuridine. PCB : PolyChlorinated Biphenyl BSA : Bovine Serum Albumin PCR : Polymerase Chain Reaction
Recommended publications
  • Optimization and Characterization of the Growth Of
    OPTIMIZATION AND CHARACTERIZATION OF THE GROWTH OF THE PHOTOSYNTHETIC BACTERIUM BLASTOCHLORIS VIRIDIS AND A BRIEF SURVEY OF ITS POTENTIAL AS A REMEDIATIVE TOOL A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Darcy Danielle LaClair, B.S. ___________________________________ Agnes E. Ostafin, Director Graduate Program in Chemical and Biomolecular Engineering Notre Dame, Indiana April 2006 OPTIMIZATION AND CHARACTERIZATION OF THE GROWTH OF THE PHOTOSYNTHETIC BACTERIUM BLASTOCHLORIS VIRIDIS AND A BRIEF SURVEY OF THEIR POTENTIAL AS A REMEDIATIVE TOOL Abstract by Darcy Danielle LaClair The growth of B. viridis was characterized in an undefined rich medium and a well-defined medium, which was later selected for further experimentation to insure repeatability. This medium presented a significant problem in obtaining either multigenerational or vigorous growth because of metabolic limitations; therefore optimization of the medium was undertaken. A primary requirement to obtain good growth was a shift in the pH of the medium from 6.9 to 5.9. Once this shift was made, it was possible to obtain growth in subsequent generations, and the media formulation was optimized. A response curve suggested optimum concentrations of 75 mM carbon, supplemented as sodium malate, 12.5 mM nitrogen, supplemented as ammonium sulfate, Darcy Danielle LaClair and 12.7 mM phosphate buffer. In addition, the vitamins p-Aminobenzoic acid, Thiamine, Biotin, B12, and Pantothenate were important to achieving good growth and good pigment formation. Exogenous carbon dioxide, added as 2.5 g sodium bicarbonate per liter media also enhanced growth and reduced the lag time.
    [Show full text]
  • Photosynthesis Is Widely Distributed Among Proteobacteria As Demonstrated by the Phylogeny of Puflm Reaction Center Proteins
    fmicb-08-02679 January 20, 2018 Time: 16:46 # 1 ORIGINAL RESEARCH published: 23 January 2018 doi: 10.3389/fmicb.2017.02679 Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins Johannes F. Imhoff1*, Tanja Rahn1, Sven Künzel2 and Sven C. Neulinger3 1 Research Unit Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 Max Planck Institute for Evolutionary Biology, Plön, Germany, 3 omics2view.consulting GbR, Kiel, Germany Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Edited by: Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the Marina G. Kalyuzhanaya, phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria San Diego State University, United States employing this photosystem in nature. Almost complete pufLM gene sequences and Reviewed by: the derived protein sequences from 152 type strains and 45 additional strains of Nikolai Ravin, phototrophic Proteobacteria employing photosystem II were compared. The results Research Center for Biotechnology (RAS), Russia give interesting and comprehensive insights into the phylogeny of the photosynthetic Ivan A. Berg, apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as Universität Münster, Germany major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from *Correspondence: Caulobacterales (Brevundimonas subvibrioides).
    [Show full text]
  • Effect of Reclaimed Water Effluent on Bacterial Community Structure in the Typha Angustifolia L
    JOURNAL OF ENVIRONMENTAL SCIENCES 55 (2017) 58– 68 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jes Effect of reclaimed water effluent on bacterial community structure in the Typha angustifolia L. rhizosphere soil of urbanized riverside wetland, China Xingru Huang1,2, Wei Xiong4, Wei Liu1,2, Xiaoyu Guo1,2,3,⁎ 1. College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China. E-mail: [email protected] 2. Beijing Municipal Key Laboratory of Resources Environment and GIS, Beijing 100048, China 3. Urban Environmental Processes and Digital Modeling Laboratory, Beijing 100048, China 4. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China ARTICLE INFO ABSTRACT Article history: In order to evaluate the impact of reclaimed water on the ecology of bacterial communities Received 24 February 2016 in the Typha angustifolia L. rhizosphere soil, bacterial community structure was investigated Revised 16 May 2016 using a combination of terminal restriction fragment length polymorphism and 16S rRNA Accepted 2 June 2016 gene clone library. The results revealed significant spatial variation of bacterial Available online 4 August 2016 communities along the river from upstream and downstream. For example, a higher relative abundance of γ-Proteobacteria, Firmicutes, Chloroflexi and a lower proportion of Keywords: β-Proteobacteria and ε-Proteobacteria was detected at the downstream site compared to the Reclaimed water upstream site. Additionally, with an increase of the reclaimed water interference intensity, T-RFLP the rhizosphere bacterial community showed a decrease in taxon richness, evenness and 16S rRNA gene clone library diversity. The relative abundance of bacteria closely related to the resistant of heavy-metal Bacterial community structure was markedly increased, while the bacteria related for carbon/nitrogen/phosphorus/sulfur cycling wasn't strikingly changed.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 01 University of Plymouth Research Outputs University of Plymouth Research Outputs 2017-05-01 Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales Boden, R http://hdl.handle.net/10026.1/8740 10.1099/ijsem.0.001927 International Journal of Systematic and Evolutionary Microbiology All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. International Journal of Systematic and Evolutionary Microbiology Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov. Transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and 4 new families within the orders Nitrosomonadales and Rhodocyclales. --Manuscript Draft-- Manuscript Number: IJSEM-D-16-00980R2 Full Title: Reclassification of Thiobacillus aquaesulis (Wood & Kelly,
    [Show full text]
  • Draft Genome Sequence of a Nitrate-Reducing, O-Phthalate Degrading Bacterium, Azoarcus Sp. Strain PA01T Madan Junghare1,2*, Yogita Patil2 and Bernhard Schink2
    Junghare et al. Standards in Genomic Sciences (2015) 10:90 DOI 10.1186/s40793-015-0079-9 SHORT GENOME REPORT Open Access Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01T Madan Junghare1,2*, Yogita Patil2 and Bernhard Schink2 Abstract Azoarcus sp. strain PA01T belongs to the genus Azoarcus,ofthefamilyRhodocyclaceae within the class Betaproteobacteria. It is a facultatively anaerobic, mesophilic, non-motile, Gram-stain negative, non-spore-forming, short rod-shaped bacterium that was isolated from a wastewater treatment plant in Constance, Germany. It is of interest because of its ability to degrade o-phthalate and a wide variety of aromatic compounds with nitrate as an electron acceptor. Elucidation of the o-phthalate degradation pathway may help to improve the treatment of phthalate-containing wastes in the future. Here, we describe the features of this organism, together with the draft genome sequence information and annotation. The draft genome consists of 4 contigs with 3,908,301 bp and an overall G + C content of 66.08 %. Out of 3,712 total genes predicted, 3,625 genes code for proteins and 87 genes for RNAs. The majority of the protein-encoding genes (83.51 %) were assigned a putative function while those remaining were annotated as hypothetical proteins. Keywords: Azoarcus sp. strain PA01T, o-phthalate degradation, Rhodocyclaceae, Betaproteobacteria, anaerobic degradation, wastewater treatment plant, pollutant Introduction aromatic compounds found in fossil fuel [8], such as phen- Phthalic acid consists of a benzene ring to which two anthrene [9], fluorene [10] and fluoranthene [11]. carboxylic groups are attached.
    [Show full text]
  • Riverine Bacterial Communities Reveal Environmental Disturbance Signatures Within the Betaproteobacteria and Verrucomicrobia
    ORIGINAL RESEARCH published: 15 September 2016 doi: 10.3389/fmicb.2016.01441 Riverine Bacterial Communities Reveal Environmental Disturbance Signatures within the Betaproteobacteria and Verrucomicrobia John Paul Balmonte *, Carol Arnosti, Sarah Underwood, Brent A. McKee and Andreas Teske Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant Edited by: terrestrial input, the distinction between resident freshwater taxa vs. land-derived James Cotner, microbes can often become ambiguous. Furthermore, ecosystem perturbations could University of Minnesota, USA introduce allochthonous microbial groups and reshape riverine bacterial communities. Reviewed by: Barbara J. Campbell, Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the Clemson University, USA composition of bacterial communities in the Tar River of North Carolina from November Martin W. Hahn, 2010 to November 2011, during which a natural perturbation occurred: the inundation of University of Innsbruck, Austria the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, *Correspondence: John Paul Balmonte which passed over eastern North Carolina in late August 2011. This event provided the [email protected] opportunity to examine the microbiological, hydrological, and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed Specialty section: This article was submitted to on seasonal changes or other ecosystem variability independent of the hurricane. Our Aquatic Microbiology, findings demonstrate that downstream communities are more taxonomically diverse a section of the journal Frontiers in Microbiology and temporally variable than their upstream counterparts.
    [Show full text]
  • Anoxygenic Phototrophic Chloroflexota Member Uses a Type I Reaction Center
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.190934; this version posted July 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Anoxygenic phototrophic Chloroflexota member uses a Type I reaction center Tsuji JM1*, Shaw NA1, Nagashima S2, Venkiteswaran JJ1,3, Schiff SL1, Hanada S2, Tank M2,4*, Neufeld JD1* 5 1University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1 2Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, Japan, 192-0397 3Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, Canada, N2L 3C5 4Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 10 Inhoffenstrasse 7B, 38124 Braunschweig, Germany *Corresponding authors: [email protected]; [email protected]; [email protected] Keywords: Chloroflexota; Chloroflexi; filamentous anoxygenic phototroph; boreal lakes; anoxygenic photoautotrophy; evolution of photosynthesis; enrichment cultivation bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.190934; this version posted July 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 15 Summary Chlorophyll-based phototrophy is performed using quinone and/or Fe-S type reaction centers1,2. Unlike oxygenic phototrophs, where both reaction center classes are used in tandem as Photosystem II and Photosystem I, anoxygenic phototrophs use only one class of reaction center, termed Type II (RCII) or Type I (RCI) reaction centers, separately for phototrophy3.
    [Show full text]
  • Rugosibacter Aromaticivorans Gen. Nov., Sp. Nov., a Bacterium Within
    NOTE Corteselli et al., Int J Syst Evol Microbiol 2014;67:311–318 DOI 10.1099/ijsem.0.001622 Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds Elizabeth M. Corteselli, Michael D. Aitken and David R. Singleton* Abstract A bacterial strain designated Ca6T was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil from the site of a former manufactured gas plant in Charlotte, NC, USA, and linked phylogenetically to the family Rhodocyclaceae of the class Betaproteobacteria. Its 16S rRNA gene sequence was highly similar to globally distributed environmental sequences, including those previously designated ‘Pyrene Group 1’ demonstrated to grow on the PAHs phenanthrene and pyrene by stable-isotope probing. The most closely related described relative was Sulfuritalea hydrogenivorans strain sk43HT (93.6 % 16S rRNA gene sequence identity). In addition to a limited number of organic acids, Ca6T was capable of growth on the monoaromatic compounds benzene and toluene, and the azaarene carbazole, as sole sources of carbon and energy. Growth on the PAHs phenanthrene and pyrene was also confirmed. Optimal growth was observed aerobically under mesophilic temperature, neutral pH and low salinity conditions. Major fatty acids present included summed feature 3 (C16 : 1!7c or C16 : 1 !6c) and C16 : 0. The DNA G+C content of the single chromosome was 55.14 mol% as determined by complete genome sequencing. Due to its distinct genetic and physiological properties, strain Ca6T is proposed as a member of a novel genus and species within the family Rhodocyclaceae, for which the name Rugosibacter aromaticivorans gen.
    [Show full text]
  • Lateral Gene Transfer Challenges Principles of Microbial Systematics
    Opinion Lateral gene transfer challenges principles of microbial systematics Eric Bapteste1 and Yan Boucher2 1 UPMC UMR 7138, 7 quai Saint-Bernard, Baˆ timent A, 4e`me e´ tage, 75005, Paris, France 2 Department of Civil and Environmental Engineering, MIT, Building 48–305, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Evolutionists strive to learn about the natural historical As a result, the traditional TOL reconstruction project, process that gave rise to various taxa, while also as far as prokaryotic organisms are concerned, fell short. It attempting to classify them efficiently and make gener- is arguable whether debating the branching order in the alizations about them. The quantitative importance of TOL and looking for a unique nested hierarchy is a satis- lateral gene transfer inferred from genomic data, factory way to classify such microbes in the presence of although well acknowledged by microbiologists, is in lateral gene transfer. Instead, we propose alternative con- conflict with the conceptual foundations of the cepts to the traditional phylogenetic projects to deal with traditional phylogenetic system erected to achieve these microbial evolution and systematics: (i) a redefinition of goals. To provide a true account of microbial evolution, natural groups; (ii) the description of a new type of evol- we suggest developing an alternative conception of utionary unit originating from lateral gene transfer (LGT); natural groups and introduce a new notion – the com- and (iii) the realization of an interactive taxonomical data- posite evolutionary unit. Furthermore, we argue that a base (comprising overlapping groups) to progress towards comprehensive database containing overlapping taxo- a more natural classification.
    [Show full text]
  • Draft Genome Sequence of a Nitrate-Reducing, O-Phthalate Degrading Bacterium, Azoarcus Sp. Strain PA01T Madan Junghare1,2*, Yogita Patil2 and Bernhard Schink2
    Erschienen in: Standards in Genomic Sciences ; 10 (2015). - 90 http://dx.doi.org/10.1186/s40793-015-0079-9 Junghare et al. Standards in Genomic Sciences (2015) 10:90 DOI 10.1186/s40793-015-0079-9 SHORT GENOME REPORT Open Access Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01T Madan Junghare1,2*, Yogita Patil2 and Bernhard Schink2 Abstract Azoarcus sp. strain PA01T belongs to the genus Azoarcus,ofthefamilyRhodocyclaceae within the class Betaproteobacteria. It is a facultatively anaerobic, mesophilic, non-motile, Gram-stain negative, non-spore-forming, short rod-shaped bacterium that was isolated from a wastewater treatment plant in Constance, Germany. It is of interest because of its ability to degrade o-phthalate and a wide variety of aromatic compounds with nitrate as an electron acceptor. Elucidation of the o-phthalate degradation pathway may help to improve the treatment of phthalate-containing wastes in the future. Here, we describe the features of this organism, together with the draft genome sequence information and annotation. The draft genome consists of 4 contigs with 3,908,301 bp and an overall G + C content of 66.08 %. Out of 3,712 total genes predicted, 3,625 genes code for proteins and 87 genes for RNAs. The majority of the protein-encoding genes (83.51 %) were assigned a putative function while those remaining were annotated as hypothetical proteins. Keywords: Azoarcus sp. strain PA01T, o-phthalate degradation, Rhodocyclaceae, Betaproteobacteria, anaerobic degradation, wastewater treatment plant, pollutant Introduction aromatic compounds found in fossil fuel [8], such as phen- Phthalic acid consists of a benzene ring to which two anthrene [9], fluorene [10] and fluoranthene [11].
    [Show full text]
  • Rubrivivax Benzoatilyticus Sp. Nov., an Aromatic, Hydrocarbon-Degrading Purple Betaproteobacterium
    International Journal of Systematic and Evolutionary Microbiology (2006), 56, 2157–2164 DOI 10.1099/ijs.0.64209-0 Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium Ch. V. Ramana,1 Ch. Sasikala,2 K. Arunasri,2 P. Anil Kumar,2 T. N. R. Srinivas,2 S. Shivaji,3 P. Gupta,3 J. Su¨ling4 and J. F. Imhoff4 Correspondence 1Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Ch. V. Ramana PO Central University, Hyderabad 500 046, India [email protected] 2Environmental Microbial Biotechnology Laboratory, Center for Environment, Institute of or Science and Technology, J.N.T. University, Kukatpally, Hyderabad 500 072, India [email protected] 3Center for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India 4Leibniz-Institut fu¨r Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Du¨sternbrooker Weg 20, 24105 Kiel, Germany A brown-coloured bacterium was isolated from photoheterotrophic (benzoate) enrichments of flooded paddy soil from Andhra Pradesh, India. On the basis of 16S rRNA gene sequence analysis, strain JA2T was shown to belong to the class Betaproteobacteria, related to Rubrivivax gelatinosus (99 % sequence similarity). Cells of strain JA2T are Gram-negative, motile rods with monopolar single flagella. The strain contained bacteriochlorophyll a and most probably the carotenoids spirilloxanthin and sphaeroidene, but did not have internal membrane structures. Intact cells had absorption maxima at 378, 488, 520, 590, 802 and 884 nm. No growth factors were required. Strain JA2T grew on benzoate, 2-aminobenzoate (anthranilate), 4-aminobenzoate, 4-hydroxy- benzoate, phthalate, phenylalanine, trans-cinnamate, benzamide, salicylate, cyclohexanone, cyclohexanol and cyclohexane-2-carboxylate as carbon sources and/or electron donors.
    [Show full text]
  • Hidden Sources and Sinks of Fe(II) in the Sedimentary Biogeochemical Iron Cycle – the Role of Light
    Hidden sources and sinks of Fe(II) in the sedimentary biogeochemical iron cycle – The role of light Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von M. Sc. Ulf Lüder aus Heidenheim an der Brenz Tübingen 2019 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 15.11.2019 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Andreas Kappler 2. Berichterstatter: Prof. Dr. Bo Barker Jørgensen Contents Summary ............................................................................................................................................... 1 Zusammenfassung............................................................................................................................. 3 Chapter 1: Introduction and objectives of this study ............................................................... 5 1.1 Abiotic Fe redox reactions ................................................................................................... 5 1.2 Microbially catalyzed Fe redox reactions .......................................................................... 6 1.3 Biogeochemical Fe cycling in freshwater and marine sediments ................................. 8 1.4 Field sites description ........................................................................................................
    [Show full text]