Lateral Gene Transfer Challenges Principles of Microbial Systematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Optimization and Characterization of the Growth Of
OPTIMIZATION AND CHARACTERIZATION OF THE GROWTH OF THE PHOTOSYNTHETIC BACTERIUM BLASTOCHLORIS VIRIDIS AND A BRIEF SURVEY OF ITS POTENTIAL AS A REMEDIATIVE TOOL A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Darcy Danielle LaClair, B.S. ___________________________________ Agnes E. Ostafin, Director Graduate Program in Chemical and Biomolecular Engineering Notre Dame, Indiana April 2006 OPTIMIZATION AND CHARACTERIZATION OF THE GROWTH OF THE PHOTOSYNTHETIC BACTERIUM BLASTOCHLORIS VIRIDIS AND A BRIEF SURVEY OF THEIR POTENTIAL AS A REMEDIATIVE TOOL Abstract by Darcy Danielle LaClair The growth of B. viridis was characterized in an undefined rich medium and a well-defined medium, which was later selected for further experimentation to insure repeatability. This medium presented a significant problem in obtaining either multigenerational or vigorous growth because of metabolic limitations; therefore optimization of the medium was undertaken. A primary requirement to obtain good growth was a shift in the pH of the medium from 6.9 to 5.9. Once this shift was made, it was possible to obtain growth in subsequent generations, and the media formulation was optimized. A response curve suggested optimum concentrations of 75 mM carbon, supplemented as sodium malate, 12.5 mM nitrogen, supplemented as ammonium sulfate, Darcy Danielle LaClair and 12.7 mM phosphate buffer. In addition, the vitamins p-Aminobenzoic acid, Thiamine, Biotin, B12, and Pantothenate were important to achieving good growth and good pigment formation. Exogenous carbon dioxide, added as 2.5 g sodium bicarbonate per liter media also enhanced growth and reduced the lag time. -
Core Bacterial Taxon from Municipal Wastewater Treatment Plants
ENVIRONMENTAL MICROBIOLOGY crossm Casimicrobium huifangae gen. nov., sp. nov., a Ubiquitous “Most-Wanted” Core Bacterial Taxon from Municipal Wastewater Treatment Plants Yang Song,a,b,c,d,g Cheng-Ying Jiang,a,b,c,d Zong-Lin Liang,a,b,c,g Bao-Jun Wang,a Yong Jiang,e Ye Yin,f Hai-Zhen Zhu,a,b,c,g Ya-Ling Qin,a,b,c,g Rui-Xue Cheng,a Zhi-Pei Liu,a,b,c,d Yao Liu,e Tao Jin,f Philippe F.-X. Corvini,h Korneel Rabaey,i Downloaded from Ai-Jie Wang,a,d,g Shuang-Jiang Liua,b,c,d,g aKey Laboratory of Environmental Biotechnology at Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China bState Key Laboratory of Microbial Resources at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China cEnvironmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China dRCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China eBeijing Drainage Group Co., Ltd., Beijing, China f BGI-Qingdao, Qingdao, China http://aem.asm.org/ gUniversity of Chinese Academy of Sciences, Beijing, China hUniversity of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland iCenter for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium Yang Song and Cheng-Ying Jiang contributed equally to this work. Author order was determined by drawing straws. ABSTRACT Microorganisms in wastewater treatment plants (WWTPs) play a key role in the removal of pollutants from municipal and industrial wastewaters. A recent study estimated that activated sludge from global municipal WWTPs har- on June 19, 2020 by guest bors 1 ϫ 109 to 2 ϫ 109 microbial species, the majority of which have not yet been cultivated, and 28 core taxa were identified as “most-wanted” ones (L. -
Bacteria Coated Cathodes As an In-Situ Hydrogen Evolving Platform for Microbial Electrosynthesis
www.nature.com/scientificreports OPEN Bacteria coated cathodes as an in‑situ hydrogen evolving platform for microbial electrosynthesis Elisabet Perona‑Vico1, Laura Feliu‑Paradeda1, Sebasti Puig2 & Lluis Bañeras1* Hydrogen is a key intermediate element in microbial electrosynthesis as a mediator of the reduction of carbon dioxide (CO2) into added value compounds. In the present work we aimed at studying the biological production of hydrogen in biocathodes operated at − 1.0 V vs. Ag/AgCl, using a highly comparable technology and CO2 as carbon feedstock. Ten bacterial strains were chosen from genera Rhodobacter, Rhodopseudomonas, Rhodocyclus, Desulfovibrio and Sporomusa, all described as hydrogen producing candidates. Monospecifc bioflms were formed on carbon cloth cathodes and hydrogen evolution was constantly monitored using a microsensor. Eight over ten bacteria strains showed electroactivity and H2 production rates increased signifcantly (two to eightfold) compared to abiotic conditions for two of them (Desulfovibrio paquesii and Desulfovibrio desulfuricans). D. paquesii DSM 16681 exhibited the highest production rate (45.6 ± 18.8 µM min−1) compared to abiotic conditions (5.5 ± 0.6 µM min−1), although specifc production rates (per 16S rRNA copy) were similar to those obtained for other strains. This study demonstrated that many microorganisms are suspected to participate in net hydrogen production but inherent diferences among strains do occur, which are relevant for future developments of resilient bioflm coated cathodes as a stable hydrogen production platform in microbial electrosynthesis. Microbial electrosynthesis (MES) is engineered to use electric power and carbon dioxide (CO2) as the only energy and carbon sources in reductive bioelectrochemical processes for biosynthesis 1. -
Microbial Evolution: Concepts and Controversies
Conference abstracts from the Colloqium Microbial Evolution: Concepts and Controversies organised by The Canada Research Chair in the history of biology at the Université du Québec à Montréal, from October 17 to 19 2002 Beyond neo-Darwinism: The Origins of Microbial Phylogenetics Jan Sapp Department fo History, Université du Québec à Montréal, CIRST Chairholder of the Canada Research Chair in the History of Biology The neo-Darwinian evolutionary synthesis of the 1930s and 1940s dealt with the evolution of plants and animals over the last 560 million years. It did not address the evolution of microorganisms and the previous 3000 million years of evolutionary change on earth. During the last two decades of the twentieth century, biologists developed new comparative molecular techniques and concepts to trace life back thousands of millions of years to investigate early microbial evolution with the aim to create a universal phylogeny. Studies of microbial phylogeny have brought about a conceptual revolution in the way in which evolutionary change occurs in microbes with the evidence for the fundamental importance of symbiotic mergers, fusions, and various other mechanisms for horizontal gene transfer. The scope and significance of these mechanisms remain subjects of controversy. The Origin of Intermediate Metabolism Harold Morowitz Krasnow Institute, George Mason University, Fairfax, VA 2030, USA The case is made for autotrophs preceding heterotrophs, chemoautorophs preceding photoautotrophs, and the reductive tricarboxylic acid cycle preceding the Calvin-Benson cycle. The acetyl Co-A pathway is less certain. A group of universal features of the primary chart of autotrophic metabolism is discussed. This includes the universal nitrogen entry point and the universal sulfur entry point. -
Investigation of South African Estuarine Microbial Species and Genome Diversity
Investigation of South African Estuarine Microbial species and Genome diversity By Ms. Eveline Kaambo Submitted in partial fulfillment of the requirement for the degree of Magister Scientiae (M.Sc) in the Department of Biotechnology, University of the Western Cape Supervisor: Professor D.A. Cowan November 2006 Abstract A study of the microbial diversity in sediments of the Great Berg River estuary is carried out using modern molecular phylogenetic methods. The aim of the study is to determine the effect of (pollution by) the effluents of the fish industry on the composition of the microbial community in the sediments. The diversity in microbial groups of sediment samples that received wastewater from the local fishing industry is investigated by a PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) approach and compared to an unaffected site. DGGE is used for the separation of 16S rDNA amplified from metagenomic DNA, which is expected to provide qualitative information on sediment microbial community composition. The DGGE method is also applied to monitor changes of the microbial community at different depths in the estuarine sediment. Two primer sets is used in this study, one specific for 16S rDNA from the domain Bacteria and the other for DNA from the domain Archaea, which allowed the depth profiles for these groups of organisms to be compared. The DGGE profiles representing the bacteria revealed a decrease in diversity with depth at the downstream site of the wastewater outlet. In contrast, the archaeal diversity increases with depth. In addition to the DGGE analyses, 16S rDNA clone libraries were constructed from both sampling sites. -
Diversity of Microorganisms Within Rock Varnish in the Whipple Mountains, California† K
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 2006, p. 1708–1715 Vol. 72, No. 2 0099-2240/06/$08.00ϩ0 doi:10.1128/AEM.72.2.1708–1715.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Diversity of Microorganisms within Rock Varnish in the Whipple Mountains, California† K. R. Kuhlman,1* W. G. Fusco,2 M. T. La Duc,1 L. B. Allenbach,2 C. L. Ball,2 G. M. Kuhlman,1 R. C. Anderson,1 I. K. Erickson,3 T. Stuecker,1 J. Benardini,2 J. L. Strap,2 and R. L. Crawford2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 911091; Environmental Biotechnology Institute, University of Idaho, Moscow, Idaho 83844-10522; and Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-30513 Received 16 February 2005/Accepted 19 October 2005 Rock varnish from Arizona’s Whipple Mountains harbors a microbial community containing about 108 microorganisms g؊1 of varnish. Analyses of varnish phospholipid fatty acids and rRNA gene libraries reveal a community comprised of mostly Proteobacteria but also including Actinobacteria, eukaryota, and a few members of the Archaea. Rock varnish represents a significant niche for microbial colonization. Rock varnish (also known as desert varnish) is a dark, thin forms very slowly at rates thought to be between Ͻ1 to about (usually 5 to 500 m thick), layered veneer composed of clay 40 m per 1,000 years (50), thus archeologists have been in- minerals cemented together by oxides and hydroxides of man- terested in dating the age of varnishes to place petroglyphs ganese and iron (11, 20, 56, 63, 64). -
Phylogeny of Bacterial and Archaeal Genomes Using Conserved Genes: Supertrees and Supermatrices
Phylogeny of Bacterial and Archaeal Genomes Using Conserved Genes: Supertrees and Supermatrices Jenna Morgan Lang1,2, Aaron E. Darling1, Jonathan A. Eisen1,2* 1 Department of Medical Microbiology and Immunology and Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America, 2 Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America Abstract Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a ‘‘primary concordance’’ tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy) tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes. -
Photosynthesis Is Widely Distributed Among Proteobacteria As Demonstrated by the Phylogeny of Puflm Reaction Center Proteins
fmicb-08-02679 January 20, 2018 Time: 16:46 # 1 ORIGINAL RESEARCH published: 23 January 2018 doi: 10.3389/fmicb.2017.02679 Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins Johannes F. Imhoff1*, Tanja Rahn1, Sven Künzel2 and Sven C. Neulinger3 1 Research Unit Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 Max Planck Institute for Evolutionary Biology, Plön, Germany, 3 omics2view.consulting GbR, Kiel, Germany Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Edited by: Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the Marina G. Kalyuzhanaya, phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria San Diego State University, United States employing this photosystem in nature. Almost complete pufLM gene sequences and Reviewed by: the derived protein sequences from 152 type strains and 45 additional strains of Nikolai Ravin, phototrophic Proteobacteria employing photosystem II were compared. The results Research Center for Biotechnology (RAS), Russia give interesting and comprehensive insights into the phylogeny of the photosynthetic Ivan A. Berg, apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as Universität Münster, Germany major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from *Correspondence: Caulobacterales (Brevundimonas subvibrioides). -
Comparative Genomics Provides Insights Into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera
G C A T T A C G G C A T genes Article Comparative Genomics Provides Insights into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera Roberto Tadeu Raittz 1,*,† , Camilla Reginatto De Pierri 2,† , Marta Maluk 3 , Marcelo Bueno Batista 4, Manuel Carmona 5 , Madan Junghare 6, Helisson Faoro 7, Leonardo M. Cruz 2 , Federico Battistoni 8, Emanuel de Souza 2,Fábio de Oliveira Pedrosa 2, Wen-Ming Chen 9, Philip S. Poole 10, Ray A. Dixon 4,* and Euan K. James 3,* 1 Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector—SEPT, UFPR, Curitiba, PR 81520-260, Brazil 2 Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR 81531-980, Brazil; [email protected] (C.R.D.P.); [email protected] (L.M.C.); [email protected] (E.d.S.); [email protected] (F.d.O.P.) 3 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; [email protected] 4 John Innes Centre, Department of Molecular Microbiology, Norwich NR4 7UH, UK; [email protected] 5 Centro de Investigaciones Biológicas Margarita Salas-CSIC, Department of Biotechnology of Microbes and Plants, Ramiro de Maeztu 9, 28040 Madrid, Spain; [email protected] 6 Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, 1430 Ås, Norway; [email protected] 7 Laboratory for Science and Technology Applied in Health, Carlos Chagas Institute, Fiocruz, Curitiba, PR 81310-020, Brazil; helisson.faoro@fiocruz.br 8 Department of Microbial Biochemistry and Genomics, IIBCE, Montevideo 11600, Uruguay; [email protected] Citation: Raittz, R.T.; Reginatto De 9 Laboratory of Microbiology, Department of Seafood Science, NKMU, Kaohsiung City 811, Taiwan; Pierri, C.; Maluk, M.; Bueno Batista, [email protected] M.; Carmona, M.; Junghare, M.; Faoro, 10 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; H.; Cruz, L.M.; Battistoni, F.; Souza, [email protected] E.d.; et al. -
Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School August 2020 Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site Madison Mikes Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Civil and Environmental Engineering Commons, and the Microbiology Commons Recommended Citation Mikes, Madison, "Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site" (2020). LSU Master's Theses. 5206. https://digitalcommons.lsu.edu/gradschool_theses/5206 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. ISOLATION AND CHARACTERIZATION OF BACTERIA IN A TOLUENE- PRODUCING ENRICHMENT CULTURE DERIVED FROM CONTAMINATED GROUNDWATER AT A LOUISIANA SUPERFUND SITE A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agriculture and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Civil and Environmental Engineering by Madison Colleen Mikes B.S., Louisiana State University, 2018 December 2020 1 ACKNOWLEDGEMENTS I would like to take the time to thank all of those who have supported and assisted me during my graduate program. First and foremost, I would like to thank Dr. Bill Moe for all of the time he has spent teaching me and mentoring me through my thesis work. -
Anaerobic Degradation of Steroid Hormones by Novel Denitrifying Bacteria
Anaerobic degradation of steroid hormones by novel denitrifying bacteria Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch- Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Michael Fahrbach aus Bad Mergentheim (Baden-Württemberg) Berichter: Professor Dr. Juliane Hollender Professor Dr. Andreas Schäffer Tag der mündlichen Prüfung: 12. Dezember 2006 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Table of Contents 1 Introduction.....................................................................................................................1 1.1 General information on steroids ...............................................................................1 1.2 Steroid hormones in the environment.......................................................................2 1.2.1 Natural and anthropogenic sources and deposits ............................................2 1.2.2 Potential impact on the environment ................................................................3 1.2.3 Fate of steroid hormones..................................................................................4 1.3 Microbial degradation of steroid hormones and sterols............................................5 1.3.1 Aerobic degradation..........................................................................................5 1.3.2 Anaerobic degradation......................................................................................7