Automorphisms and isomorphisms of Chevalley groups of type G2 over local rings with 1=2 and 1=31 E. I. Bunina M.V. Lomonosov Moscow State University Russia, 119992, Moscow, Leninskie Gory, Main Building of MSU, Faculty of Mechanics and Mathematics, Department of Higher Algebra email address:
[email protected] Abstract. We prove that every isomorphism of Chevalley groups of type G2 over commutative local rings with 1=2 and 1=3 is standard, i. e., it is a composition of a ring isomorphism and an inner automorphism. Key words: Chevalley groups, local rings, isomorphisms and automorphisms Introduction An associative commutative ring R with a unit is called local, if it contains exactly one maximal ideal (that coincides with the radical of R). Equivalently, the set of all non-invertible elements of R is an ideal. We describe automorphisms of Chevalley groups of type G2 over local rings with 1=2 and 1=3. Note that for the root system G2 there exists only one weight lattice, that is simultaneously universal and adjoint, therefore for every ring R there exists a unique Chevalley group of type G2, that is G(R) = G ad (G2;R). Over local rings universal Chevalley groups coincide with their elementary subgroups, consequently the Chevalley group G(R) is also an elementary Chevalley group. Theorem 1 for the root systems Al;Dl; and El was obtained by the author in [12], in [14] all automorphisms of Chevalley groups of given types over local rings with 1=2 were described. Theorem 1 for the root systems B2 and G2 is obtained in the paper [13], but we repeat it here for the root system G2 with an easier proof.