University of Southampton Research Repository Eprints Soton

Total Page:16

File Type:pdf, Size:1020Kb

University of Southampton Research Repository Eprints Soton University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF PHYSICAL AND APPLIED SCIENCES Electronics and Computer Science Run-time Compilation Techniques for Wireless Sensor Networks by Joshua Ellul Thesis for the degree of Doctor of Philosophy November 2012 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL AND APPLIED SCIENCES Electronics and Computer Science Doctor of Philosophy RUN-TIME COMPILATION TECHNIQUES FOR WIRELESS SENSOR NETWORKS by Joshua Ellul Wireless sensor networks research in the past decade has seen substantial initiative, support and potential. The true adoption and deployment of such technology is highly dependent on the workforce available to implement such solutions. However, embedded systems programming for severely resource constrained devices, such as those used in typical wireless sensor networks (with tens of kilobytes of program space and around ten kilobytes of memory), is a daunting task which is usually left for experienced embedded developers. Recent initiative to support higher level programming abstractions for wireless sensor networks by utilizing a Java programming paradigm for resource constrained devices demonstrates the development benefits achieved. However, results have shown that an interpreter approach greatly suffers from execution overheads. Run-time compila- tion techniques are often used in traditional computing to make up for such execution overheads. However, the general consensus in the field is that run-time compilation tech- niques are either impractical, impossible, complex, or resource hungry for such resource limited devices. In this thesis, I propose techniques to enable run-time compilation for such severely resource constrained devices. More so, I show not only that run-time compilation is in fact both practical and possible by using simple techniques which do not require any more resources than that of interpreters, but also that run-time compilation substantially increases execution efficiency when compared to an interpreter. Contents Declaration of Authorship xvii Acknowledgements xix Nomenclature xxiii 1 Introduction 1 1.1 Enabling Java for Sensor Nodes ........................ 3 1.2 Challenges, Motivation and Requirements .................. 4 1.3 Overview of Work ............................... 5 1.4 Relationship to Existing Approaches ..................... 6 1.5 Research and Contributions .......................... 7 1.6 Outline of Thesis ................................ 9 2 Related Work 11 2.1 WSN Requirements and Issues ........................ 11 2.2 WSN Programming Paradigms ........................ 13 2.2.1 Node-Level Programming ....................... 13 2.2.1.1 OS / Bare-metal Programming ............... 13 2.2.1.2 Virtual Machines ....................... 15 2.2.2 Group-Level Programming ...................... 15 2.2.3 Network-Level Programming ..................... 16 2.3 Java ....................................... 18 2.3.1 The Class File Format ......................... 18 2.3.2 JVM Stacks, Method Frames and Operand Stacks ......... 19 2.3.3 Java Bytecode Instruction Specification ............... 20 2.3.3.1 Load and Store Instructions ................ 21 2.3.3.2 Arithmetic Instructions ................... 22 2.3.3.3 Type Conversion Instructions ................ 22 2.3.3.4 Object Creation and Manipulation ............. 23 2.3.3.5 Control Transfer Instructions ................ 24 2.3.3.6 Method Invocation and Return Instructions ........ 24 2.3.3.7 Exceptions .......................... 25 2.3.3.8 Synchronization Instructions ................ 25 2.3.3.9 Operand Stack Management Instructions ......... 25 2.4 Desirability of Java for WSNs ......................... 25 2.5 Sensor Nodes are for WSNs, not for Java Purists .............. 27 2.5.1 Need for a New Java Platform Specification ............. 27 v vi CONTENTS 2.5.1.1 Strings and Encodings .................... 28 2.5.1.2 The double Datatype .................... 28 2.5.1.3 IO, Streams and Connections ................ 28 2.5.1.4 Calendars and Dates ..................... 29 2.5.1.5 Dynamic Class Loading ................... 29 2.5.1.6 Exceptions and Threads ................... 30 2.5.2 Code Conventions ........................... 30 2.6 JVMs for WSNs ................................ 31 2.6.1 Application Portability ........................ 32 2.6.2 Pre-processing Bytecode ........................ 32 2.6.3 Compact Bytecode Instruction Set .................. 32 2.6.4 Bytecode Optimisation ......................... 33 2.6.5 Symbolic Name Resolution ...................... 34 2.6.6 Language Independence ........................ 35 2.6.7 Garbage Collection ........................... 35 2.6.7.1 Mark and Sweep GC .................... 36 2.6.7.2 Mark and Compact GC ................... 36 2.6.7.3 Generational GC ....................... 36 2.6.7.4 Offline GC .......................... 37 2.6.8 Threading ................................ 37 2.6.9 Debugging ................................ 38 2.7 Interpretation is slow .............................. 38 2.8 Java Processors ................................. 38 2.9 Compilation, Interpretation and Semi-Compilation ............. 39 2.10 Way Ahead of Time Compilation ....................... 40 2.11 Ahead-Of-Time Compilation ......................... 41 2.12 Just-In-Time Compilation ........................... 41 2.13 Basic Block JIT ................................. 42 3 The Case for Run-time Compilation of Bytecode in Wireless Sensor Networks 43 3.1 Modelling Interpretation Overheads ..................... 43 3.2 An Experimental Analysis of the Effects of Interpretation .................................. 48 4 Enabling AOT Compilation for Resource Constrained Devices 51 4.1 Design ...................................... 51 4.1.1 Requirements .............................. 51 4.1.1.1 Ease of Use .......................... 52 4.1.1.2 Platform Independence ................... 52 4.1.1.3 Memory Efficiency ...................... 52 4.1.1.4 Small Footprint ....................... 52 4.1.1.5 Driver Extensibility ..................... 52 4.1.1.6 Software Management .................... 53 4.1.1.7 Low-cost ........................... 53 4.1.1.8 Execution Efficiency ..................... 53 4.1.2 System Architecture .......................... 54 CONTENTS vii 4.1.3 Compilation Process .......................... 55 4.1.3.1 Java Source Pre-processor .................. 55 4.1.3.2 Converter ........................... 56 4.1.4 AOT Compiler and Execution ..................... 59 4.1.4.1 Double-Ended Operand Stack and Garbage Collection .. 60 4.1.4.2 Stack Frame Layout ..................... 62 4.1.4.3 Threading .......................... 65 4.1.4.4 Optimizations ........................ 66 4.1.4.5 Gradual Compilation of Bytecode ............. 68 4.1.5 Hardware Register Access ....................... 70 4.1.6 Exposing Interrupts .......................... 70 4.2 Implementation Specific Details ........................ 71 5 Evaluation of the AOT Compiler 75 5.1 Execution Performance Evaluation ...................... 76 5.2 Program Size Evaluation ............................ 79 5.2.1 Program Encoding Size Evaluation .................. 80 5.2.2 Virtual Machine and Application Size Evaluation .......... 81 5.3 Garbage Collection Evaluation ........................ 83 5.4 Threading Evaluation ............................. 84 5.5 Evaluation Discussion ............................. 85 6 Enabling JIT Compilation for Resource Constrained Devices 87 6.1 Basic Block JIT Compilation ......................... 88 6.1.1 Offline Basic Block Analysis ...................... 88 6.1.2 Supporting a JIT Compiler ...................... 91 6.2 Direct JIT Compiler Calls ........................... 92 6.3 Circular JIT Cache ............................... 94 7 Evaluation of the JIT Compiler 97 7.1 Execution Performance Evaluation ...................... 98 7.2 Program Size Evaluation ............................ 98 7.2.1 Program Encoding Size Evaluation .................. 98 7.2.2 Virtual Machine and Application Size Evaluation .......... 99 7.3 Benefits of JIT Compilation .......................... 100 7.4 JIT Cache Analysis ............................... 102 7.5 Discussion .................................... 103 8 Reprogramming Sensor Networks with Run-time Compilation 105 8.1 Modelling Reprogramming Overhead ..................... 105 8.2 Modelling the Energy Consumption Lifecycle of Reprogrammed Code .............................. 108 8.3 Including Sensing and Wireless Communication Overheads .................................... 110 8.4 An Experimental Evaluation of Reprogramming with Run-time Compi- lation Techniques ................................ 112 9 Conclusions 117 viii CONTENTS 9.1
Recommended publications
  • Writing R Extensions
    Writing R Extensions Version 4.2.0 Under development (2021-09-29) R Core Team This manual is for R, version 4.2.0 Under development (2021-09-29). Copyright c 1999{2021 R Core Team Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into an- other language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team. i Table of Contents Acknowledgements ::::::::::::::::::::::::::::::::::::::::::::::::: 1 1 Creating R packages ::::::::::::::::::::::::::::::::::::::::::: 2 1.1 Package structure :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 1.1.1 The DESCRIPTION file ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 4 1.1.2 Licensing ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 8 1.1.3 Package Dependencies::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 9 1.1.3.1 Suggested packages:::::::::::::::::::::::::::::::::::::::::::::::::::::: 12 1.1.4 The INDEX file ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 13 1.1.5 Package subdirectories :::::::::::::::::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Java (Programming Langua a (Programming Language)
    Java (programming language) From Wikipedia, the free encyclopedialopedia "Java language" redirects here. For the natural language from the Indonesian island of Java, see Javanese language. Not to be confused with JavaScript. Java multi-paradigm: object-oriented, structured, imperative, Paradigm(s) functional, generic, reflective, concurrent James Gosling and Designed by Sun Microsystems Developer Oracle Corporation Appeared in 1995[1] Java Standard Edition 8 Update Stable release 5 (1.8.0_5) / April 15, 2014; 2 months ago Static, strong, safe, nominative, Typing discipline manifest Major OpenJDK, many others implementations Dialects Generic Java, Pizza Ada 83, C++, C#,[2] Eiffel,[3] Generic Java, Mesa,[4] Modula- Influenced by 3,[5] Oberon,[6] Objective-C,[7] UCSD Pascal,[8][9] Smalltalk Ada 2005, BeanShell, C#, Clojure, D, ECMAScript, Influenced Groovy, J#, JavaScript, Kotlin, PHP, Python, Scala, Seed7, Vala Implementation C and C++ language OS Cross-platform (multi-platform) GNU General Public License, License Java CommuniCommunity Process Filename .java , .class, .jar extension(s) Website For Java Developers Java Programming at Wikibooks Java is a computer programming language that is concurrent, class-based, object-oriented, and specifically designed to have as few impimplementation dependencies as possible.ble. It is intended to let application developers "write once, run ananywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to rurun on another. Java applications ns are typically compiled to bytecode (class file) that can run on anany Java virtual machine (JVM)) regardless of computer architecture. Java is, as of 2014, one of tthe most popular programming ng languages in use, particularly for client-server web applications, witwith a reported 9 million developers.[10][11] Java was originallyy developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'Micros Java platform.
    [Show full text]
  • Low Power Or High Performance? a Tradeoff Whose Time
    Low Power or High Performance? ATradeoffWhoseTimeHasCome(andNearlyGone) JeongGil Ko1,KevinKlues2,ChristianRichter3,WanjaHofer4, Branislav Kusy3,MichaelBruenig3,ThomasSchmid5,QiangWang6, Prabal Dutta7,andAndreasTerzis1 1 Department of Computer Science, Johns Hopkins University 2 Computer Science Division, University of California, Berkeley 3 Australian Commonwealth Scientific and Research Organization (CSIRO) 4 Department of Computer Science, Friedrich–Alexander University Erlangen–Nuremberg 5 Department Computer Science, University of Utah 6 Department of Control Science and Engineering, Harbin Institute of Technology 7 Division of Computer Science and Engineering, University of Michigan, Ann Arbor Abstract. Some have argued that the dichotomy between high-performance op- eration and low resource utilization is false – an artifact that will soon succumb to Moore’s Law and careful engineering. If such claims prove to be true, then the traditional 8/16- vs. 32-bit power-performance tradeoffs become irrelevant, at least for some low-power embedded systems. We explore the veracity of this the- sis using the 32-bit ARM Cortex-M3 microprocessor and find quite substantial progress but not deliverance. The Cortex-M3, compared to 8/16-bit microcon- trollers, reduces latency and energy consumption for computationally intensive tasks as well as achieves near parity on code density. However, it still incurs a 2 overhead in power draw for “traditional” sense-store-send-sleep applica- tions.∼ × These results suggest that while 32-bit processors are not yet ready for applications with very tight power requirements, they are poised for adoption ev- erywhere else. Moore’s Law may yet prevail. 1Introduction The desire to operate unattended for long periods of time has been a driving force in de- signing wireless sensor networks (WSNs) over the past decade.
    [Show full text]
  • Building Intelligent Middleware for Large Scale CPS Systems
    Building Intelligent Middleware for Large Scale CPS Systems Niels Reijers, Yu-Chung Wang, Chi-Sheng Shih, Jane Y. Kwei-Jay Lin Hsu Department of Electrical Eng. and Comp. Sci. Intel-NTU Connected Context Computing Center University of California, Irvine National Taiwan University Irvine, CA, USA Taipei, Taiwan Abstract—This paper presents a study on building intelligent application to express globally what it really wants from the middleware on wireless sensor network (WSN) for large-scale sensor network. Furthermore, since most WSN applications are cyber-physical systems (LCPS). A large portion of WSN projects specifically designed to particular scenarios and unique target has focused on low-level algorithms such as routing, MAC layers, environments, most behavior is hardcoded, resulting in rigid and data aggregation. At a higher level, various WSN networks that are typically not very flexible at adjusting their applications with specific target environments have been behavior to faults or changing external conditions. A more high developed and deployed. Most applications are built directly on level vision on how large-scale cyber-physical systems (LCPS) top of a small OS, which is notoriously hard to work with, and or networks of sensors should be programmed, deployed, and results in applications that are fragile and cannot be ported to configured is still missing. other platforms. The gap between the low level algorithms and the application development process has received significantly Indeed, we are far from conducting Rapid Application less attention. Our interest is to fill that gap by developing Development (RAD) for LCPS. This project aims to fill the gap, intelligent middleware for building LCPS applications.
    [Show full text]
  • IT Acronyms.Docx
    List of computing and IT abbreviations /.—Slashdot 1GL—First-Generation Programming Language 1NF—First Normal Form 10B2—10BASE-2 10B5—10BASE-5 10B-F—10BASE-F 10B-FB—10BASE-FB 10B-FL—10BASE-FL 10B-FP—10BASE-FP 10B-T—10BASE-T 100B-FX—100BASE-FX 100B-T—100BASE-T 100B-TX—100BASE-TX 100BVG—100BASE-VG 286—Intel 80286 processor 2B1Q—2 Binary 1 Quaternary 2GL—Second-Generation Programming Language 2NF—Second Normal Form 3GL—Third-Generation Programming Language 3NF—Third Normal Form 386—Intel 80386 processor 1 486—Intel 80486 processor 4B5BLF—4 Byte 5 Byte Local Fiber 4GL—Fourth-Generation Programming Language 4NF—Fourth Normal Form 5GL—Fifth-Generation Programming Language 5NF—Fifth Normal Form 6NF—Sixth Normal Form 8B10BLF—8 Byte 10 Byte Local Fiber A AAT—Average Access Time AA—Anti-Aliasing AAA—Authentication Authorization, Accounting AABB—Axis Aligned Bounding Box AAC—Advanced Audio Coding AAL—ATM Adaptation Layer AALC—ATM Adaptation Layer Connection AARP—AppleTalk Address Resolution Protocol ABCL—Actor-Based Concurrent Language ABI—Application Binary Interface ABM—Asynchronous Balanced Mode ABR—Area Border Router ABR—Auto Baud-Rate detection ABR—Available Bitrate 2 ABR—Average Bitrate AC—Acoustic Coupler AC—Alternating Current ACD—Automatic Call Distributor ACE—Advanced Computing Environment ACF NCP—Advanced Communications Function—Network Control Program ACID—Atomicity Consistency Isolation Durability ACK—ACKnowledgement ACK—Amsterdam Compiler Kit ACL—Access Control List ACL—Active Current
    [Show full text]
  • Arxiv:1712.05590V2 [Cs.PL] 18 Dec 2017 Ffaue,Btsffrfo Lwono N Otoodr Fm and of Throughput Orders Reducing Two to Consumption
    Abstract Many virtual machines exist for sensor nodes with only a few KB RAM and tens to a few hundred KB flash memory. They pack an impressive set of features, but suffer from a slowdown of one to two orders of magnitude compared to optimised native code, reducing throughput and increasing power consumption. Compiling bytecode to native code to improve performance has been studied extensively for larger devices, but the restricted resources on sen- sor nodes mean most modern techniques cannot be applied. Simply replac- ing bytecode instructions with predefined sequences of native instructions is known to improve performance, but produces code several times larger than the optimised C equivalent, limiting the size of programmes that can fit onto a device. This paper identifies the major sources of overhead resulting from this basic approach, and presents optimisations to remove most of the remain- ing performance overhead, and over half the size overhead, reducing them to 69% and 91% respectively. While this increases the size of the VM, the break-even point at which this fixed cost is compensated for is well within the range of memory available on a sensor device, allowing us to both improve performance and load more code on a device. arXiv:1712.05590v2 [cs.PL] 18 Dec 2017 1 Improved Ahead-of-Time Compilation of Stack-Based JVM Bytecode on Resource-Constrained Devices Niels Reijers, Chi-Sheng Shih NTU-IoX Research Center Department of Computer Science and Information Engineering National Taiwan University 1 Introduction Internet-of-Things devices come in a wide range, with vastly different perfor- mance characteristics, cost, and power requirements.
    [Show full text]
  • Java in Embedded Linux Systems
    Java in Embedded Linux Systems Java in Embedded Linux Systems Thomas Petazzoni / Michael Opdenacker Free Electrons http://free-electrons.com/ Created with OpenOffice.org 2.x Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 1 Rights to copy Attribution ± ShareAlike 2.5 © Copyright 2004-2008 You are free Free Electrons to copy, distribute, display, and perform the work [email protected] to make derivative works to make commercial use of the work Document sources, updates and translations: Under the following conditions http://free-electrons.com/articles/java Attribution. You must give the original author credit. Corrections, suggestions, contributions and Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license translations are welcome! identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 2 Best viewed with... This document is best viewed with a recent PDF reader or with OpenOffice.org itself! Take advantage of internal
    [Show full text]
  • Paper Discusses the Advantages and Disadvantages of Each Approach As Well As Specific Experiences of Using Java in a Commercial Tape Drive Project
    Java and Real Time Storage Applications Gary Mueller 195 Garnet St Broomfield, CO 80020-2203 [email protected] Tel: +1-303-465-4279 Janet Borzuchowski Storage Technology Corporation 2270 South 88th Street M. S. 4272 Louisville CO 80028 [email protected] Tel: +1-303-673-8297 Abstract Storage systems have storage devices which run real time embedded software. Most storage devices use C and occasionally C++ to manage and control the storage device. Software for the storage device must meet the time and resource constraints of the storage device. The prevailing wisdom in the embedded world is that objects and in particular Java only work for simple problems and can not handle REAL problems, are too slow and can not handle time critical processing and are too big and can’t fit in memory constrained systems. Even though Java's roots are in the embedded application area, Java is more widely used in the desktop and enterprise environment. Use of Java in embedded real time environments where performance and size constraints rule is much less common. Java vendors offer a dizzying array of options, products and choices for real time storage applications. Four main themes emerge when using Java in a real time storage application; compiling Java, executing Java with a software Java Virtual Machine (JVM), executing Java with a hardware JVM and replacing a real time operating system (RTOS) with a JVM. The desktop and enterprise environment traditionally run Java using a software JVM that has been ported to a particular platform. The JVM runs as a task or process hosted by the platform operating system.
    [Show full text]
  • By Syed Ishtiaq Hussain Supervised by Dr. Humma Javed
    RESOURCE AWARE PROCESS MIGRATION IN WIRELESS SENSOR NETWORKS By Syed Ishtiaq Hussain Supervised By Dr. Humma Javed DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF PESHAWAR SESSION 2009-2010 RESOURCE AWARE PROCESS MIGRATION IN WIRELESS SENSOR NETWORKS By Syed Ishtiaq Hussain Dissertation Submitted to the University of Peshawar in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY Supervised By Dr. Humma Javed DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF PESHAWAR SESSION 2009-2010 DEDICATION Dedicated to my beloved parents, and my kids… iv STATEMENT OF SOURCES DECLARATION I, the undersigned, author of this thesis, declare that this thesis is my own work and has not been submitted in any form for another degree at any university or institution. Information derived from published or unpublished work of others has been acknowledged in the text and a list of references is given. __________________ ______________ Syed Ishtiaq Hussain 28th September 2018 v RIGHTS OF THESIS All parts of this dissertation are reserved by the author, any part of this research shall not be produced or transmitted in any form or by any means, without formal permission from the author. Syed Ishtiaq Hussain vi ABSTRACT This thesis presents a novel architecture for native process migration (PM) in wireless sensors networks (WSN) without the use of virtual execution environment. Resources in WSN are scarce, therefore creating a virtual execution environment for processes so that they can be migrated, put an extra burden on already constrained resources. The proposed architecture for process migration allows live native processes to be migrated during execution. The process migration architecture takes migration decisions by continuously monitoring resources including remaining battery life and free memory space on a node.
    [Show full text]
  • Mˇerení Výkonnosti Java Virtual Machine
    MASARYKOVA UNIVERZITA FAKULTA}w¡¢£¤¥¦§¨ INFORMATIKY !"#$%&'()+,-./012345<yA| Mˇeˇrenívýkonnosti Java Virtual Machine BAKALÁRSKA PRÁCA Michal K ˇnazský Brno, 2012 Prehlásenie Prehlasujem, že táto bakalárska práca je mojím pôvodným autorským dielom, ktoré som vypracoval samostatne. Všetky zdroje, pramene a li- teratúru, ktoré som pri vypracovaní používal alebo z nich ˇcerpal,v práci riadne citujem s uvedením úplného odkazu na príslušný zdroj. Michal Kˇnazský Vedúci práce: Mgr. Marek Grác ii Pod’akovanie Dakujemˇ pánom Mgr. Marekovi Grácovi a Ing. Pavlovi Tišnovskému, Ph.D. z firmy Red Hat za vedenie práce, za poskytnuté rady a za vel’kú dávku trpezlivosti. iii Kl’úˇcovéslová Java, Java Virtual Machine, meranie výkonu, garbage collector, SPEC, SPECjvm2008, SPECjbb2005, J2DBench, Oracle, IBM, OpenJDK iv Zhrnutie Ciel’om práce je preskúmat’ nástroje na meranie výkonu Java Virtual Ma- chine. Práca sa zaoberá nástrojmi SPECjvm2008, SPECjbb2005 a J2DBench – analyzuje ich vlastnosti a funkcie a hodnotí použitie v praxi. V prak- tickej ˇcastisú nástroje použité na zmeranie a porovnanie výkonu viace- rých JVM. Predstavený je program JVMBenchmarker, ktorý bol vytvo- rený ako súˇcast’ práce. Slúži na automatizované spúšt’anie SPECjvm2008 a SPECjbb2005 nástrojov. Práca sa d’alej venuje garbage collectorom, opi- suje GC prítomné v HotSpot a J9 VM a porovnáva ich výkon pomocou nástroja SPECjbb2005. v Obsah 1 Java ................................... 2 1.1 Java ako platforma ....................... 2 1.2 Java ako jazyk .......................... 2 1.2.1 Java API . 2 1.2.2 Java Virtual Machine . 3 1.2.3 Java Development Kit . 3 1.3 História a vývoj ......................... 3 1.3.1 Oznaˇcovanieverzií . 4 1.4 Java implementácie ....................... 4 1.4.1 Cesta k open source .
    [Show full text]
  • Velox VM: a Safe Execution Environment for Resource-Constrained Iot Applications
    Velox VM: A Safe Execution Environment for Resource-Constrained IoT Applications Nicolas Tsiftesa,∗, Thiemo Voigta,b aRISE SICS, Box 1263, SE-164 29, Kista, Sweden bDepartment of Information Technology, Uppsala University, Box 337, SE-751 05, Uppsala, Sweden Abstract We present Velox, a virtual machine architecture that provides a safe execu- tion environment for applications in resource-constrained IoT devices. Our goal with this architecture is to support developers in writing and deploying safe IoT applications, in a manner similar to smartphones with application stores. To this end, we provide a resource and security policy framework that enables fine-grained control of the execution environments of IoT applications. This framework allows device owners to configure, e.g., the amount of bandwidth, energy, and memory that each IoT application can use. Velox's features also include support for high-level programming languages, a compact bytecode for- mat, and preemptive multi-threading. In the context of IoT devices, there are typically severe energy, memory, and processing constraints that make the design and implementation of a virtual ma- chine with such features challenging. We elaborate on how Velox is implemented in a resource-efficient manner, and describe our port of Velox to the Contiki OS. Our experimental evaluation shows that we can control the resource usage of applications with a low overhead. We further show that, for typical I/O-driven IoT applications, the CPU and energy overhead of executing Velox bytecode is as low as 1-5% compared to corresponding applications compiled to machine code. Lastly, we demonstrate how we can use application policies to effectively mitigate the possibility of vulnerable applications to be exploited.
    [Show full text]
  • Experimental Comparison of Radio Duty Cycling Protocols for Wireless Sensor
    Experimental Comparison of Radio Duty Cycling Protocols for Wireless Sensor Networks Dissertation submitted in fulfillment of the requirements for the award of the degree of Doctor in Engineering Sciences and Technology by Marie-Paule Uwase Promotors : Prof. dr. ir. Jean-Michel Dricot (ULB) Prof. dr. ir. Kris Steenhaut (VUB) Prof. dr. ir. Jacques Tiberghien (VUB) October 2018 Jury Members President Prof. dr. ir. Van Biesen Leo ELEC department , Vrije Universiteit Brussel [email protected] Vice president Prof. dr. ir. Pintelon, Rik ELEC department, Vrije Universiteit Brussel [email protected] Secretary Prof. dr. ir. Goossens Marnix ETRO department, Vrije Universiteit Brussel [email protected] External Members Prof. dr. ir Reali Gianluca Networks and Services lab, University of Perugia [email protected] Prof. Aimé Lay-Ekuakille Department of Innovation Engineering, University of Salento [email protected] Internal members Prof. Antoine Nonclercq Beams, Université Libre de Bruxelles [email protected] Promoters Prof. dr. ir. Steenhaut, Kris ETRO department, Vrije Universiteit Brussel [email protected] Prof. dr. ir. Dricot Jean-Michel Opera Department, Université Libre de Bruxelles [email protected] Prof. dr. ir. Tiberghien Jacques ETRO department, Vrije Universiteit Brussel [email protected] To Dana and Benoît To my late mother Abstract Wireless sensor networks are often battery powered and therefore their power consumption is of critical importance. Power requirements can be reduced by switching off radios when they are not needed and by using multi-hop communications to reduce the length of the radio links. Multi-hop communications however require message routing through the network. The Routing Protocol for lossy networks (RPL) has been designed by the Internet Engineering Task Force (IETF) for seamless integration of wireless sensor networks in the Internet.
    [Show full text]