Effect of Altitude on Thermal Responses of Liolaemus Pictus Argentinus in Argentina

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Altitude on Thermal Responses of Liolaemus Pictus Argentinus in Argentina XML-IS Our reference: TB 1179 P-authorquery-vx AUTHOR QUERY FORM Please e-mail or fax your responses and any corrections to: Journal: TB E-mail: [email protected] Article Number: 1179 Fax: +44 1392 285878 Dear Author, Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions. Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the Q link to go to the location in the proof. Location in Query / Remark: click on the Q link to go article Please insert your reply or correction at the corresponding line in the proof Q1 Please check the e-mail address for the corresponding author that has been added here, and correct if necessary. Thank you for your assistance. Journal of Thermal Biology ] (]]]]) ]]]–]]] 1 Contents lists available at ScienceDirect 3 Journal of Thermal Biology 5 journal homepage: www.elsevier.com/locate/jtherbio 7 9 11 Effect of altitude on thermal responses of Liolaemus pictus argentinus 13 in Argentina 15 Joel Gutie´rrez a,n, John D. Krenz b, Nora R. Ibarguengoytı¨ ´a a,c a 17 Departamento de Zoologı´a del Centro Regional Universitario Bariloche, Unidad Postal Universidad Nacional Del Comahue, Quintral 1250, San Carlos de Bariloche, Rı´o Negro 8400, Argentina b Department of Biological Sciences, Minnesota State University, Mankato, MN 56001, USA 19 c INIBIOMA-CONICET, Universidad Nacional Del Comahue, Quintral 1250, San Carlos de Bariloche, Rı´o Negro 8400, Argentina 21 article info abstract 23 Article history: Reptiles that live in cooler environments hibernate longer and, when active, limit daily activity times, 25 Received 12 April 2010 allocate more time and energy toward thermoregulation, and consequently experience life-history Accepted 6 July 2010 constraints such as reduced fecundity and supra-annual reproductive cycles. This pattern becomes 27 more extreme with increasing latitude and altitude. We compared the thermal biology of two Keywords: populations of Liolaemus pictus argentinus living at two altitudes (771 and 1700 m asl). Environ- 29 Lizards mental, microenvironmental, and operative temperatures were studied in order to describe the capture Thermoregulation sites, sources of heat, and availability of microenvironments appropriate for thermoregulation. The Cold climate body temperatures of L. p. argentinus at capture (Tb) and the preferred temperatures in the laboratory 31 Liolaemidae (Tp) were recorded and integrated with operative temperatures to calculate the effectiveness of thermoregulation. The high-altitude population was found to have a lower mean T (29 1C compared 33 b with 33 1C), while the Tp values for both populations were similar (36.7 1C). The analysis of operative temperatures and Tb in relation to Tp showed that L. p. argentinus behaves as a moderate 35 thermoregulator at high altitude and as a poor thermoregulator at the low-altitude site probably due in part to the avoidance of predation risk. 37 & 2010 Published by Elsevier Ltd. 67 39 69 41 71 1. Introduction sunny patches when they achieve temperatures that are close to maximal body temperatures and are inactive at mid-day (Hertz 43 73 Temperature, especially in ectotherms, plays a fundamental et al., 1983; Sinervo et al., 2010). Not only are lizard body temperatures (T ) lower at higher altitudes and latitudes, but also 45 role in determining life-history patterns because of its influence b 75 on the rate of metabolism and bioenergetics. Environmental they are less variable (Hertz et al., 1983). In the genus Anolis, many attributes of thermal physiology differ markedly among 47 heterogeneity creates a variety of microclimates and ectotherms 77 typically move between microhabitats at appropriate times to closely related species and vary in concert with environmental temperatures (Hertz et al., 1983). Species differences have been 49 thermoregulate. Their success often depends on the availability of 79 suitable thermal microclimates (Smith and Ballinger, 2001), observed in the mean Tb and preferred body temperature (as determined using a thermal gradient in the laboratory), range of 51 which, if available, allow ectotherms such as lizards to attain 81 higher body temperatures and consequently higher rates of activity temperature, and critical thermal maxima. For example, Anolis cristatellus from Puerto Rico actively thermoregulates in 53 metabolism, locomotion, and digestion, resulting in more energy 83 for maintenance and production (Shine, 2004). open environments, but passively loses or gains heat in shaded environments such as a closed-canopy forest (Hertz et al 1993). In 55 Many species of lizards exhibit differences in thermoregula- 85 tory behaviors at different altitudes because of differences in the contrast, in low-insolation environments, the possibility of active thermoregulation is virtually eliminated as shown for the 57 thermal environment (Adolph, 1990; Adolph and Porter, 1993). 87 For example, lizards that inhabit cold mountain environments Australian dragon, Hypsilurus spinipes, and the lizard Xenosaurus newmanorum (Lemos-Espinal et al., 1998). In other cases, lizards 59 bask for longer periods and are less active than lizards at lower 89 elevations. In contrast, lizards in warmer climates typically avoid thermoregulate nearly all year (e.g., Podarcis melisellensis and Podarcis muralis; Smith and Ballinger, 2001. In addition, micro- 61 91 environmental variation affects the activity regime of Sceloporus n merriami populations along altitudinal gradients (Smith and 63 Q1 Corresponding author. 93 E-mail address: [email protected] (J. Gutie´rrez). Ballinger, 2001), and of species such as pristidactylus torquatus 95 65 0306-4565/$ - see front matter & 2010 Published by Elsevier Ltd. doi:10.1016/j.jtherbio.2010.07.001 Please cite this article as: Gutie´rrez, J., et al., Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Thermal Biol. (2010), doi:10.1016/j.jtherbio.2010.07.001 2 J. Gutie´rrez et al. / Journal of Thermal Biology ] (]]]]) ]]]–]]] 1 and pristidactylus volcanensis in Chile that inhabit the closed- 2.2. Estimation of preferred body temperatures 67 canopy Nothofagus forest versus open-canopy forests, respectively 3 (Labra and Rosenmann, 1992). Body temperature preference experiments were conducted the 69 Liolaemus pictus argentinus (Liolaemidae) is a viviparous and day after capture. Lizards were placed individually in open-top 5 insectivorous species with a wide distribution in the Patagonian terraria (200 Â 45 Â 18 cm3) each with a sand floor and a thermal 71 Andes of Neuque´n, Rı´o Negro, and Chubut provinces of Argentina gradient produced by a line of four infra-red lamps overhead (one 7 (39–43 1S and 520–1600 m asl (Donoso-Barros, 1966; Cei, 1986; 250 W, two 150 W, and one 100 W). The lamps were adjusted to 73 Scolaro, 2005)). Previous studies of L. p. argentinus different heights to make a linear substratum gradient from 9 (Ibarguengoytı¨ ´a and Cussac, 2002), Liolaemus elongates, and 15–69 1C. Lizard body temperatures were measured every 10 min 75 Phymaturus tenebrosus (Ibarguengoytı¨ ´a, 2005; Ibarguengoytı¨ ´a for 5 h using ultra thin (1 mm) catheter thermocouples located 11 et al., 2008) suggest that environments characterized by low approximately 10 mm inside the cloaca and fastened to the base 77 temperatures throughout the year and short activity seasons limit of the lizard’s tail to keep the thermocouple in position during the 13 the opportunities for thermoregulation and in turn influence experiment (TES 1302 thermometer, TES Electrical Electronic 79 several life-history traits. These species are predominantly Corp., Taipei, Taiwan, 70.03 1C). All measurements were taken so 15 heliothermal and at low altitude (Ibarguengoytı¨ ´a and Cussac, as to minimize interference with their normal activities. The 81 2002) a mean Tb of 33.2 1C was observed, which is similar to that duration of the experiments corresponded to previous trials that 17 of other liolaemids (32.5 1C, N¼45 lizards; Medina et al., 2009). measured the amount of time required for Liolaemus bibronii 83 Herein we report differences in thermal physiology in L. p. (Medina et al., 2009), Liolaemus pictus (Gutie´rrez, 2009), 19 argentinus between high and low altitude populations in close and several other liolaemids (Liolaemus lineomaculatus, Liolaemus 85 proximity. boulengeri, L. elongatus, and Liolaemus fitzingeri; Ibarguengoytı¨ ´a, 21 unpublished data) to reach their preferred temperature 87 asymptote. 23 We estimated the mean and range of the preferred body 89 temperature (Tp) for each individual. The set-point range (Tset), 25 2. Materials and methods considered as the temperatures within the interquartile range of 91 the observations, was also noted because earlier studies show 27 2.1. Study areas and field methods neurophysiological evidence that ectotherms regulate between 93 upper and lower set-point temperatures rather than around a 29 The two field sites in northwestern Patagonia, Argentina, are Cerro single Tb (Barber and Crawford, 1977; Firth and Turner, 1982). The 95 Challhuaco (41115057.900Sand71117057.400 W; 1615–1769 m asl) and interquartile range represents the natural settings caused by the 31 Melipal Beach on lake Nahuel Huapi (41107041.5300Sand711 hypothalamic thermostat in lizards and fishes (Barber and 97 20044.8700W, 771 m asl), both near the city of San Carlos de Bariloche Crawford, 1977; Firth and Turner, 1982). In order to measure 33 in Rı´o Negro Province. Lizards (N¼30) were captured by loop or hand the average extent to which L. p. argentinus experienced Tb values 99 at high altitude in December 2005, in January, April, and December outside the set-point range, the sum of absolute values of the 35 2006, and in February 2007. At low altitude, 33 lizards were captured deviations of Tb from Tset of each individual was calculated 101 in February and March of 2006 and 2007.
Recommended publications
  • Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property
    Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property. Los Alerces National Park, Argentina 185 Map 2: Andean-North Patagonian Biosphere Reserve: Context for the Nominated Proprty. Los Alerces National Park, Argentina 186 Map 3: Vegetation of the Valdivian Ecoregion 187 Map 4: Vegetation Communities in Los Alerces National Park 188 Map 5: Strict Nature and Wildlife Reserve 189 Map 6: Usage Zoning, Los Alerces National Park 190 Map 7: Human Settlements and Infrastructure 191 Appendix 2: Species Lists Ap9n192 Appendix 2.1 List of Plant Species Recorded at PNLA 193 Appendix 2.2: List of Animal Species: Mammals 212 Appendix 2.3: List of Animal Species: Birds 214 Appendix 2.4: List of Animal Species: Reptiles 219 Appendix 2.5: List of Animal Species: Amphibians 220 Appendix 2.6: List of Animal Species: Fish 221 Appendix 2.7: List of Animal Species and Threat Status 222 Appendix 3: Law No. 19,292 Append228 Appendix 4: PNLA Management Plan Approval and Contents Appendi242 Appendix 5: Participative Process for Writing the Nomination Form Appendi252 Synthesis 252 Management Plan UpdateWorkshop 253 Annex A: Interview Guide 256 Annex B: Meetings and Interviews Held 257 Annex C: Self-Administered Survey 261 Annex D: ExternalWorkshop Participants 262 Annex E: Promotional Leaflet 264 Annex F: Interview Results Summary 267 Annex G: Survey Results Summary 272 Annex H: Esquel Declaration of Interest 274 Annex I: Trevelin Declaration of Interest 276 Annex J: Chubut Tourism Secretariat Declaration of Interest 278
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Liolaemus Septentrionalis Pincheira-Donoso & Núñez, 2005
    FICHA DE ANTECEDENTES DE ESPECIE Id especie: NOMBRE Liolaemus septentrionalis Pincheira-Donoso & Núñez, 2005 CIENTÍFICO: NOMBRE COMÚN: lagartija pintada septentrional, Northern Painted Lizard (Inglés) Arriba fotografía Liolaemus septentrionalis (autor: Diego Demangel; [email protected]) Reino: Animalia Orden: Squamata Phyllum/División: Chordata Familia: Liolaemidae Clase: Reptilia Género: Liolaemus Sinonimia: Liolaemus pictus septentrionalis Pincheira-Donoso y Núñez, 2005 Nota Taxonómica: Pincheira-Donoso y Núñez (2005) describieron a Liolaemus septentrionalis como subespecie de L. pictus. Fue tratada en ese estatus desde su descripción hasta que, Vera-Escalona et al. (2012) la elevaron a nivel de especie plena, lo que se conserva hasta hoy (Demangel 2016, Mella 2017). ANTECEDENTES GENERALES Aspectos Morfológicos Lagartija de tamaño mediano (longitud hocico-cloaca = 59 mm), y aspecto proporcionado, cuello fuertemente plegado, abdomen robusto, extremidades delgadas y dedos largos (Mella 2017). En el dorso del cuerpo las escamas son subtriangulares, imbricadas y quilladas. Las escamas del vientre son levemente más grandes que las dorsales, redondeadas, imbricadas y lisas. En el medio del cuerpo hay de 63 a 73 escamas. Los machos presentan dos a tres poros precloacales, las hembras no tienen poros precloacales (Pincheira-Donoso y Núñez 2005). La coloración dorsal es café claro u oliváceo, al igual que la cabeza. El dorso presenta una banda occipital poco definida y un par de bandas dorsolaterales café amarillentas, de origen supraocular y atravesadas por barras transversales negras (Mella 2017). Aspectos Reproductivos y Conductuales Territorial y no muy tímida, se mueve en la vegetación arbustiva y sobre los troncos caídos (Mella 2017). Se refugia en arbustos, bajo troncos o piedras (Demangel 2016).
    [Show full text]
  • Ecological Functions of Neotropical Amphibians and Reptiles: a Review
    Univ. Sci. 2015, Vol. 20 (2): 229-245 doi: 10.11144/Javeriana.SC20-2.efna Freely available on line REVIEW ARTICLE Ecological functions of neotropical amphibians and reptiles: a review Cortés-Gomez AM1, Ruiz-Agudelo CA2 , Valencia-Aguilar A3, Ladle RJ4 Abstract Amphibians and reptiles (herps) are the most abundant and diverse vertebrate taxa in tropical ecosystems. Nevertheless, little is known about their role in maintaining and regulating ecosystem functions and, by extension, their potential value for supporting ecosystem services. Here, we review research on the ecological functions of Neotropical herps, in different sources (the bibliographic databases, book chapters, etc.). A total of 167 Neotropical herpetology studies published over the last four decades (1970 to 2014) were reviewed, providing information on more than 100 species that contribute to at least five categories of ecological functions: i) nutrient cycling; ii) bioturbation; iii) pollination; iv) seed dispersal, and; v) energy flow through ecosystems. We emphasize the need to expand the knowledge about ecological functions in Neotropical ecosystems and the mechanisms behind these, through the study of functional traits and analysis of ecological processes. Many of these functions provide key ecosystem services, such as biological pest control, seed dispersal and water quality. By knowing and understanding the functions that perform the herps in ecosystems, management plans for cultural landscapes, restoration or recovery projects of landscapes that involve aquatic and terrestrial systems, development of comprehensive plans and detailed conservation of species and ecosystems may be structured in a more appropriate way. Besides information gaps identified in this review, this contribution explores these issues in terms of better understanding of key questions in the study of ecosystem services and biodiversity and, also, of how these services are generated.
    [Show full text]
  • The Ecology of Lizard Reproductive Output
    Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) ••, ••–•• RESEARCH The ecology of lizard reproductive PAPER outputgeb_700 1..11 Shai Meiri1*, James H. Brown2 and Richard M. Sibly3 1Department of Zoology, Tel Aviv University, ABSTRACT 69978 Tel Aviv, Israel, 2Department of Biology, Aim We provide a new quantitative analysis of lizard reproductive ecology. Com- University of New Mexico, Albuquerque, NM 87131, USA and Santa Fe Institute, 1399 Hyde parative studies of lizard reproduction to date have usually considered life-history Park Road, Santa Fe, NM 87501, USA, 3School components separately. Instead, we examine the rate of production (productivity of Biological Sciences, University of Reading, hereafter) calculated as the total mass of offspring produced in a year. We test ReadingRG6 6AS, UK whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environ- mental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phyloge- netic relationships and multiple life history and ecological variables from the lit- erature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size.
    [Show full text]
  • Potential Benefits from Global Warming to the Thermal Biology And
    Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard Facundo Cabezas-Cartes*, Jimena B. Fernández*, Fernando Duran and Erika L. Kubisch Laboratorio de Ecofisiología e Historia de vida de Reptiles, Instituto de Investigaciones en Biodiversidad y Medio Ambiente, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina * These authors contributed equally to this work. ABSTRACT Global warming can significantly affect many aspects of the biology of animal species, including their thermal physiology and physiological performance. Thermal performance curves provide a heuristic model to evaluate the impacts of temperature on the ecophysiology of ectotherms. When integrated with other thermal biology parameters, they can be used to predict the impacts of climate change on individual fitness and population viability. In this study, we combine holistic measures of thermal physiology and the thermal sensitivity of locomotor performance with environmental temperatures measured at fine scale to estimate the vulnerability to global warming of the endangered Patagonian lizard Phymaturus tenebrosus. Our results indicate that this lizard exhibits its preferred temperatures and maximum locomotor performance at higher temperatures than the mean temperature it currently experiences in its habitat. In addition, it exhibits a low effectiveness of thermoregulation, being a poor thermoregulator. In view of the results obtained, we suggest that the climatic conditions of Patagonia may be advantageous for Submitted 4May2019 Accepted 8 July 2019 P. tenebrosus to survive future global warming, since its thermal physiology and Published 9 August 2019 locomotor performance may improve under increasing in environmental Corresponding author temperatures in its habitat.
    [Show full text]
  • Facultad De Ciencias
    UNIVERSIDAD NACIONAL AGRARIA LA MOLINA FACULTAD DE CIENCIAS “ECOLOGÍA TÉRMICA DE LA LAGARTIJA Liolaemus sp. ALREDEDOR DEL PROYECTO “CONSTANCIA”, DEPARTAMENTO DE CUSCO, DURANTE EL 2014 (TEMPORADA SECA Y HÚMEDA)” Presentada por: Jose Nivardo Malqui Uribe Tesis para optar el título profesional de: BIÓLOGO Lima - Perú 2019 UNIVERSIDAD NACIONAL AGRARIA LA MOLINA FACULTAD DE CIENCIAS “ECOLOGÍA TÉRMICA DE LA LAGARTIJA Liolaemus sp. ALREDEDOR DEL PROYECTO “CONSTANCIA” DEPARTAMENTO DE CUSCO, DURANTE EL 2014 (TEMPORADA SECA Y HÚMEDA)” Presentada por: Jose Nivardo Malqui Uribe Tesis para Optar el Título Profesional de: BIÓLOGO Sustentada y aprobada por el siguiente jurado: _________________________ __________________________ Mg. Sc. Zulema Quinteros Carlos Mg. Sc. German Arellano Cruz PRESIDENTE MIEMBRO _____________________ ___________________________ Mg. Sc. Claudia Caro Vera Dra. Marta Williams León de Castro MIEMBRO ASESORA Agradecimientos A mí asesora la Mg. Sc. Martha Williams de Castro, por su apoyo constante en todo este trabajo de investigación, consejos, sugerencias y tener confianza en mí para la realización de la tesis. A CORBIDI, por el apoyo logístico recibido a través de su proyecto de monitoreo de anfibios y reptiles. A German Chávez, por todo su apoyo tanto fuera como dentro del proyecto, por compartir sus conocimientos, consejos, sugerencias y su gran amistad. A Pablo Venegas, Director de la colección de Herpetología de CORBIDI, por todo su apoyo y su gran amistad. A Silvana Álvarez por su apoyo en campo. A Marco Enciso por su apoyo en campo. A Hudbay minerals, por todas las facilidades en sus instalaciones, permisos y su buena disponibilidad en todo el tiempo de trabajo. A Caty Cosmopolis de Chávez por su ayuda en la construcción del mapa de ubicación del trabajo de investigación.
    [Show full text]
  • Distribución Histórica Y Actual De La Lagartija Liolaemus Pictus (Dumeril & Bibron 1837) (Liolaemidae) Y Nuevo Límite Co
    Gayana 74(2): 139 - 146, 2010. Comunicación breve ISSN 077-652X Distribución histórica y actual de la lagartija Liolaemus pictus (Dumeril & Bibron 1837) (Liolaemidae) y nuevo límite continental sur de distribución Historical and current distribution of the lizard Liolaemus pictus (Dumeril & Bibron 1837) (Liolaemidae) and new continental southern limit of distribution 1 1 1 2 IVÁN M. VERA-ESCALONA *, TANIA CORONADO , CARLA MUÑOZ-MENDOZA & PEDRO F. VICTORIANO 1 Programa Magíster en Ciencias-mención Zoología. Universidad de Concepción, Casilla 160-C, Concepción, Chile. 2 Departamento de Zoología. Facultad de Ciencias Naturales y Oceanográficas. Universidad de Concepción, Casilla 160-C, Concepción, Chile. *E-mail: [email protected] RESUMEN Basado en los registros de la literatura y datos obtenidos de nuestras colectas, discutimos la distribución actual de Liolaemus pictus. La comparación de los resultados indica que esta especie no ha sido detectada en la depresión intermedia de Chile desde 1934. Lo anterior implica que dichas poblaciones se han extinguido, seguramente como consecuencia de la deforestación. Al mismo tiempo, extendemos el límite sur de la distribución conocida de L. pictus hasta los 44 ºS en la Región de Aysén. ABSTRACT Based on literature records and data gathered during our fieldwork, we discuss the current distribution ofLiolaemus pictus. The comparison of results shows that this species has not been detected since 1934 in the southern Chilean intermediate depression, implying populations’ extinction associated to deforestation. In addition, we found individuals of L. pictus in Aysén Region, extending its southern distribution up 44ºS. Liolaemus es un género de lagartijas sudamericanas de la A través de muestreos realizados entre los años 2004-2009 familia Liolaemidae que presenta un alto número de especies, (Apéndice 1), se han determinado áreas de presencia y algunas de ellas presentes en Chile (Etheridge & Espinoza ausencia que se contrastan con los registros consignados 2000).
    [Show full text]
  • Evolutionary History of the Patagonian Liolaemus Fitzingerii Species
    c Copyright 2017 Jared A. Grummer Evolutionary History of the Patagonian Liolaemus fitzingerii Species Group of Lizards Jared A. Grummer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Adam D. Leache,´ Chair Raymond B. Huey Richard G. Olmstead Program Authorized to Offer Degree: Biology University of Washington Abstract Evolutionary History of the Patagonian Liolaemus fitzingerii Species Group of Lizards Jared A. Grummer Chair of the Supervisory Committee: Dr. Adam D. Leache´ Department of Biology The majority of the world’s land mass and biota reside in the Northern Hemisphere. However, even when land area is accounted for, we know disproportionately less about Southern Hemisphere flora and fauna than their Northern Hemisphere counterparts. The South American biota is extremely unique with high levels of endemism due to a long history of geologic and evolutionary isolation. A prime example of South American endemism is the Squamate family Liolaemidae. In this family, the sole genus Liolaemus has one of the widest elevational, latitudinal, and climatic distributions of any lizard genus anywhere. The 258 described species (at the time of this dissertation) in this genus are distributed across 40◦of latitude, from southern Peru to Tierra del Fuego, and from sea level to more than 16,000’ in elevation. The genus Liolaemus is composed of two subclades, Liolaemus (sensu stricto) and Eulaemus, and it is in the second clade that we find the Liolaemus fitzingerii species group. The L. fitzingerii group is 5 million years old and is distributed in the Patagonian shrub-steppe ⇠ of central Argentina from approximately 37-50◦S latitude.
    [Show full text]
  • Check List 2006: 2(2) ISSN: 1809-127X
    Check List 2006: 2(2) ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Reptilia, Iguania, Liolaemini, Liolaemus carried out between 1998 and 2006 to Chubut and petrophilus and Liolaemus pictus: distribution Rio Negro provinces resulted in the collection of a extension, filling gaps, new records considerable number of samples of Liolaemus petrophilus. Those samples fill distributional gaps Luciano Javier Avila1 and four of them represent significant new Nicolás Frutos1 geographic records for the species. Mariana Morando1 Cristian H. F. Perez2 Mónica Kozykariski1 1Centro Nacional Patagónico (CENPAT – CONICET), Boulevard Almirante Brown s/n, U9120ACV, Puerto Madryn, Chubut, Argentina. E-mail:[email protected] 2Los Copihues s/n, 8364 Chimpay, Rio Negro, Argentina. E-mail: [email protected] The genus Liolaemus contains more than 180 Figure 1. An adult male of Liolaemus petrophilus species, and 58 of which occur in a variety of from central Chubut, Argentina. habitats in Patagonia (Argentina). In spite of this, our knowledge on the systematic, ecology, and All new collection sites are depicted in Figure 2, geographic distribution of Liolaemus lizards is were we show the previously known geographic still very scarce. It is necessary to increase the distribution of the species based on bibliographic information available on these lizards to improve information, and new localities surveyed as part our knowledge of one of the most speciose genus of a biogeographical study of Patagonian lizards. of vertebrates of America. Here we present new In two localities (marked with arrows), Liolaemus geographic distribution data on two Patagonian petrophilus is found in syntopy with L. elongatus. species of Liolaemus.
    [Show full text]
  • Doi Done 25Jan.Fm
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Zootaxa 0000 (0): 000–000 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/00000.00/zootaxa.0000.0.0 http://zoobank.org/urn:lsid:zoobank.org:pub:00000000-0000-0000-0000-00000000000 Checklist of lizards and amphisbaenians of Argentina: an update LUCIANO JAVIER AVILA1, LORENA ELIZABETH MARTINEZ & MARIANA MORANDO CENPAT-CONICET. Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina. E-mail: [email protected], [email protected] 1Corresponding author. E-mail: [email protected] Abstract We update the list of lizards of Argentina, reporting a total of 261 species from the country, arranged in 27 genera and 10 families. Introduced species and dubious or erroneous records are discussed. Taxonomic, nomenclatural and distributional comments are provided when required. Considering species of probable occurrence in the country (known to occur in Bo- livia, Brazil, Chile and Paraguay at localities very close to the Argentinean border) and still undescribed taxa, we estimate that the total number of species in Argentina could exceed 300 in the next few years. Key words: Reptiles, Liolaemus, Phymaturus, South America, list Resumen Actualizamos la lista de lagartijas de la Argentina, presentamos un total de 261 especies para el país, organizados en 27 géneros y 10 familias. Especies introducidas, registros dudosos o erróneos son discutidos. Comentarios taxonómicos, no- menclaturales o de distribución son incorporados si son requeridos. Considerando especies de probable existencia en nue- stro país (que se encuentran en Bolivia, Brasil, Chile y Paraguay en localidades muy cercanas al límite con Argentina) y taxas aún no descriptos, estimamos que el número total de especies en Argentina puede exceder las 300 en los próximos años.
    [Show full text]
  • Reptiles in Monterey Pine Plantations of the Coastal Range of Central Chile Sandra V Uribe* and Cristián F Estades
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Uribe and Estades Revista Chilena de Historia Natural 2014, 87:25 http://www.revchilhistnat.com/content/87/1/25 RESEARCH Open Access Reptiles in Monterey pine plantations of the Coastal Range of Central Chile Sandra V Uribe* and Cristián F Estades Abstract Background: In Chile, most of the timber industry depends on Monterey pine (Pinus radiata (D. Don.)) plantations, which now cover more than 1.5 million ha. In spite of the intensive management of these plantations, they are home to a large number of wildlife species. One of the least known groups in this type of environment are reptiles. For this reason, we conducted a study on the distribution and abundance of reptiles at plantations of different ages in seven sites in the Coastal Range of Central Chile. Results: From seven species that could be potentially found in the study region, a total of five species were recorded, with Liolaemus lemniscatus (Gravenhorst) being the most abundant (with up to 160 ind*ha−1). Detectability of species was similar in young and mature plantations but Liolaemus tenuis (Duméril and Bibron), the most colorful species, showed a higher detection probability than the other species. The highest abundance of reptiles was found in young plantations, and the density of L. lemniscatus and Liolaemus chiliensis (Lesson) declined significantly with plantation development. Liolaemus schroederi (Müller and Hellmich) increased significantly its numbers in 4- to 5-year-old plantations and remained with similar densities in mature plantations.
    [Show full text]