<<

ABSTRACT Titleof Document: TheMultipleSulfurIsotopicCompositionof :ImplicationsforNebular Evolution. MichaelArielAntonelli,MasterofScience, 2013. DirectedBy: ProfessorJamesFarquhar,Departmentof GeologyandEarthSystemSciences InterdisciplinaryCenter,UniversityofMaryland- CollegePark Multiplesulfurisotopicmeasurementsoffrom61differentironmeteorites wereundertakeninordertotestforsulfurisotopichomogeneitywithin(andbetween)

8differentirongroups.Itwasfoundthatdifferentmemberswithinagiven groupofironmeteoriteshavehomogeneous Δ33 Scompositions,butthatthese Δ33 S compositionsdifferbetweengroups.Thisthesisshowsthatironmeteoritesfromthe groupsIC,IIAB,IIIAB,IIIF,andIVAhavesmallyetresolvableenrichmentsor depletionsin Δ33 SrelativetoCanyonDiabloTroilite(CDT)andtroilitefromother non-magmatic(IABandIIE)ironmeteorites.Theobservedanomaloussulfurisotopic compositionsinmagmaticironmeteoritesaremostconsistentwithLyman-α photolysisofH 2S,pointingtowardsinheritanceofanunexpectedphotolytically- derivedsulfurcomponentinmagmaticironmeteoritegroupswhichisabsentinnon- magmaticironmeteorites,,andtheEarth-MoonSystem.

THEMULTIPLESULFURISOTOPICCOMPOSITIONOFIRONMETEORITES: IMPLICATIONSFORNEBULAREVOLUTION By MichaelArielAntonelli ThesissubmittedtotheFacultyoftheGraduateSchoolofthe UniversityofMaryland,CollegePark,inpartialfulfillment oftherequirementsforthedegreeof MasterofScience 2013 AdvisoryCommittee: Prof.JamesFarquhar,Chair Dr.TimothyJ.McCoy Prof.RichardJ.Walker

©Copyrightby MichaelArielAntonelli 2013

Acknowledgements FirstandforemostIwouldliketothankProfessorJamesFarquharforhis endlessadviceandpositiveoutlook,whichhaveextendedfarpasttheresearch containedinthisthesis.Hisapproachtoscienceandgeneraldispositionaretruly inspirational.IwouldalsoliketothankProfessorRichardJ.Walker(UMD)andDr.

TimothyJ.McCoy(SmithsonianInstitution)forsharingtheirexpertiseiniron meteoritesandhelpinggreatlyinmycosmochemicaledification.

ProfessorJohnT.Wasson(UCLA)isalsoowedthanksforsharinghisideas andextensiveINAAdataontheironmeteoritesanalyzedinthisstudy,whileProf.

MarkH.Thiemens(UCSD)providedvaluablehumorandanswerstomany photochemicalquestions.Dr.JabraneLabidi(IPGP)andProfessorPierreCartigny

(IPGP)madeveryhelpfulcommentsonseveralfacetsofthisresearch,whileDr.

MathieuTouboul(UMD)providedgreatinsightsintotheanalysisofavailableHf-W data.IwouldalsoliketothankfellowmembersoftheInstituteforSulfur

Studies(ISIS)attheUniversityofMaryland(DanielL.Eldridge,BrianS.Harms,and

Dr.JoostHoek)fortheirhelpinthelabandforlatenightdiscussionsregardingthe subtletiesofisotopicfractionation.Finally,Iwouldliketothankmyparentsand familyfortheirendlesssupportduringmystudies.

ThisresearchwaspartlyfundedbytheNaturalSciencesandEngineeringResearch CouncilofCanada(NSERC)throughaPostGraduateScholarshiptoM.A.Antonelli (PGS-M-420592-2012),andthroughaNASAgranttoJ.Farquhar.

ii

TableofContents Acknowledgements...... ii TableofContents...... iii ListofTables...... v ListofFigures...... vi Chapter1:Introduction...... 1 1.1MeteoritesandCosmochemistry...... 1 1.2Overview...... 2 Chapter2:Background...... 4 2.1IronMeteorites...... 4 2.1.1MagmaticIronMeteoriteGroups...... 6 2.1.1.1TheIIAB...... 6 2.1.1.2TheIIIABIrons...... 7 2.1.1.3TheIVAIrons...... 8 2.1.1.4TheIVBIrons...... 9 2.1.1.5TheICandIIIFIrons...... 9 2.1.2Non-MagmaticIronMeteoriteGroups...... 10 2.1.2.1TheIABIrons...... 10 2.1.2.2TheIIEIrons...... 11 2.2SulfurIsotopeSystematics...... 15 2.2.1Mass-DependentFractionation...... 15 2.2.1.1EquilibriumIsotopeFractionation...... 15 2.2.1.2KineticIsotopeFractionation...... 22 2.2.2Mass-IndependentFractionation...... 25 2.2.2.1Shielding...... 29 2.2.2.2Caveats...... 31 2.2.2.3NuclearEffects...... 31 2.3SulfurinMeteorites...... 31 2.3.1 δ34 SinMeteoriticMaterials...... 31 2.3.2MultipleSulfurIsotopeMeasurementsinMeteorites...... 33 Chapter3:Methods...... 36 3.1SampleAcquisition...... 36 3.2SulfurExtractionandAnalysis...... 38 3.2.1SulfurExtraction...... 38 3.2.2FluorinationandPurificationofSF 6...... 39 3.2.3MassSpectrometry...... 39 3.2.4SourcesofUncertainty...... 41

iii

3.2.5EvaluationofUncertainty...... 44 Chapter4:Results...... 46 4.1SulfurIsotopeRelationshipsinTroilite...... 46 4.2Chromium-ReducibleSulfur...... 50 4.3MeasurementReproducibility...... 51 Chapter5:Discussion...... 54 5.1EvaluationoftheSulfurIsotopicSignals...... 54 5.1.1MixingandtheDefinitionof ∆33 S...... 54 5.1.2Post-DisruptionSpallationReactions...... 56 5.1.3NucleosyntheticSulfurAnomalies...... 57 5.1.4PhotolysisintheEarlySolarNebula...... 61 5.2GeochemicalConsiderations...... 62 5.2.1Hf-WModelAges...... 62 5.2.2VolatileElementContent...... 66 5.3ModelsofSulfurIsotopicDistributionintheEarlySolarNebula...... 69 5.3.1VariablePreservationofaHomogeneouslyDistributed Δ33 SCarrier...... 71 5.3.2PhotolyticDepletionofanInnerSolarSystemReservoir...... 72 Chapter6:Conclusions...... 76 6.1FutureWork...... 79 AppendixA...... 84 AppendixB...... 86 AppendixC...... 87 AppendixD...... 88 AppendixE...... 89 AppendixF...... 90 AppendixG...... 92 AppendixH...... 93 AppendixI...... 94 Bibliography...... 95

iv

ListofTables Table1: “ListofIronMeteoritesAnalyzed”…………………………….……37

Table2: “SulfurIsotopicResultsforIronMeteoriteTroilite”……………….47

Table3: “Chromium-ReducibleSulfurAnalyses”……...………………….…52

Table4: “VariabilityBetweenTroiliteNodulesinSingleMeteorites”……….52

Table5: “SulfurExtractionDuplicates”………………………….……….…..52

v

ListofFigures

Figure1: “ElementalCompositionsofIronMeteoriteGroupsfromINAA”…...5

Figure2: “Zero-PointEnergyDifferencesBetweenIsotopologuesinaBond”.18

Figure3: “PotentialEnergyCurvefromTransition-stateTheory”…………….24

Figure4: “Excited-statePhotochemistry”…………………………………...…30

4a) “InitialExcitationandinternalConversion”……………..…………..30

4b) “Frank-CondonFactorsforInitialExcitation”………………………30

4c) “ExampleofPhotochemicalReactionNetwork”……….....……...... 30

Figure5: “Δ33 S versus δ34 SResults”…………………………………….……..48

5a) “Δ33 S versus δ34 SforIndividualIronMeteorites”………...... ….48

5b) “Average Δ33 S versus δ34 SforIronMeteoriteGroups”……...... 48

Figure6: “Δ36S versus Δ33SResults”……………………………………….…..49

6a) “Δ36S versus Δ33SforIndividualIronMeteorites”………...... …..49

6b) “Average Δ36S versus Δ33SforIronMeteoriteGroups”…...... ….49

Figure7: “NucleosyntheticSulfurAnomaliesinSiCGrains”…………….…...60

Figure8: “Hf-WAges versus Δ33 SforIronMeteoriteGroups”…………….…65

Figure9: “Ni-NormalizedVolatileElementAbundances versus Δ33 S”……….67

9a) “Ge/Ni versus Δ33 S”…………………………………………….……67

9b) “Ga/Ni versus Δ33 S”……………………………………….…………67

9c) “Sb/Ni versus Δ33 S”………………………………………………….67

Figure10: “ModelforSulfurIsotopicDistributionintheEarlySolarNebula”...74

vi

Chapter1:Introduction

1.1MeteoritesandCosmochemistry

TheextraterrestrialoriginofmeteoriteswasfirstproposedbyErnstChladniin

1794uponhisinvestigationofastony-ironmeteoritefind.Thispropositionwaslater verifiedthroughthepetrologicalanalysesofobservedmeteoritefallsinthefollowing decades.Thestudyofprogressedasnewmineralsweredescribedfrom differentmeteoritesandhypothesesregardingpossiblegeneticmodelsweregathered.

Petrologicdescriptionsandparagenetichistoriesfordifferentmeteoritesbeganto accumulate,andwiththeadventofgeochemicaltoolssuchasisotopegeochemistryin theearly20 th century,thestudyofcosmochemistrywasborn.

Chemicalanalysesofundifferentiatedstonymeteorites(“chondrites”) revealedsimilarcompositionstothosededucedfromspectroscopicstudiesofthe solarspectrum(PalmeandJones,2003),leadingtothehypothesisthatchondrites preservethebulkstartingcompositionofoursolarsystem,andspurringinterestin questionsregardingthecompositionaldifferencesbetweenmeteorites,theEarth,the

Sun,andotherinoursolarsystem.

Thegradualcategorizationofdifferentmeteoritesintogroupswasbasedon differentchemicalandpetrographiccharacteristics,whichhasresultedinover50 knownmeteoritegroupstoday,mostofwhicharethoughttorepresentfragmentsof differentplanetesimalbodiesinoursolarsystem.Overtimeitwasdeducedthat meteoritesdonotoriginatesolelyfromsmallplanetarybodieswithinthe belt,butalsofromlargerplanetarybodiessuchasMarsandtheMoon.

1

Progressiverefinementsinradiogenicisotopedatingtechniquesshowedthat

(non-planetary)meteoritesrepresentmaterialsthatpre-datetheformationofthe oldestrocksonEarthbyover500millionyears,withthebestrecentmeasurements reportingageuncertaintiesontheorderofonly~±1Maat4567Ma( e.g. Amelin et al. ,2002).Additionalchronometricrefinementsfromtheidentificationofin-situ decayproductsofnow-extinctshort-livedradioisotopes(SLR)inmeteoriteshavealso contributedgreatlytoourunprecedentedabilitiesinage-datingdifferenttypesof extraterrestrialmaterials.

Althoughradiogenicisotopegeochemistryhasledtoatremendouswealthof chronometricknowledge,theincorporationofstableisotopegeochemistrycanbegin toanswerquestionsregardingthedifferenttypesofprocessesthataffectedthe differentmeteorites,andhowthesedifferentprocessesoccurredwithinthecontextof theearlysolarnebula.

1.2Overview

Theresearchcontainedwithinthisthesisisaninvestigationintothesulfur isotopiccompositionsofdifferentironmeteorites;itstartswithanoverviewofiron meteoriteclassificationandthegeneralcharacteristicsofeachironmeteoritegroup, andisthenfollowedbyanintroductiontosulfurisotopesystematicsandstable isotopegeochemistry.Asectiondescribingpreviousworkonsulfurisotopesin meteoritesprecedesachapteronthemethodologyusedtoextractandanalyzesulfur isotopes,followedbyadescriptionoftheobtainedresults.Inthelaterchaptersofthis study,theobtaineddataareevaluatedinthecontextofotheravailablemeteoriticand sulfurisotopicdata,andconclusionsconcerningthedataaremade;finally,thelast

2 sectionofthisthesispresentsremainingquestionsandpossibledirectionsforfuture research.

Thisresearchbuildsonthepriorstudiesofsulfurisotopesinironmeteorites byHulstonandThode(1965b)andGaoandThiemens(1991),andalsoaimsto complementrecentdiscoveriesofmass-independentsulfurvariationsinmeteorites, particularlythediscoveriesof ∆33 Svariationsin(Rai etal.,2005;

Farquhar etal. ,2000a)andinunidentifiedminorphaseswithincertain

(RaiandThiemens,2007).Thedocumentationofsulfurisotopiccompositionsiniron meteoritesaddstotheexistingdataset,providinggreaterinsightintotheconditions affectingsulfurisotopicdistributionsinthesolarnebula.

3

Chapter2 : Background

2.1IronMeteorites

IronmeteoritesaredominantlycomposedofsolidFe-Nimetal,whichupon slowcoolingmayexsolveintoahigh-Niphase()andalow-Niphase

()inadistinctoctahedralpattern(Widmanstättentexture).Thesolidiron phaseisalsocommonlyaccompaniedbysphericalnodulesoftroilite(FeS)andminor andvariableamountsof[(Fe,Ni) 3P],graphite(C),and

[(Fe,Ni) 3C].Incertainironmeteorites(“non-magmatic”ironmeteorites),thereare abundantsilicateinclusions.Thesilicateinclusions,embeddedinthemetal,tendto beangular,andarechondriticincomposition(Benedix etal. ,2000,Benedix etal. ,

2005).Manyothertracemineralscanalsobefoundinironmeteorites,suchas

0 chromite(FeCr 2O4),daubreelite(FeCr 2S4),Copper(Cu ),and[(Fe,Ni) 23 C6].

Theclassificationofironmeteoritesintodifferentgroupsisbasedbothonthe texturesandontherelationshipsbetweenelementsofdifferentgeochemicalbehavior, suchasIr,Ni,Ga,Ge,&Au(e.g. Wasson etal. ,1967a,b,1969,1970,19711976,

1986,1989,1998,1999,2001,2002,2003,2007, etc. ).Differentironmeteoritetypes canbegroupedintodistinctfieldsonplotsoftaxonomicelementconcentration(Fig.

1).Thedifferentgroupsarebelievedtoeachrepresentadifferentparentbodyinthe

SolarSystem,mostofwhicharenowthoughttoresideintheasteroidbelt.

Certaingroupsofironmeteoritesareknownasmagmaticironmeteorites

(includingtheIIAB,IIIAB,IVA,IVB,IC,&IIIFgroupsexaminedinthisstudy).

Thesegroupsdelineateelementaltrendsthatarepredictablethroughmodelsof

4

Fig. 1. Elemental compositions of iron meteorites from Instrumental Neutron Activation Analysis (INAA), Courtesy ofJ.T.Wasson(UCLA)

5 fractionalcrystallizationwithinmoltenironcoresofvariablestartingcomposition

(Scott etal. ,1996;Chabot etal. ,2004;Walker etal. ,2008).Othergroupsofironsare knownas“non-magmatic”(IABandIIE)andhavecompositionsthatcannotbe modeledthroughthefractionalcrystallizationofamoltencore.Alongwiththeir abundantsilicateinclusions,thisisreasontobelievethatthenon-magmaticirons formedasseparateindividualmeltpockets(createdbyimpacts)onachondritic parentbody(WassonandKallemeyn,2002),orbythecatastrophicdisruptionand reassemblyofapartiallydifferentiatingparentbody(Benedix etal. ,2000,2005).

Recently,ithasbeenfoundthatmagmaticironmeteoritesprobablyunderwent metal-silicatesegregationearlierinsolarsystemhistorythannon-magmaticiron meteorites,basedon 182 Hf-182 Wconstraints(Kleine etal. ,2005;Markowski etal. ,

2006;Schersten etal. ,2006;Qin etal. ,2008;Schulz etal. 2009,2012;Kruijer etal. ,

2013a,b).

2.1.1MagmaticIronMeteoriteGroups

2.1.1.1TheIIABIrons

GroupIIABironmeteoritesareclassifiedasmembersofthemagmaticiron meteorites,andarecharacterizedbyhighsulfurconcentrations,withestimatesof17±

1.5wt%initialS,baseduponhighlysiderophileelement(HSE)partitioningmodels

(assulfurcontentsaffectthedistributioncoefficientsofotherelementsduring crystallization)(Chabot,2004).TheyalsohavethesecondhighestaverageGecontent ofallirongroups(HaackandMcCoy,2006).LiketheIIIABandIVAiron meteorites,theIIABironsmayhavecooledinacorestrippedofitssilicatemantle

(Yang etal. ,2008,MoskovitzandWalker,2011),andhaveHf-Wmetal-silicate

6 segregationageswithin2millionyearsofCAIs(Markowski etal., 2006;Qin etal.,

2008;Kruijer etal., 2013a,b).

However,linkagebetweentheIIABironsandtheirpotentialsilicate counterpartshavebeenhinderedbytheirlackofoxygen-bearingsilicates( ∆17 O measurementsarecurrentlythemostwell-establishedgeochemicallinksbetween meteoritegroups).Bethatasitmay,ithasbeennotedthatsomeoxidesmayexist, whichcouldprovideinformationontheIIABparentbody(Wasson etal. ,2007).The samplesanalyzedherespanalmosttheentirerangeofhighlysiderophileelement concentrationsreportedforIIABironmeteorites,whichenablesanevaluationof possiblesulfurisotopefractionationintroilitenodulestrappedduringvariousstages ofcorecrystallization.

2.1.1.2TheIIIABIrons

IIIABironmeteoritesarealsoconsideredtobemagmatic,toberichinsulfur, andtohavedifferentiatedwithin2millionyearsofCAIs(Markowski etal., 2006;

Qin etal., 2008;Kruijer etal., 2013a,b).Estimatesoftheinitialsulfurconcentration intheIIIABmeltsare12±1.5wt%S(Chabot,2004).However,unknown proportionsandcompositionsoftrappedmeltcomplicatefractionalcrystallization models(Scott etal. ,1996;Wasson,1999).

Meteoritesfromthisgrouphavebeensuggestedtobeassociatedwiththe maingroup(Clayton,1993;WassonandChoi,2003,Greenwood etal.,

2006).ItisalsonotedthatIIIABgroupironmeteoriteshavetheoldestRe-Os crystallizationages,thoughtheerrorsarerelativelylarge,theRe-Ossystematics implycrystallizationforironmeteoritesintheorderIIIAB>IIAB>IVB>IVA

7

(Smoliar etal. ,1999).EarlycrystallizationagesfortheIIIABgroupironsmaybea resultofrapidcoolingandinwardcrystallizationofaparentbodystrippedofits silicatemantle(Yang etal. ,2008).

2.1.1.3TheIVAIrons

GroupIVAironsaremagmatic,andareestimatedtohavehad3-9wt%initial

S(Chabot,2004),thisvalueispoorlyconstrainedduetothedifferentbehaviourofIr

(comparedtoGaandGe)withreferencetoAuinmembersofthisgroup.The compositionaltrendsintheIVAironsaredifferentthanthoseseeningroupIIIAB ironmeteorites(WassonandRichardson,2001).Ageneraldepletioninvolatile elementsinIVAironsissuggestedbylowGecontents(thesecondlowestiniron meteoritegroups)(HaackandMcCoy,2006),whereashighNi/Feratioscoupledwith chondriticNi/Coratiospointtowardsanoxidizedmantle(whichwouldhaveretained oxidizedFe,alongwithotherredoxsensitiveelements)(McCoy etal. ,2011).

Inaddition,highlyvariablecoolingratesfortheIVAironmeteoritesare thoughttoreflectcoolingofacorewithvirtuallynosilicatemantle,possibly crystallizinginwardsfromtheoutsideafteragrazingimpact[likethepreviously discussedgroups(Yang etal. ,2008)].

Althoughfractionalcrystallizationmodelsforthisgroup,alongwiththose previouslydiscussed,appeartobecomplicatedbythevariableincorporationsof trappedmeltintocrystallizingdomains,theIVAironmeteoritescanbewellmodeled via fractionalcrystallization(WassonandRichardson,2001).Likeothermagmatic ironmeteorites,thegroupIVAparentbodyisthoughttohaveundergonemetal- silicatefractionationwithinthefirstfewmillionyearsofCAIs(Markowski etal.,

8

2006,Qin etal., 2008,Kruijer etal., 2013a,b).Troilitefromthisgroupofmeteorites hasbeendatedtobe4565.3±0.1MausingthePb-Pbsystem(Blichert-Toft etal. ,

2010),indicatingcrystallizationveryshortlyafterHf-Wcoresegregationagesand

CAIformation.IthasalsobeenshownthatthegroupIVAmeteoritesshareoxygen isotopiccompositionswiththeLandLLchondrites,implicatingapossiblegenetic linkbetweenthem(Clayton etal. ,1983;ClaytonandMayeda,1996;Wang etal. ,

2004;McCoy etal. ,2011).

2.1.1.4TheIVBIrons

GroupIVBmagmaticironmeteoritesareestimatedtohavehadevenlower initialsulfurintheirparentalmeltsthanthepreviousgroups(1±1wt%Chabot,

2004),andarehighlydepletedinothervolatileelements,withthelowestGecontents ofallirongroups(HaackandMcCoy,2006).GroupIVBironshavebeensuggested tocomefromthesameparentbodyas(CampbellandHumayun,2005)based ontheircomplementarytraceelementcompositions.

Intermsofpetrologicmodeling,thetraceelementcompositionsofIVBirons areconsistentwithfractionalcrystallizationofalowSandPparentalmelt(Walker et al. ,2008),however,theinitialcompositionofthismeltisveryrichinNi,requiringan oxidizedmantle,and/ornebularprocessingpriortoaccretionoftheparentbody

(CampbellandHumayun,2005).

2.1.1.5TheICandIIIFIrons TheICgroupironmeteoritesaremagmatic,containcommontroilite inclusions,typicallyshapedlikecigars,andoftencontainmm-sizedchromitecrystals.

Additionally,smallschreibersitecrystalsaredispersedthroughoutmostICirons,

9 whereasgraphiteandsilicatesarenotpresent(Scott,1977).Othersulfur-bearing mineralsfoundintheICironsaredaubreeliteandsphalerite(Scott,1977).Ithasbeen suggestedthattheICparentbodywasdisruptedafteritscorefractionallycrystallized andwasthenreassembledearlyinitshistory,causingvastlydifferentcoolingrates formembersofthegroup(Scott,1977).Hf-Wconstraintsonmetal-silicate segregationintheICparentbodypointstowardsagessimilartothoseofthemore commonmagmaticironmeteoritegroups,withinthefirstfewmillionyearsafter

CAIs(Markowski etal. ,2006;Qin etal. ,2008).

TheIIIFironmeteoritesareararegroupofmagmaticironmeteorites(of whichonlynineareknown)thathavefewtroiliteinclusionsandgrainsof microscopicdaubreelite(ScottandWasson,1976).Interestingly,Hf-Wconstraintson theageofmetal-silicatesegregationyieldvaluessimilartothoseforthenon- magmaticironmeteorites,severalmillionyearsaftermostothermagmaticiron meteoritegroups(Markowski etal. ,2006;Schersten etal. ,2006;Qin etal. ,2008).

2.1.2Non-MagmaticIronMeteoriteGroups

2.1.2.1TheIABIrons

TheIABironmeteoritesareknownas“non-magmatic”ironmeteorites.These meteoritescontainabundantangularsilicateinclusionsofgenerallychondritic composition(Benedix etal. ,2000),andtheirparentbodyisthoughttohaveremained sufficientlycoolsuchthatitdidnotfullydifferentiateintoaseparatecoreandmantle

(HaackandMcCoy,2006).

ThegeochemistryofthisgroupofmeteoriteshasbeenreviewedbyWasson andKallemeyn(2002)whodemonstrated,byexaminingvariationsinNiwithrespect

10 toAu,thatonecoulddiscernamaingroup(MG),fivedistinctsubgroups,andtwo groupletsofIABmeteorites.IABgroupironmeteoritesarenowreferredtoasIAB-

MGorIAB-sXZwhereXandZarehigh(H),medium(M),orlow(L)AuandNi contents,respectively.

TheIABgroupironmeteoriteshavebeenproposedtobeassociatedwiththe sameparentbodyasthemeteoritesbecauseofalmostidenticalsilicate mineralogy(Benedix etal. ,2000)andsimilaroxygenisotopiccompositions( ∆17 O)

(ClaytonandMayeda,1996).Anotherpieceofevidencelaysinthealmostidentical

(andrelativelylate)Hf-WsegregationagesoftheIABironmeteoritesandthe winonaitegroupmeteorites(Schulz etal. ,2010,2012).WassonandKallemeyn

(2002)postulatedthatthegroupIABironsformedinimpact-meltpocketsona chondriticprecursor,thoughtheoxygenfugacitiesrequiredforsilicateformation appeartobemorereducedthanforordinarychondrites(Benedix etal. ,2005).Group

IABironmeteoritesalsohavethehighestGecontentofanygroup(Haackand

McCoy,2006),pointingtowardstheirgenerallackofdepletioninvolatileelements.

Samplesthatwereanalyzedincludemembersfromthemaingroupandalsofrom severalofthesubgroups.

2.1.2.2TheIIEIrons

ThegroupIIEironmeteoritesarenon-magmatic,liketheIABirons, containingabundantsilicateinclusions.Theyarefoundtohave ∆17 Ovaluesalmost identicaltoHchondrites(ClaytonandMayeda,1996;Clayton,2003;McDermott et al. ,2010,2011)suggestingageneticlinkbetweenthem.TheIIEironsalsoshare otherchemicalsimilaritieswithH-chondrites(TeplyakovaandHumayun,2011),

11 evencontainingwhataredescribedasrelictchondrulesintheironmesostasis

(Roosbroek etal. ,2011).Hf-Wconstraintsgenerallypointtometal-silicate segregationagesofabout10MaafterCAIs(Markowski etal. ,2006;Schersten etal. ,

2006),howeverarecentstudyby(Schulz etal. ,2012)pointstothreeprobablestages ofmeltsegregation,onearound3MaafterCAIs(whichcouldbefrominternal heating),andtheothertwoat13Maand28Ma(whicharemostlikelyimpact- derived).

12

Plate1 TroilitenodulesinironmeteoritesfromgroupsIIAB,IIIAB,IVB,andIVA.

13

Plate2 TroilitenodulesinironmeteoritesfromgroupsIC,IIIF,IIE,andIAB.

14

2.2SulfurIsotopeSystematics

Allsulfurisotopedataarereportedwithrespecttoastandard:CanyonDiablo

Troilite(CDT).Forthelast50years(AultandJensen,1962),troilitefromthe

CanyonDiablo(IAB)ironmeteoritehasbeenusedasareferencematerialforsulfur isotopeanalyses.However,studieshaveshownthatthenaturaltroilitehassome slightvariabilityin δ34 S(Beaudoin etal. ,1994)whichhaspromptedthedevelopment ofasyntheticstandardreferencematerial(V-CDT).Inthestudyathand,sulfur isotopevaluesarenormalizedtoourownmeasurementsofCDTintheform:

(2.1)

(2.2)

(2.3)

Thus,ifasamplehasaheavierisotopiccompositionthanCDTitwillhaveapositive

δ3X Svalue,andifithasalighterisotopiccompositionitwillhaveanegative δ3X S value.

2.2.1Mass-DependentFractionation

2.2.1.1EquilibriumIsotopeFractionation

Therelationshipbetweenisotopesinasubstancetendstobedictatedbythe vibrationalfrequencydifferencesbetweenisotopicallysubstitutedversionsofa molecule(isotopologues).Theproportionaldifferenceinthemassesoftwo isotopologuesleadstolowerzeropointenergiesforthebondscontainingheavier isotopes,withthedifferenceinzeropointenergygrowingasthebondtotheisotope

15 getstighter;thisleadstoaconcentrationofheavyisotopesintighterbonds(lower freeenergyforthesystem)ifequilibriumisattained( “equilibriumfractionation”).

Thereactivityofamoleculeisbaseduponthebreakingofoneofitsbonds.

However,whenthesebondsareintact,theyareinstatesofconstantvibration.Like twomassesonaspring(inthecaseofadiatomicmolecule),aheaviermasswill causetheamountofvibrationtolessen.Onlythosebondsvibratingpastthelimitof theirpotentialenergysurface( i.e. thespringsnapping)participateinachemical reaction.Temperatureaugmentationscausethelevelofvibrationstoincreaseina quantizedmanner.However,atavalueofabsolutezerotheseatomsstillhavesome energy,andthisquantumconcept(“zeropointenergy”)isthedifferenceinenergy betweentheidealrestingpositionoftheatominachemicalbondanditsn=0 vibrationallevel(nonodes),andisafunctionofthemolecule’sintrinsicproperties.It isthedifferencesinzeropointenergy(ZPE)thatdictatethepartitioningofisotopes intocertainmolecularpositions;Figure2 illustratesthelowerZPEofheavier isotopologuescomparedtolighteronesinthesamechemicalbond.

Inmanycasesthebondbetweentwoatomsismodeledasaspring(simple harmonicoscillator).Thevibrationalfrequency( ν)ofaspringcanbedeterminedby

Hooke’sLaw:

(2.4)

wherekistheforceconstantofthespringandµisthereducedmass(m 1m2/m 1+m 2) oftheballsattheendsofthespring.Increasingthemassofoneorbothoftheballs decreasesthefrequencyatwhichthespringvibrates,allelsebeingequal.

16

Asthebondstrengthiscontrolledbyelectroninteractions,andallisotopesof asubstancearethoughttohavethesameelectronconfigurationsinthesame molecule,theshapeofthepotentialwelldoesnotchangewhensubstitutingisotopes

(“Born-Oppenheimerapproximation”).

Asthebondstrengthincreases,theaveragedistancebetweentheatoms decreasesandthepotentialenergywellbecomesnarrower;duringthisprocessthe differenceinpotentialenergyoftheheavyandlightisotopesinthewellbecomes greater(Fig.2 ).Therefore,toachievethelowestpossibleenergyconfigurationa substanceallocatesheavyisotopesofanatomtoitstightestbondstoachievethe lowestpossibletotalenergystate.Inmetamorphicreactions,forexample,oxygen isotopesareexchangedbetweensilicatemineralsuntilequilibriumisreached.Asthe

Si-Obondisoneofthestrongest,amineral’senrichmentin 18 OisaresultofitsSi-O

18 bondcontent[withquartz(SiO 2)generallyhavingthehighest δ O].

Thiseffectdecreaseswithincreasingtemperature,asthedifferencesbetween thepotentialenergyofisotopologuesdecreasesathighervibrationalfrequencies.At lowertemperatures,thedifferencebetweenthepotentialenergyofisotopesisthe greatest,approachingthezeropointenergydifferenceofthetwoisotopes.

Otherwaysinwhichenergyispartitionedintogas-phasemoleculesisinto translationalmovementandrotationalmovement.However,thesearenotas importantindeterminingtemperature-basedisotopeeffects.

Givenageneralisotopeexchangereactionoftheform:

aA+ bB* = aA* + bB

17

Fig. 2. Conceptual diagram illustrating the zero-point energy differences between heavy and light isotopologues of the same elementintwodifferentbonds(onagraphofpotentialenergyversus displacement from the classical resting position). Tighter bonds result in greater zero-point energy differences between heavy and lightisotopologues.

18 wheretheasterisksdenotethemoleculewiththeheavyisotope(beingexchanged fromsubstanceAtosubstanceB),thetraditionalequilibriumconstantforthis reactioniswritten:

(a )a (a )b K = A* B (2.5) a b ()aA (a B* )

Whereaistheactivityofasubstanceraisedtoitsstoichiometriccoefficient.This equationcanalsobewrittenusingthesubstances’partitionfunctions(Q),whichare statistical-mechanicaloperatorsthatdependonthetotalenergyofasubstance

(“Hamiltonian”),andis,insomesense,equivalenttochemicalactivity.

a a Q* ()Q b Q* /Q ( )A B ( )A (2.6) KA-B = b = b ()Q a Q* Q* /Q A ()B ()B

Theclassicaltotalpartitionfunctionofamoleculeistheproductofitspartition functionsfortranslational,rotational,andvibrationalenergy.

(2.7) QT = QtrxQrotxQvib

Inordertocalculatefractionation,onemustknowthetranslational,rotationaland vibrationalpartitionfunctionsofeachisotopicsubstance.Amolecule’stranslational energycanbedescribedintheform:

3 2 (2πMkbT) (2.8) Q = V Tr h3

WhereMisthemolecularweight,k bistheBoltzmanconstant,Tisthetemperature,

Visthevolumeofthesystem,andhisplank’sconstant.Themechanicsbehind equation2.8areclassicalandnotquantized,whichisjustifiedasaresultofthe relativelysmallenergeticdifferencesbetweenthequantadescribingdifferent

19 translationalstates.Additionally,thisequationdoesnotneedtobeevaluatedtostudy theisotopeeffect,asitisreallytheratioofthepartitionfunctionsfortheheavyand lightisotopologuesthatisofinterest(Q*/Q).WhencalculatingtheratiooftwoQ tr , everythingcancelsoutexceptthedifferentmassterms,m*andm.Therefore,the translationalmotiondifferencesbetweentwoisotopologuesdependonlyontheir relativemasses.

3/2  M*  (2.9)()Q* /Q =   tr  M 

Therotationalenergypartitionfunctionratiooftwoisotopologuesisalsodefined classically,forthesamereasonsastranslationalmotion,andcanbedeterminedusing theequation:

(2.10)

Where σand σ*representthesymmetrynumberofamolecule(thenumberof equivalentwaysoforientingitinspace),andIandI*representthethreeprinciple momentsofinertiaforthemolecule.

Finally,tocalculatetheratioofthepartitionfunctionsforvibrationalenergy betweentwoisotopologues,oneusestheequation:

* -Ui /2 -Ui * e 1- e (2.11) ()Q /Q = ∏ * vib -Ui /2 -Ui i e 1- e

Where(Q*/Q) vib isdefinedastherunningproductoftheenergyfromallvibrational terms(i)fortheheavyversionofthemolecule,dividedbythesamevibrationalterms forthelightversion.Inthisequation,U=h νi/k bT,where νiisthevibrational

20 frequencyforthebondinquestion.Therefore,vibrationalenergydependsonlyonthe vibrationalfrequencyandtemperatureofamolecule.

Tocalculateapartitionfunctionforamolecule,onesimplycombinesthethree equationstoyield

(2.12)

Becauseofaconstantrelationshipbetween νi,I, σ,andM,theTeller-Redlich spectroscopicapproximation(Urey,1947)maybeappliedtotheaboveequationin ordertoremoveallthetermsformomentofinertia(I),yielding:

(2.13) whereristhenumberofatomsbeingexchangedinthemolecule.Theequilibrium constant(fractionationfactor α)forareactionisthencalculatedastheratioof

a b (Q* A/Q A) over(Q* B/Q B) ,usuallyyieldingarationearunity.Itisthedeviations fromunity(differencesinfreeenergy)thatresultinequilibriumisotopeeffects.

Formanymolecules,themasstermsandsymmetrytermsfortheheavyand lightisotopecancelout(alongwiththetemperatureterms);whichleadstothe

“reducedpartitionfunctionratio”,asimplificationtofacilitatecalculationof equilibriumisotopeeffects.

Q*  m 3/2r (2.14) f =   Q  m* 

Thevariableristhenumberofatomsbeingexchangedinthemolecule,asinthe previousequation.Inturn,thesereducedpartitionfunctionsarereportedaftertaking ther th root,leadingonetoasocalled βvalue:

21

(2.15)

Finally,toobtaintheequilibriumconstantforanisotopicexchangereaction,one takestheratiosofthese βvalues,leadingtoa“fractionationfactor”knownas α.For allintentsandpurposes αisjustadifferentnamefortheequilibriumconstantK,for anychemicalreaction,butisusedtosignifythatoneisdealingwithanisotopic exchangereactionwithonlyoneatomexchanged.However,thisisnotnecessaryfor calculating α,astheratio(Q*/Q) Aover(Q*/Q) Bisalsoequaltothefractionation factorasshownearlier.

(2.16)

Fractionationsofisotopesduringspecificchemicalreactionsaretypicallyreportedin permilunits,bymultiplyingthenaturallogarithmof αby1000.

2.2.1.2KineticIsotopeFractionation

Kineticisotopefractionationisthefractionationofisotopesduringnon- equilibriumchemicalreactions.Inthesegenerallyirreversible(unidirectional) reactions,itisthereactionrates,andnotthefinalfreeenergiesofthemolecules,that areimportantincontrollingisotopicbehavior.

Althoughkineticeffectsarefundamentallydifferentfromequilibriumeffects, theyalsodependonthemassdifferencesbetweendifferentisotopologues.Thebest modelforexplainingtheseeffectsistransition-statetheory( e.g. Bigeleisen,1952),in whichakineticisotopeeffectdependsonpartitioningbetweenthereactantsandtheir transition-state,asopposedtobetweenthereactantsandtheirproducts.Thefinal passagefromthetransition-statetotheproductstateiscontrolledbyanon-isotope

22 selective“leak-through”withagivenrate.

Moreweaklyboundtransition-states(mostcommon)leadtoanequilibrium- likeenrichmentinlightisotopes,resultingina“normalkineticeffect”wherethefinal productsareenrichedinthelightisotopesofasubstance.Intherarercase,wherethe transition-stateprovidesatighterbondingenvironmentthanthereactantstate,

“inversekineticfractionation”occursandtheheavyisotopeisenrichedinthe products.Ineithercase,themechanismsdependonthesamephysicsthatdescribe equilibriumisotopeeffects,creatingproductsandresidualreactantsthatobeymass- dependentisotopefractionationlaws.

Themodelingofkineticeffectsreliesmostlyonthevibrationalfrequenciesof themolecules(andtheirtransition-states)inareaction,theratioofrateconstantsfora reactionofaheavyversuslightisotopologueissimilartothetraditionalpartition functionratioequationsforequilibriumreactions,butiscalculatedbetweenthe reactantandtransition-states,andalsoincludesacorrectionforthetunneling frequenciesofeachisotope.

* ‡ ‡ * * (2.17) / = ( / )((Q2 /Q1)tunneling ( Qvib /Qvib )TS /( Qvib /Qvib )RS

Anothersubtletyintransition-statetheoryistheratioofheavyversuslightimaginary vibrationalfrequenciesforthetransition-state(representedas* νǂ/νǂ),whichare imaginarybecausetheyliealongthereactionpathandaccelerateasbondlengthin thetransition-statestructureincreasesordecreases(destabilizing),asopposedto

23

Fig. 3. Potential energy along the reaction coordinate for a kinetic chemical reaction (from transition-state theory). The solid lines represent zero-point energies (ZPE) for light isotopologues and the dotted lines represent ZPE for heavier isotopologues. (Modified fromBigeleisen,1952).

24 deceleratingasbondlengthincreasesordecreasesfromitsequilibriumpositionin boundstates(stabilizing).

Insimplerterms,theratiooftheratesbetweentwoisotopologuesinthesame kineticchemicalreactionis:

(2.18),/, = (ʄ //ʄ /)

WhereK f,2 andK f,1 aretheforwardrateconstantsforidenticalreactionswitha differentisotopologue,* ν2/* ν1arethevibrationalfrequenciesforthebondthatleads

+ toformationoftheactivatedcomplex(transition-state)whenruptured,and( ʄ 2/1 /

react ʄ 2/1 )istheequilibriumconstantfortheformationofthetransition-statefromthe reactants.

2.2.2Mass-IndependentFractionation

Forsulfurisotopes,apredominanceofnaturalequilibriumandkineticisotope effectshasresultedin δ33 S, δ34 S,and δ36 Svalueswithcharacteristiclogarithmic relationshipsbetweenthem.Ifmaterialisderivedpurelyfromkineticorequilibrium effectsthentherelationshipbetweentheisotopeswillbeapproximately:

(2.19)

(2.20)

Theremaybeslightvariationsintheexponentsdependingonthespecifictypeof processandtemperatureinvolved,butthesearelessthan±0.003(Hulstonand

Thode,1965).However,somechemicalprocesseshavebeenshowntofractionate isotopesinwaysthatcausesignificantdeviationsfromthemass-dependentarrays

25 definedbyequations2.19and2.20.Toquantifytheseeffectsonemustcalculatea sample’sdeparturefromthereferencearray:

(2.21)

(2.22)

Asamplefallingonthereferencearraywillhavea ∆3X Sofzero,whereassamples withanomalousenrichmentsordepletionsin33 Sor 36 Swillleadtopositiveor negative ∆3X Svalues,respectively.

Samplesenrichedordepletedin ∆3X Sarecommonlycalled“mass- independent”tosignifytheirdeparturesfromthemass-dependentarray,however,it hasbeenfoundthatmixingbetweenpoolsofdifferentiallyenrichedmass-dependent sulfurspeciescancausenon-zero ∆3X Svalues(asthereferencearrayiscurvedand themixinglinebetweentwosamplesislinear).Thisaddssomeconfusiontotheterm

“mass-independent”,assmall∆3X Svariationscanbegeneratedbythetypicalmixing ofmass-dependentcomponents.However,formixingreactionstocauseany significant ∆3X Svariabilitytheyneedtobetheresultofmixingbetweentwo reservoirswithhighlydifferentvaluesof δ34 S,asthecurveofthemass-dependent arrayisnotpronouncedattherelevantscale,yieldingamaximum ∆33 Svalueofabout

0.2‰whenmass-dependentcomponentswithan80‰differencein δ34 Saremixed together(Farquhar etal. ,2007).

Trulymass-independentprocesseshavebeendocumentedforseveraldifferent isotopicsystems.Theseincludemagneticisotopeeffectsinvolvingodd-numbered nuclei(e.g. TurroandKraeutler,1980),nuclearvolumeeffectsinheavyelements

26

(e.g. Bigeleisen,1996),andeffectsrelatedtophotochemicaltransformations(e.g.

ThiemensandHeidenreich,1983).Byfar,thelargestrecordeddeparturesfrommass- dependentisotopefractionationarethoseobservedduringgas-phasephotolysis experiments.Forexample,ithasbeenfoundthatUVphotolysisofsulfur-bearing gasesleadstotheformationofproductsenrichedordepletedin ∆33 S(Colman etal. ,

1996;Farquhar etal. 2000b,2001;Chakraborty etal. ,2011;Masterson etal. ,2011,

Chakraborty etal. ,2013),withgreatlyvariablerelationshipsbetweenthe∆33 Sand

∆36 Svaluesoftheproducts,dependingonthetypeofsulfur-bearinggas,pressure, andwavelengthoflightthatisused.

Whenanatomormoleculeissubjectedtolightitabsorbsenergyat characteristicfrequencies.Thesefrequenciescorrespondtoeitherincreasesin vibrationalenergyortoabsorptionofenergythroughthepromotionofanelectronto ahigherorbital.Whenelectronsarepromotedtoahigherorbitaltoformastable species( i.e. withoutdissociationofthemolecule),themoleculeissaidtobeina bound“excited-state”.

Amoleculeinaboundexcited-statehasbondingcharacteristicsthatarevery differentthanwhenitisintheground-state,causingdeparturesfromtheground-state shapeandbondstrength,accompaniedbychangestotheQelectronic partitionfunction, whicharenotconsideredinequation2.13.Thechangesintheshapeandpositionof thepotentialenergywellforbondsinexcited-statessupporttheideathatlargeisotope fractionationsarepossiblethroughreactionswhichinvolvethem.Thesereactionsare commonwhengas-phasemoleculesaresubjectedtoUVlight,suchasinplanetary atmospheresandinoptically-penetrablegaseouszonesofyoungprotoplanetary

27 systems.

Absorptionspectraprovideameansofdeterminingtheenergiesfordifferent electrontransitionsinanatomormolecule.Inmanycasestherearediscrete absorptionbandsabovetheenergyassociatedwithleavingtheground-statepotential wellofagivenmolecule(breakingitsbond);asthemoleculehasnotdissociated, therehasbeenanelectronicreconfigurationwhichhasledtoachangeinthe characteristicsofitsbonds,representedasatransitionofthemoleculefromits ground-statetoanewdiscretevibrationallevelinawellofhigherpotentialenergy

[boundexcited-state(e.g.Fig.4)].

Manydifferentelectronicconfigurations,andthus,manydifferentexcited- statesmayexistforasubstancewithasingularchemicalcomposition.Different absorptionbandsrevealthediscreteenergiesassociatedwithelectrontransitionsto highermolecularorbitalsandthecreationofmanydistinctexcited-states.

Someoftheseabsorptionpeaks,atenergiesabovethedissociationlimitfora substanceinitsground-state,arebroaderthanthosewhichcharacterizelowerenergy transitionsofelectrons.Thesebroad(“diffuse”)peaksarethoughttorepresent wavelengthswhichinducetransitionsbetweendifferentexcited-statepotentialwells

(Fig.4a ).Someofthesetransitionsareinfluencedbyfactorsinadditiontothosein

QT(eq.2.7&2.13 ).

Inthesephotochemicalreactions,thenon-classicalisotopeselectionprocessis thoughttooccureitherduringtransitionsbetweendifferentexcited-states,orduring initialexcitationofthemoleculestotheexcited-state.

28

TheFrank-Condoneffect,whichappliestotransitionsofmoleculesfrom ground-statetoaboundexcited-state(Fig.4b ),isdescribedasthegreaterprobability ofatransitionfromground-statetoexcited-state,ifthenuclearcoordinatesand probabilitydensityfunctionsofthetwostatesoverlap(thisisbecauseelectronic transitionsaremanyordersofmagnitudefasterthannuclearmotions).Asthe vibrationallevelshiftswithincreasingisotopemass,theaveragepositionofthe vibratingatomalsochanges,whichmaycausepreferentialoverlapinthenuclear positionsrequiredforground-statetoexcited-statetransitions,andananomalously higherreactionrateforthatisotopologue.

State-to-statetransitions(revealedbydiffusebands)occurwhenthereis rovibronicoverlapbetweenlevelsindifferentexcited-statepotentialwells(Fig.4a,

4c ).Asdifferentisotopologueshavedifferentzeropointenergieswithinagiven potentialwell,someofthemmayhavepreferentialoverlapwithvibrationallevelsin adjacentpotentialwells,causingthemtopreferentiallyswitchovertootherpotential energysurfacesathigherrates.

2.2.2.1Shielding

Isotopicself-shieldinginacolumnofgaswillalsoleadtomass-independent fractionationasisotopomersofasubstancehaveabsorptionpeaksthatareoff-set fromeachother(e.g. Danielache etal. ,2012).Inacolumnofgas,thewavelengths specificallyabsorbedbythemostabundantisotopomerofaspecieswillbefiltered outwithincreasingdistancefromthesourceoflight,eventuallybecomingcompletely absorbed.Inregionsfurtherfromthelightsource,wherethecolumnofgashas absorbedallfrequenciesoflightthatwillphotolyzetheabundantisotopologues,there

29

Fig.4a. Schematicrepresentationofinitialexcitationfromaboundground-state to a bound excited-state, and subsequent internal conversion to a dissociative surface.Fig.4b.SchematicrepresentationofFrankCondonoverlapbetweenn=0 andn=2levelsinthegroundandexcited-state,facilitatingtransitionsbetweenthe two states. Fig. 4c.Schematicofpossiblephotochemicalreactionshighlighting (numbered) processes which are suggested to cause non-traditional isotope selection.

30 willbeazoneinwhichonlytheabsorptionspectraofminorisotopomersofa substancewillmatchincidentradiation,whichwillleadtoproductswithmass- independentcompositionswithinthiszone( e.g. LyonsandYoung,2005).

2.2.2.2Caveats

Oneimportantcaveattotheabovediscussionsisthatthepreservationofa poolofmoleculesthathasbeenthroughanexcited-statetransitionreliesonthe segregationofproductsfromreactantsthroughsomesortofchemical/physical reactionotherthanthedecaybacktooriginalground-state.

2.2.2.3NuclearEffects

Inadditiontophotochemicalreactions,afewotherscenariosleadingtonon- mass-dependentisotopeenrichmentsneedtobetakenintoaccountinnebularsettings.

Forexample,anomalousisotopeenrichmentsmaybetheresultsofuneven contributionsfromdifferentstellarsources(“nucleosyntheticanomalies”)orfrom in- situ productionthroughcosmic-rayinducedspallationreactions.

2.3SulfurIsotopesinMeteorites

2.3.1 δ34 SinMeteoriticMaterials

Sulfur-bearingmineralsinmeteoritesaredominantlyreduced,withthe exceptionbeingthosewithincarbonaceouschondrites,whichhaveundergonepost- formationaqueousalterationandoxidation.Inageneralsense,ithasbeenfoundthat sulfuriscontainedinwater-solublecompounds,inacidsolublesulfides,aselemental sulfur,inwater/acidsolublesulfates,andasunidentifiedsulfurmineralssolubleonly inaquaregia(KaplanandHulston,1966).Alistofsulfur-bearingmineralsin

31 meteoritesincludingreducedsulfurmineralssuchastroilite(FeS),(CaS), ferroanalabandite((Fe,Mn)S),andsphalerite(ZnS),intermediateoxidationsulfur mineralssuchaselementalsulfur(S 8),andoxidizedsulfatemineralssuchas epsomite(MgSO 4 ·7H 2O),andanhydrite(CaSO 4)hasbeencompiledinseveral differentsources(Rubin,1997);however,thedominantsulfurmineralinmeteorites istroilite(FeS)(HulstonandThode,1965;GaoandThiemens,1993a,b;Rubin,

1997).

Itisalsonotedthatoxidizedsulfurminerals(sulfates)andelementalsulfurare presentonlyinthecarbonaceouschondrites,mostlikelyderivedfromtheoxidation ofprimarytroiliteduringaqueousalterationontheparentbody(Lewis,1967).The groupingof δ34 Svaluesseenwithinclassesofcarbonaceouschondrites[frommost aqueouslyaltered(type1)toleastaqueouslyaltered(type3)]showthatthe δ34 Sof troiliteincreaseswithincreasingdegreesofaqueousalteration(Lewis,1967).This lendsgreaterweighttotheideathattroilite(FeS)wastheprincipalstartingmaterial fromwhichothersulfur-bearingmineralswerederived,andgraduallybecame isotopicallyheavierastheresidualreactantinkineticoxidativeprocesses.Othertypes ofsulfur-bearingcompoundsexclusivetocarbonaceouschondritesincludeinsoluble organicmatter(IOM),aliphaticsulfur,heterocyclicorganicsulfur,andoxidized organicsulfur(Orthous-Daunay etal.,2010).Daubreelite(FeCr 2S4),whichisknown toformasexsolutionlamellaewithintroilite(Buchwald,1975),hasbeenfoundin someironmeteorites,certainreducedachondrites,andinenstatitechondrites(Lewis,

1967),asitislikelytobeunstableintheoxidizingconditionsfoundwithinother meteorites.

32

Inapioneeringmultiplesulfurisotopestudy,HulstonandThode(1965a) demonstratedthemass-dependentcharacterofvariousmeteoriticsulfurspecies

(sulfide,sulfate,andelementalsulfur).Theirworkwasspecificallyaimedat searchingforpossibleanomaliesofnucleosyntheticorigininmeteoriticsulfur,which theydidnotfind.

Inotherstudiesofsulfurinmeteorites,itwasfoundthatsulfurisotope variabilityisalsomass-dependentwithinmeteoriticprocesses,whetheritbeduring:

(1)aqueousalteration/redoxreactionsofsulfidesincarbonaceouschondrites

(Monster etal. ,1965;KaplanandHulston,1966,Bullock etal. ,2010),(2) evaporation/condensationoftroilite(McEwing etal. ,1980;Tsuchiyama etal. ,1997;

TachibanaandHuss,2005),(3)andpartialmeltinginchondritesand achondrites(leadingto δ34 Senrichments),or(4)impactmetamorphism(Rubin,

2002).Ontopofthis,bothdiffusionalandcrystallizationprocessesarealsothought toleadtomass-dependentpartitioningofisotopes(Huang etal. ,2010).Inallofthe abovesituations,equilibriumandkineticisotopeeffectsdominatethedistributionof sulfurisotopes.However,morerecently,increasedprecisioninmass-spectrometric methodshasledtotheidentificationofsmallyetresolvable ∆33 Sanomaliesinseveral meteoritegroups.

2.3.2MultipleSulfurIsotopeMeasurementsinMeteorites

Inastudyanalyzingthemultiplesulfurisotopiccompositionof meteorites,Farquhar etal. (2000a)foundsmall ∆33 Senrichmentsinbulksamples withanaverage ∆33 Sof+0.040±0.006‰.Rai etal. (2005)reportedenrichmentsin

∆33 Swithinseveralothergroups,including-(+0.026

33

±0.008‰),HEDmeteorites(+0.036±0.016‰),andinoneoldhamite(CaS)grain fromtheNortonCounty(+0.161±0.012‰).Mostofthese ∆33 Senrichments are<0.1‰butareresolvablewithmoderntechniques.

Otherenrichmentshavebeenfoundthroughthesequentialsulfurextractions ofcertainchondrulesfromtheDhajalaordinarymeteorite,wheresulfur hostedinacid-resistantphasesisenrichedin 33 S( ∆33 Supto0.113‰)(Raiand

Thiemens,2007).Thelargest∆33 Senrichmentsreportedwereoriginallydocumented withinethane-,propane-,andbutane-sulfonicacidextractsfromtheMurchison carbonaceouschondrite( ∆33 Supto2.0‰)(Cooper etal. ,1997).

Allofthe ∆33 Senrichmentsfoundinmeteoriticmaterialshavebeenattributed togas-phasephotochemicalreactionsinthepresolarnebula,ratherthan nucleosyntheticanomaliesandspallationreactions,asthesearethoughttoresultin largerenrichmentsof 36 Sover 33 Swhichhavenotbeenfound(Cooper etal. ,1997;

Farquhar etal. ,2000a;Rai etal. ,2005;RaiandThiemens,2007).Additionally, mixingreactionscannotcreatethe ∆33 Svaluesfoundbecausetherangeof documented δ34 Svaluesistoosmallandmagneticisotopeeffects( MIE ,whichhave alsobeenobservedtocausenon-zero ∆33 S)arefavoredprincipallyinviscous solutionsratherthaninthesolidorgasphase.

Despitethesmallenrichmentsfoundinorganicmaterialsandachondrites, bulkchondrites,lunarbasalts,andtheterrestrialmantlehave ∆33 Svaluesstatistically indistinguishablefromzero(CDT)(Gaoandthiemens,1993a,b;WingandFarquhar,

2013;Labidi etal. ,2012, Thesis ).

34

Inironmeteorites,analysesofthefourisotopesofsulfurintroilitehavebeen reportedbytwodifferentgroups.Inthefirstofthesestudies,HulstonandThode

(1965b)extractedsmallamountsofsulfurfromthemetalphaseofironmeteorites anddemonstratedthatforsomemeteoriteswithlongcosmic-rayexposureages, excessesof 33 Sand 36 Swerepresent.Theyalsoshowedthattheseexcessescorrelated withproductionratesofnoblegases,andweremostlikelyattributableto56 Fe spallationreactions.However,sulfurfoundwithinthetroilitenoduleswas isotopicallyindistinguishablefromCDT(HulstonandThode,1965b)

Inalaterstudy,GaoandThiemens(1991)confirmedhomogeneityofsulfur isotopesinthetroilitefromironmeteorites,anddemonstratedthatthe ∆33 Softroilite fromironmeteoritesyieldedanaverageof0.005‰witha(1 σ)standarddeviationof

±0.025‰relativetoCDT.GaoandThiemens(1991)alsorevisitedsulfurinthemetal phaseofthesemeteorites,identifyingtwoseparatecarriersoftheanomaly,anacid volatilephaseandanacidresistantphase(inferredtobedaubreelite).Theynotedthat the 36 S/33 Senrichmentswereafactoroftwogreaterthantheirspallationmodeling predicted,andcalledforfurtherworkthatdirectlyconnectedsulfurwiththenoblegas productionratesinironmeteorites.

35

Chapter3:Methods

3.1SampleAcquisition

Ofthe61meteoritesobtainedforthisstudy,57weresuccessfullyanalyzed.

Therewerealso3duplicatesampleswhichrepresenteddifferenttroilitenodulesfrom withinthesamemeteorite[-2(IAB),Apoala-2(IIIAB),andSantaRosa-2

(IC)].Ofthosesuccessfullyanalyzed,23ofthesampleswerefromnon-magmatic ironmeteoritegroups(22IABand1IIE)and37werefrommagmaticironmeteorite groups(2IC,8IIAB,17IIIAB,8IVA,1IVB,&1IIIF).Thesampleswhichwere notproperlyanalyzedwereDrumMountains(IIIAB),whichyieldednosulfur(likely duetotheprimarymisidentificationofagraphiticnodulefortroilite),andCalico

Rock(IIAB),IndianValley(IIAB),andDjebelinAzzenne(IIIAB),whichwere affectedduetoerrorsoraccidentalcontaminationduringsulfurextractionand subsequentpurification.

MostofthesampleswereobtainedfromtheNationalMuseumofNatural

History(SmithsonianInstitution)bytheauthor,usingafinechiselandhammerto chipoutsmallpiecesoftroilitenodules.Thesampleswerepickedonapurelyvisual basis,andvariableamountsofgraphiteandschreibersite,whicharecommoninthe troilitenodules,wereincludedintheanalyzedsamples.Additionaltroilitewassent fromseveralinstitutionsasnotedin Table1 .

36

37

3.2SulfurExtractionandAnalysis

3.2.1SulfurExtraction

Sulfurisextractedfromdifferentmineralphasesinasequentialfashion.First, acidvolatilesulfur(AVS)isobtainedfromcrushedtroilitesamples:thesamples(5-

20mg)areheatedforthreehoursintwo-necked50mlboilingflaskswith20mlof -flushed5NHClthroughwhichnitrogeniscontinuouslybubbled;the releasedH 2S(g) (frommonosulfides)iscarriedthroughacondenserandanacid-trap, andisthenchemicallycapturedasAg 2Sinaslightlyacidictrappingsolution

(containingHNO 3andAgNO 3).Theapparatususedisthesameasdescribedby

ForrestandNewman(1977).

Chromium-reduciblesulfur(CRS)isobtainedbychangingthecapture solutionandinjectingareducedCr(II)solutionintotheboilingflasks(afterthe3 hoursofreactionwithHCl)(Canfield etal. ,1986).TheCRSsolutionisallowedto reactwiththeacid-residuesforanadditional3hours.Thesmallamountofproduct

H2Sfromchromiumreductionofthetroilitesamplescomesfromacid-resistant phaseswithinthetroilite,possiblythemineraldaubreeliteinreducedirongroups

(FeCr 2S4)orothercomplexsulfidesinothergroups.

TheprecipitatedAg 2Sisagedinthedarkforoneweek(toremoveimpurities intheAg 2Scrystals)thencentrifugedandrinsedwithmilli-Qwaterthreetimes,after whichitisallowedtositovernightin1MNH 4OHsolutiontoremoveimpurities,and thenagainrinsedthreetimesbeforedryingovernightinanoven(at50 °C).

38

3.2.2FluorinationandPurificationofSF 6

ThefluorinationlineusedintheproductionofSF6fromAg 2Sisdedicated exclusivelytometeoriteanalysesinordertoavoidanypossiblecontaminationsfrom morehighly-fractionatedterrestrialsamples.Aliquotsofapproximately3mgofAg 2S arereactedwith ca. 10timesstoichiometricexcessofpureF 2innickelfluorination bombs(at250 °Covernight),producingSF 6gasandotherfluorinatedby-products.

Theexcessfluorineisseparatedcryogenically,asitdoesnotfreezeatliquidN 2 temperatures (-196 °C)whereasbothHFandSF 6aretrappedatthistemperature.

Afterallnon-condensablegasesarepumpedaway,thesampleisthawedand subsequentlyre-frozenusinganN 2-ethanolslurry(at-115 °C),cryogenicallytrapping

HFandtherebyseparatingitfromtheSF 6.TheSF 6isthenpurifiedusinggas chromatographyona12’molecularsieve5Å/HasepQcolumnwithathermal conductivitydetector(TCD),andintroducedcryogenicallyintothecold-fingerofa

ThermoFinniganMAT253dual-inletmassspectrometer.

3.2.3MassSpectrometry

SF 6moleculesfromthesampleandstandard-gasarealternativelyionizedto

+ SF 5 ionsinthesource(electronimpact),focusedthroughlenses,andaccelerated downtheflighttubewheretheyaredeflectedbyamagneticfield.Heavier

+ isotopologuesofSF 5 aredeflectedbyasmalleramountthanlighterisotopologuesof

+ SF 5 ,allowingbeamsofeachchargedisotopologuetobeseparatedaccordingtotheir masses.Theionbeamsarecollectedinfaradaycupsatthedetector-endofthemass spectrometerwhicharepositionedtomeasuremass/chargeratiosof127,128,129,

32 + 33 + 34 + 36 + and131( SF 5 , SF 5 , SF 5 ,and SF 5 respectively)].Thenumberofionshitting

39 eachdetectorcanbecalculated(ions/sec)foreachisotopologuebymeasuringthe voltagedropsacrossresistorsofknownconductance.

Astheabundanceof 36 Sisthelowestofallstablesulfurisotopes(0.02%of naturalabundance,versus0.79%and4.29%for 33 Sand 34 S,respectively),its measurementismostsusceptibletocontaminationfromtracesofothersubstances.A commonsourceofisobaricinterferenceonm/zstation131includescontamination

+ fromC3F5 .Anattemptatmonitoringthiscontaminationismadethroughthe repetitiveanalysisofIAEAS1standardmaterialbetweenmeteoritesamples(an aliquotofwhichwasfluorinatedandprocessedwitheverybatchof6samples,toalso monitortheperformanceoftheGCandfluorination-line).Insomecases,m/z=131 contaminationswereobservedinboththesampleandapenecontemporaneously analyzedstandard.Asaresult,sampleswithobviouscontaminationswere renormalizedbacktoourlong-termacceptedvaluesofIAEAS1(basedontheir

36 + bracketingstandardanalyses).Measurementsof SF 5 alsosuccumbtogreater amountsofinstrumentalnoisebecausetheresistoratm/z=131hasthelowest conductivity,whichisnecessaryinordertoobtainasufficientsignalfromanisotope ofsuchlowabundance.

Forthedominantportionofironmeteoritemeasurements,theregularamounts ofanalysesperformedpersampleweretripledinordertodecreasetheuncertaintyof ourmeasurements.Eachvaluereportedistheaverageof36individualcycles,each measuringtheisotopicdifferencebetweenasampleandthestandard-gas,whichitself hasaknownisotopiccompositionrelativetoCDT.Allresultsarefinallyconvertedto aknownreference-framebyrenormalizingtoIAEAS1analyses.Thisreference

40 frameiscalibratedtotherepeatanalysesofCDT,whichdefines δ3X Sand Δ3X Svalues ofzero.

3.2.4SourcesofUncertainty

Thesourcesofuncertaintyintheanalysesperformedinthisstudyoriginate fromvariousprocesses.Thefirstsourceofuncertaintylieswithinthestandard referencematerialforsulfurisotopeanalyses:troilitefromtheCanyonDiabloIAB ironmeteorite.Thismaterialhasbeenobservedtopossesδ34 Svariationsof±0.2‰in differentnodules(Beaudoin etal., 1994).However,theanalysesmadeinthisstudy werenormalizedtotheaveragevalueforrepeatedmeasurementsofCDTmaterial fromasinglesample,andthereforeprovideaninternallyconsistentreferencematerial forthisstudy;however,thisfactortranslatesintotheexternalreproducibilityof δ34 S.

Duringthechemicalextractionofsulfurfromasample,theincomplete reactionofsulfideswouldintroduceakineticisotopefractionationeffectintothe capturedAg 2S.Inaddition,lossofanyproductH 2Sduringtheextraction(through oxidationorleakage)wouldalsoleadtokineticisotopefractionation.Duetothese factors,agreatdealofcareistakenleak-checkingthereactionapparatusesand purgingthemwithN 2for>30minutesbeforeintroducingHClacid(thathasalso beendegassedseparatelywithN 2 forthesameamountoftime).ForsubsequentCRS extractions,theCr(II)solutionisdegassedwithN 2priortoitsinjectionintothe reactionflasks,inanongoingefforttominimizeoxygeninthesystem.

AftertheAg 2Siscollected,itisagedinthedarkforaweek,rinsedthreetimes withultrapurewater,soakedinNH 4OH(toremoveimpurities),andrinsedthreemore timeswithultrapurewater.Incompleterinsingcouldleadtoimpuritiesinthe

41

subsequentlyfluorinatedAg 2SandcouldcausetheconversionsofAg 2StoSF 6tobe non-quantitative,whichwouldintroduceamass-dependentisotopicfractionationinto theanalyzedsample.

ThedriedAg 2Ssamplesarereactedwith~10xstoichiometricexcessofF 2at

250 °Covernight,inordertopromoteafullreaction.Althoughthebombsare degassedandcheckedforleakspriortofluorineintroduction,adsorbedwaterand oxygen(alongwithpossiblesmallleaksandtemperaturevariations)mayinhibitthe completelyquantitativereactionofAg 2StoSF 6,inturncausinganisotopic fractionation.

OthersourcesofisotopicfractionationincludethetransferofSF 6fromthe bombthroughthemanifoldtotheprimaryseparationvolume,whereitisallowedto freeze(alongwithHFandothercondensablegases)atliquidN 2temperaturesforten minutes.LeftoverfluorinegasisslowlyremovedthroughtheuseofaKBr passivationcolumn,trappingproductbromineinaliquidN 2coldtrapafterthe column.Onceallfluorineisgone,thefrozenSF 6 andHFareallowedtothawinthe isolatedprimaryseparationvolume,afterwhichanN 2-ethanolslurryat~-115Cis usedtofreezetheHF.TheSF 6isthenfrozenintotheGCinjectionloopwithliquid

N2andallowedtotransferfor10minuteswhilemonitoringthetemperatureofthe ethanol-N2slurryatthebaseoftheprimaryseparationvolume.

Althoughsmallvariationsintemperaturemayintroducedifferentcompounds intotheGC,theyshouldnotcontributetoanyisotopicfractionation,however,overly fasttransferspeedsduringtheinitialseparationofF 2fromSF 6maycausesampleloss

42

throughtheentrainmentoffrozenSF 6particles(transferspeedskeptunder~0.1 torr/sectomitigatethiseffect).

UltrapureHecarriergasisflowedthroughtheGCandcapture-endofthe apparatusfor~20minutesbeforeasampleisintroduced.Whenready,asampleis allowedtothawwhileflowingheliumthroughtheGCinjectionloop,anditis subsequentlycarriedbyheliumthroughtheGCcolumns.Severaldifferentsmall peaksaredetectedbytheTCDasthedifferentgasspeciesfromthesamplepass throughthecolumn,whichincludesaconsistentpre-peakofunknowncomposition thatisimmediatelyfollowedbytheSF 6peakat~11minutes.

WhentheSF 6peakisdetected,theflowofHeisdivertedthroughachannel whichhastwocapturecoilsfrozenbyliquidN 2.Boththetimingoftheinitial diversionandthecessationofflowattheendoftheSF 6peakmaycontributeto isotopicfractionationofthesample,asithasbeenobservedthatSF 6peakscaughttoo latehaveisotopicallylightcompositionsindicativeofkineticfractionationduring passageofgasthroughthecolumn.

Afteritiscaptured,thesampleofpurifiedSF 6isallowedtothaw,andits pressureismeasuredinordertodeterminehowitmatchesanempiricallybasedideal fluorinationyield,beforeitisallowedtofreezeintothecold-fingerofthemass spectrometerfortenminutes.Thefluorinationyieldsofallsamplesreportedinthis studyarewithinanalyticaluncertaintyof100%.

InstrumentalmassfractionationduringtheisotopicanalysisofSF 6affects boththesample-gasandthereferencegasinthesameway,andisthereforenotlikely tobeafactorondual-inletmassspectrometers.Ionizationefficienciesintheelectron-

43 impactsourceareestimatedtobeapproximately1in1000molecules.Thoughthisis notlikelytocauseanyisotopicfractionation,ithasbeennotedthattherearegradual shiftsinthereferencegasthatmayleadtouncertaintiesintheacquireddata;this variationistakenintoaccountbyanalyzingIAEAS1materialbetweenthesamples, andrenormalizingthesampletoouracceptedlong-termvalueforIAEAS1ifitis necessitatedbytheanalyzedcompositionsofitsbracketingstandards.

Scatteringofthebeamsintheanalyzer-anddetector-sectorsofthemass spectrometermayalsoleadtoerroneousmeasurements,alongwithenvironmental factorswhichinfluenceelectronicnoise(suchasJohnsonnoise).Thecurrentofthe

32 + beamfor SF 5 isapproximately~10nA(~6billionions/sec)fortheaveragesample

+ sizeinthisstudy.ContaminationbyC 3F5 andlargeramountsofshot-noisedueto

36 + thehighresistanceoftheresistoratthemassstationfor SF 5 (m/z=131)contribute thelargestamountofuncertaintiesinthemeasurementsof δ36 S.Thedata(whichare analyzedwithrespecttoanSF 6referencegasofknowncomposition)isfinally renormalizedtotheaveragelong-termvaluesforrepeatedanalysesofCDT.

3.2.5EvaluationofUncertainty

Duplicatesulfurextractionsoffourdifferentsamplesyieldedaverage differencesofonly0.08‰,0.002‰,and0.16‰for δ34 S, Δ33S,and Δ36S,respectively

(Table5 ),whichservestoindicatethatthetotalextraction,purification,andanalysis procedures(describedabove)arewellwithintherangeofourreportedlong-term externalreproducibilities.However,thisdatamaynotbeextensiveenoughtofully confirmthatthesearethetrueinternalreproducibilitiesoftheperformedanalyses.

Duetolong-termdriftinthemachineandisotopicdifferencesreportedin

44

CDT(Beaudoin etal., 1994),alongwithdifferencesinthemethodologyofindividual operators,itisbesttoreporttheexternalreproducibilitiesofthemeasurementsinthis thesisbasedonthelab’slong-term(2year)reproducibilityonIAEAS1reference material,whichis0.3‰,0.008‰,and0.3‰(2 σ)for δ34 S, ∆33 S,and ∆36 S, respectively,takingintoaccounttheimprovedcountingstatisticsresultingfromthe triplednumberofanalysesperformedoneachsampleinthisstudy.

45

Chapter4:Results

4.1SulfurIsotopeRelationshipsinTroilite

Itisfoundthatvaluesof ∆33 Sinironmeteoritetroiliterangefrom-0.029‰to

+0.031‰relativetoCDT,withdifferentirongroupsformingdiscernibleclustersin

∆33 Sspace( Fig.5,6).Thedataobtainedforsulfurisotopicratiosinironmeteorite troilitenodulesisshownin Table2 .Non-magmaticironmeteoritesshowalimited rangein ∆33 S:GroupIAB(n=23)hasanaverage ∆33 Sof+0.004±0.002‰(2SE), whileWatson,thesinglemeteoriteanalyzedfromgroupIIEhasa ∆33 Sof+0.009±

0.008‰(2σ).Magmaticgroupsyieldresolvablemass-independentcompositions: groupIC(n=2)hasameanvalueof+0.017±0.008‰(2σ),groupIIAB(n=8)hasa meanof+0.016±0.004‰(2SE),groupIIIAB(n=18)hasameanof+0.018±

0.002‰(2SE),andgroupIVA(n=8)hasthehighestmeanvalueofallanalyzed groupsat+0.022±0.004‰(2SE).Allofthesegroupsareunresolvablefromeach other.Hoba,theonlyanalyzedsamplefromgroupIVB,hasa ∆33 Svalueof0.000±

0.008‰(2σ).Interestingly,theonlyobserveddepletionsin 33 Swerefoundin membersoftheraremagmaticgroupIIIF,withanaverage ∆33 Svalueof-0.028±

0.008‰(2σ)(n=2) 1.

Themeasuredsampleshaveoverlapping δ34 Svaluesthatfallwithintherange establishedbypreviousstudies(HulstonandThode,1965b;GaoandThiemens,

1991),rangingfrom-1.41‰to+1.29‰withanaverageof-0.01±0.81‰(2 σ),this

1 The measurement of St. Genevieve County (IIIF) from Gao and Thiemens, 1991, is similar to our measurement of Cerro Del Inca (IIIF), and was therefore considered in the discussion.

46

47

33 34 33 Fig.5a,b.Measurementsof(a) ∆ Svs.δ Sand(b)averagevaluesof ∆ Svs. δ34 SforAVSfractionsoftroilitefrom57ironmeteoritesbelongingtothegroups IAB, IC, IIAB, IIE, IIIAB, IIIF, IVA, and IVB. Non-Magmatic and Magmatic groups are in blue and red, respectively. Error bars represent 2 σ uncertainties (dotted)and2 σstd.errors(solid).

48

Fig.6a,b.Plotsof(a) ∆36 Svs. ∆33 Sand(b)averagevaluesof ∆36 Svs. ∆33 Sfor AVSfractionsoftroilitefrom57ironmeteorites. Non-Magmatic and Magmatic groups are in blue and red, respectively. Error bars represent 2 σ uncertainties (dotted)and2 σstd.errors(solid).Linearregressionofdata( excl. IIIF)yieldsslope of~-7.GreybandrepresentsphotolysisofH 2SfromChakraborty etal., 2013.

49 variationisthoughttoreflectmass-dependentisotopicfractionationduringparent bodyprocessing.Individualgroupsalsohaveaverage δ34 Svaluesfallingwithinerror ofzero,withtheexceptionsofgroupIVA,whichtendstowardsnegativevalues, havinganaverage δ34 Sof-0.471±0.337‰(2SE)(n=8)andgroupIAB-sLMwithan averageof+0.698±0.3‰(2 σ)(n=2).

Average ∆36 Smeasurementsalsooverlapgreatlyformostironmeteorite groups(Fig.6 )andarewithinerrorofzero,rangingfrom-0.337‰to+0.282‰.

However,thenon-magmaticironmeteoritesappeartohaveslightlyelevated ∆36 S valueswithanaverageof+0.109±0.227‰(2SD),whilethemagmaticironstendto havemorenegativevalueswithanaverageof-0.044±0.252‰(2SD).

4.2Chromium-ReducibleSulfur

Fewsamplesyieldedenoughchromium-reduciblesulfur(CRS)toanalyze withthesameprecisionastheAVSsamples.Chromium-reductionisanestablished methodforextractingsulfurfrompyriteandotherdisulfideminerals(Canfield etal.,

1986).FivesamplesofCRSfromdifferenttroilitenoduleswereanalyzedinthis study( Table3 ).ThesulfurintheCRSproductsoftheextractionsderivesfromminor amountsofacid-resistantsulfidephases(suchasdaubreeliteorothercomplex sulfides).

TheresultsfortheCRSdataindicateresolvable(butnotunidirectional) differencesin δ34 SwhencomparedtotheircorrespondingAVSfractions,butalmost novariabilityin Δ33 Sor Δ36 S.Thisisnotsurprising,asthecarrierofCRSsulfuris likelytohaveexsolvedfromthetroiliteduringsub-soliduscooling,andtherefore, probablycomesfromthesameparentalsulfurpoolasthetroilitenodule.Exsolution

50 ofdaubreelite,forexample,wouldlikelyhavehadaneffecton δ34 S(diffusional fractionation),however,thedifferencesbetweentheAVSandCRSfractionsinour datasetdonotappeartobesystematicandrequiresfurtherinvestigation.

4.3MeasurementReproducibility

Thevariabilitybetweendifferentnon-proximaltroilitenodulesfromthesame ironmeteoriteswasinvestigatedforthreedifferentmeteorites(Table4). Ourresults showthat ∆33 Sand ∆36Sdonotvarysignificantlybetweendifferenttroilitenodulesin asinglemeteorite;however,therearedifferencesin δ34 Sasapossibleresultofmass- dependentisotopefractionationprocessesduringsulfidesegregationand crystallization,orpossiblyduetodifferingamountsofterrestrialalterationbetween thenodules.

SeparateAVSextractionsweremadeofthesametroilitesamplesforfour differentironmeteorites( Table5).Thiswasdoneinordertotestthereproducibility oftheprocessingmethodsonsulfurisotopemeasurements.Allduplicateanalyses produceresultswellwithintheestimatesofourlong-termreproducibilities.

Thevariabilityin ∆33 Sislessthan0.004‰inallduplicatesamples,whereas themaximumvariabilityin ∆36 Sis0.3‰.Thevariabilityin δ34 Sisinferredtobethe highest,astheprocessesusedtoextractsulfurarethemselvesmass-dependent; however,variabilityinduplicateextractionsofthefourdifferenttroilitesampleswas lessthan0.1‰.Itisalsoshownthatthereisnocorrelationbetweenthepercentyield ofasulfurextraction(basedonassumptionofpuretroilite, AppendixA )andits δ34 S,

∆33 S,and ∆36 Svalues(AppendixB ).Theproductidealyieldwasalwayslessthan

51

52

100%inallmeasurements 2,whichsupportstheideathatitwastheimpurityofthe samplesthatleadtoAg 2Syieldslessthanthosepredictedfrompuretroilite,as opposedtolossofproductthroughoxidation,leakage,orincompletereactionsduring samplepreparation.

2Theproductidealyieldwasover100%inonlyonesample(likelyduetoaddedmassfromabroken Pasteurpipettetipusedduringtheextraction).

53

Chapter5:Discussion

Variationsinthe ∆33Sand ∆36Scompositionsonthescaleidentifiedinthis studycouldbegeneratedthroughmanypossiblemechanisms.Theevaluationofthese differentprocessescanbedoneusingrelationshipsbetweenthedifferentisotopesof sulfur.Possiblesourcesfor ∆33 Sanomaliesinironmeteoritesincludepost- formationaleffects,suchasspallation,orpre-formationaleffectssuchas nucleosyntheticanomaliesandphotolysis.Additionally,forsuchsmall∆33 S variations(upto+0.031 ‰),possible ∆33 Ssourcesincludingmixingandvariationsin theexponentdefining∆33 Smustalsobeconsidered,astheyhavebeenshowntohave relevanceintheinterpretationofsmall ∆33 S( e.g. FarquharandWing,2007).

5.1EvaluationoftheSulfurIsotopicSignals

5.1.1MixingandtheDefinitionof ∆33 S

Asdiscussedabove,mixingofdifferentmass-dependentsulfurpoolscan createdeviationsfromthemass-dependentarray.Thesizeofthevariationsmeasured in ∆33 Smeritsadiscussionofmixingasapossiblesourceoftheanomalies,asmixing ofsulfideandsulfatepools(e.g. withintheofasulfate-reducingbacteriumorin othercomplexreactionnetworks)isknowntoleadto ∆33 Svaluesbetween0and

0.2‰,withastarting δ34 Sdifferenceof~80‰betweenthesulfateandsulfide

(Farquhar etal. ,2007)].

Thelargest δ34 Sdeviationsfoundincarbonaceouschondritesulfidesare±8‰

(Bullock etal. ,2010).Bymixingtheseextremeend-members,itispossibleto

54 generate∆33 Svaluesfrom0to-0.008‰(AppendixC).However,therangeof δ34 S foundinironmeteoritesisalmostanorderofmagnitudeless.Mixingbetweentwo mass-dependentpoolswithδ34 Sof+1‰and-1‰causesaverysmallmaximum ∆33 S ofonly0.0001‰.Likewise,variabilityintheexponentusedtocalculatemass independence(between0.512and0.518)yields ∆33 Svariationoflessthan0.004‰ withinthesmallδ34 Srangeofthisstudy(AppendixD ).

Oneotherinterestingpossibilityis ∆33 Senrichmentthroughmixingofsulfur poolscreatedthroughtheevaporationoftroilite(Rayleighdistillation).McEwing et al. (1980)reportedresultsofanexperimentinwhichtroilitewasevaporatedatlow- pressureandhightemperature,condensingproductelementalsulfuranddissociated troiliteattheoppositeendofasealedtube.Measuring δ34 S,theythencalculatedthe fractionationfactorsassociatedwiththebranchedreactionofevaporationoftroiliteto elementalsulfur(1000ln α=-13‰)andtodissociatedtroilite(1000ln α=-5.4‰).

Usingtheirdataandassumingmassdependence,the∆33 Svariationsduetomixing betweentheproductsandreactantsatdifferentstagesduringRayleighdistillationof troilitetoelementalsulfurwerecalculated.Themaximumattainablevalueof ∆33 Sfor thepooled-productfrommass-dependentRayleighprocessesduringevaporationis lessthan0.010‰(AppendixE)anddecreasesasthereaction’sbranchingratio increasestowardsdissociatedtroilite.

Asphysicalmixingprocessesarenotsufficienttoaccountfortheanomalous sulfurcompositionsfoundinthisstudy,theremusthavebeenotherprocessesat work.Thebestwayinwhichonecandiscernbetweendifferentmechanismsofmass-

55 independentfractionationand/oranomalousisotopeenrichmentsisbyexaminingthe relationshipsbetween ∆33 Sand ∆36 S.

5.1.2Post-DisruptionSpallationReactions

Spallationreactionsthatoccurnearthesurfaceofanironmeteoriteduring cosmic-raybombardmentcanalsocausemass-independentisotopevariations.The metalphaseofdifferentironmeteoriteshasbeenshowntocontainseveralppmof sulfurwithlargechangesin ∆33 Sand∆36 Sthatincreasewithincreasingcosmic-ray exposureage(HulstonandThode,1965b;GaoandThiemens,1991).Theenrichment ofdifferentisotopesinthesecasesdependsonthefluxofcosmic-rays,thelocationof materialrelativetothesurfaceofitsparentbody,andontheprobabilityofagiven atominteractingwithabombardingparticleandbecominganisotopeofsulfur.

Thecreationof 33Sand 36 Sinironmeteoriteswouldbedominatedbythe spallationof 56 Fe,whichcouldcreate20 Nealongwithanisobarofmass36[witha certainprobabilitythatitwillbe 36 S,andalowerprobabilitythatitwillbe 33 Salong withanotherelementorisotope(tobalancethereaction)].Thespallogenicproduction ofsulfurisotopeswasshowntoleadtoratiosof ∆36 S/ ∆33 Sof~8(GaoandThiemens,

1991).

Withnecessarycautionduetothelimitedspreadofourdataandanalytical uncertaintieson ∆36 S,the∆36 S/ ∆33 Sslopeassociatedwithtroilitefromthemajor groupsanalyzedinthisstudyisapproximately-7.3(R 2=0.23, AppendixF).

Theobservationthattherearenorelationshipsbetweenpublishedexposureages

(excludinglargestmeteorites)and ∆33 S,alongwithdifferentobservedratiosfor

∆36 S/ ∆33 S,donotsupporttheproductionof 33 Sanomaliesintroilitethrough

56 spallation.

Furthermore,sulfurwithhighlyenriched ∆36 S/ ∆33 S,derivedfromspallation, isonlyobservedinconcentrationsofseveralppm(GaoandThiemens,1991).Mass balancecalculationsindicatethatatroilitenodulewouldneedtoexchangesulfurwith

10 3timesitsownvolumeofmetal( ∆33 Sof~2)toobtaintheenrichmentsobservedin themagmaticironmeteoritegroups,whichisunlikelytohappeninthesolid-stateand wouldmakealargereffecton∆36 Sthanobservedhere.

Likewise,homogeneous ∆33 Svalues(withinuncertainty)foreachgroupare notwhatwouldbeexpectediftheanomalieswerespallation-derived,astheywould likelydifferdependingonthesizeofthepiecebrokenfromtheparentbody.

Evidencefor 33 S-depletionsintheIIIFironmeteoritegroupcomparedtotheinferred

∆33 Softhebulkinnersolarsystem[chondrites,IABironmeteorites,andtheEarth-

Moonsystem(GaoandThiemens,1993a,b;Rai etal. ,2007;Antonelli etal. ,2012,

2013, thisstudy; WingandFarquhar,2013;Labidi etal. ,2012;Labidi etal. , Thesis )] alsoarguesagainstanoriginassociatedwiththe(unidirectional)spallogenic productionofsulfurintheanalyzedmeteorites.

5.1.3NucleosyntheticSulfurAnomalies

Sincemixingprocessesandpost-disruptionspallationreactionsdonotappear tocreatetheobservedsulfurisotopesignatures;itismostlikelythattheobserved signatureswereinheritedfrommaterialsthatpre-datedtheassemblyoftheiron meteoriteparentbodies.Twopossibilitiesexistforthisscenario,inwhichanomalous sulfuriseither(1)createdthroughtheunevencontributionsofdifferentstellar sourcestoindividualparentbodiesor(2)createdthroughgas-phasephotochemical

57 processesindiscreteregionsoftheearlysolarnebula.

Aweak,butcoherent,negativerelationshipbetween ∆36 Sand ∆33 Sis inconsistentwithearlynucleosyntheticmodels,butmaybeallowedbyrecentSIMS measurementsofnucleosyntheticanomaliesinpresolarSiCgrains(Hoppe etal. ,

2012;Heck etal. ,2012).

32 S, 33 S,and 34 Sarecreatedinrelatedstellarenvironments,through hydrostaticoxygen-andsilicon-burningandexplosiveoxygen-andneon-burning

(Chin etal. ,1996;Heger etal. ,2002).Thisgenerallyhappensthroughtherepeated captureofalphaparticlesontooxygen,neon,magnesium,andsilicon(andsubsequent neutronreactionstocreate 33 Sand 34 S).Ontheotherhand 36 S,therarestofthesulfur isotopes,iscreatedpurelythroughthes-process(slowneutroncapture),makingit unliketheothersulfurisotopes; 36 Siscreatedmostlyinthehydrostatic- burningshellofmassivepriortoSNIIsupernovaexplosion(Mauersburger etal.,

1996;Woosley&Weaver,1995;Woosley&Hager,2007).ClaytonandRamadurai

(1977)arguedthatmeasurementsof ∆36 Swouldbeimportantbecauseoftheverylow naturalabundanceofthisisotope(whichwouldmakeanyheterogeneitymore apparent),andsuggestedthatnucleosyntheticanomalieswouldbemostlikely manifestedbyvariationsin ∆36 S.Todate,novariationsin ∆36 Sattributableto differentnucleosyntheticsourceshavebeenfoundatthebulkscaleinanalyzed meteoritegroups.

RecentworkbyHoppe etal. (2012)hasdocumentedseveralpresolarSiC grainswithverylarge 32 Senrichments(Fig.7 ).Thesegrainsarethoughttooriginate fromtheSi/SzonesofSNIIsupernovasandhavelarge 32 Senrichmentswithδ33 S ≅

58

δ34 Sand∆33 Svaluesaslowas~-200‰.Simpledilutionofsulfurby 32 Syieldsa negative ∆36 S/ ∆33 S(~-1.9)abouttheorigin( AppendixG),whichisallowedbyour observations.However,theobservationofbothpositiveandnegativedeviationsfrom inferredaveragesolarsystem ∆33 S(=0.00‰)aredifficulttoreconcilewiththe additionofsulfurfromasinglenucleosyntheticsource.

Therearealsoproposalsthatsulfurwithenrichmentsin 33 Smaybeapossible productofnucleosynthesisintheHe/CzonesofSNIIsupernovas(Rauscher etal.,

2002),butthesezonesaremodeledtoproducesignificantlylargerenrichmentsin

∆36 Sthanin ∆33 S(WoosleyandHeger,2007),andpoormixingofseveralweakly anomalouspresolar(nucleosynthetic)sulfurpoolsappearsunlikely.

59

Fig.7.SecondaryIonMassSpectrometry(SIMS)measurements of δ33 S versus δ34 S in presolar SiC grains, demonstrating progressivelymorenegativevaluesonaslopeofapproximately 1.(FromHoppe etal. ,2012).

60

5.1.4PhotolysisintheEarlySolarNebula

Thefirstconvincingargumentsthatphotochemicalreactionsgenerated meteoriticmass-independentsulfurisotopesignaturesweremadebyCooperetal.,

(1997)whodemonstratedthatthesulfurisotopesinmethane-,ethane-,andpropane- sulfonicacidsintheMurchisonmeteoriterevealmass-independentrelationships.In workthatfollowed,studiesoftheureilite,aubrite,HED,andacapulcoite- achondritemeteoritegroupsrevealedsmallenrichmentsin 33 S(positive ∆33 S)that werealsoattributedtophotochemicalorigins(Farquhar etal. ,2000a;Rai etal.,

2005).Aphotochemicaloriginhasalsobeenattributedto ∆33 Senrichedsulfurinan unidentifiedminormineralfractionheldwithinrarerims(butthatisabsent frombulksulfurinchondrites),isolatedthroughatime-seriesextraction(Raiand

Thiemens,2007).

Adifficultywithmakingastrongcaseforaphotochemicaloriginformass- independentsulfurisotopesignaturesinmeteoriteshasbeenthepaucityof photochemicalstudiesundertakenatrelevantconditions.WorkbyFarquhar etal. ,

(2000b)documentedthatproductsderivedfromhydrogensulfidephotolysisbyUV radiationwithwavelengthslongerthan~220nmyieldedaslightlypositive ∆36 S/ ∆33 S

(~1.7)whichdoesnotmatchtheobservationsmadehere(thoughitmayhavesome relevanceinexplainingtheoutlierIIIFdata).However,aseriesofrecentphotolysis experimentsofH 2SusingLyman αradiation(thoughttobethemostprominent wavelengthofUVduringthe’sT-Tauriphase)provideapossiblematchtothe observedsulfurisotopicvaluesinironmeteorites,withanarraybetweenproducts andreactantshavinga ∆36 S/ ∆33 Svalueof~-3(Chakraborty etal. ,2013).This

61 roughlyconsistent ∆36 S/ ∆33 Ssupportsapossiblepre-accretionaryphotochemical originforthesulfurisotopesignaturesseeninironmeteoritetroilite.

Asopposedtoadditionofanomaloussulfurfromaspecificsource,the chemicalfractionationofanebularsulfurreservoirwouldmakeisotopically complementarycomponents,andcouldpossiblyexplainboththeenrichmentsand depletionsobservedinoursamples,relativetochondritesandIABironmeteorites.

Interestingly,therelationshipbetweentheIIIFmeasurementsandtheothermagmatic ironmeteoriteshaveabestfitslopethatisslightlypositive(~1.7,whichissimilarto

2 H2Sphotolysisbywavelengths>220nm),butwithaverylowR valueofonly0.02

(AppendixF).Whileitistemptingtocallonanotherprocess,thesamplesetistoo smalltodoso,andthemostconstructivestatementthatcanpresentlybemadeisthat inheritanceofsulfurfromaphotolyticsourceisthemostparsimoniousexplanation fortheobtaineddata.

5.2GeochemicalConsiderations

5.2.1Hf-WModelAges

Theshortlivedisotope 182 Hfdecayedto 182 Wwithahalflifeof9Maforthe first~60Maofsolarsystemhistory.Hafniumisalithophileelement,whereas tungstenisasiderophileelement,thereforemostWinaplanetesimalbodyis incorporatedintothemetalphaseduringtheprocessofcoreformation,whereasHfis leftinthesilicatemantle.Any 182 Hfleftinthemantleaftercoreformationwillfinish decayingto 182 Wwhichwillthenremaininthesilicates(andhaveamuchhigher

182 W/ 180 Wratioduetopriordepletionoftungstenduringcoreformation),whereasthe

182 Wcompositionofthecoreisfrozenatthetimeofcoreformation,andis

62 necessarilylessthanthatinchondrites,whichhavemoreradiogenic182 W compositionsbecausetheydidnotundergocore-mantledifferentiation.

Thesedatacanthenbeusedtoestimatethetimeofcoreformationby comparingthe ɛ182 Wratiosinthesampletothoseofreferencesamplesofknownage, suchasCAIs[whicharePb-Pbdatedto4567±1Ma(Amelin etal. ,2002)]andcan thenbeusedtoobtainHf-Wcoresegregationagesforironmeteorites.

Itisfoundthatmagmaticironmeteorites(IC,IIAB,IIIAB,IVA,IVB) segregatedtheircoresinthefirstcouplemillionyearsafterCAIs,whereasmostnon- magmaticironmeteoritessegregatedtheircoresapproximately3-5millionyearsafter

CAIformation(Kleine etal. ,2005;Markowski etal. ,2006;Schersten etal. ,2006;

Qin etal. ,2008;Schulz etal. 2009,2012;Kruijer etal. ,2013a,b).Interestingly,the magmaticIIIFgroupironmeteoritesaretheonlygroupthathavelatecore- segregationagessimilartothenon-magmaticirons(Qin etal. ,2008) 3.

Togetavalueof ɛ182 Wthataccuratelyreflectstheageofmantle-core segregationfromachondriticreservoir,itisnecessarytocorrectforthecosmogenic productionof 182 Wfromneutroncapturereactions.Recently,Kruijer etal. (2013a,b) haveproposedamethodforpre-exposureagedatingofdifferentironmeteorite groupsbasedontheuseofplatinumisotopesasaneutrondosimeter.Duetodifferent exposureagesfordifferentmemberswithinagivengroupofironmeteorites,thereis alinearrelationshipbetween 182 WandthecosmogenicallyproducedisotopesofPt.

Theregressionofthislineyieldsaninterceptequaltothepre-exposure ɛ182 Wvalue

(Kruijer etal., 2013a,b).PriortotheuseofPtisotopes,otherstudiesreportedvalues

3 it is noted that in this study a slightly different CAI initial value was used, but the correction is very slight, pushing the IIIF group further away (later in time) from CAIs.

63 correctedwithSmisotopesasaneutrondosimeter,orwithbothnocorrectionand withamaximumcosmogenic 182 Wcorrectionbasedonproductioncalculationsusing othercosmic-rayexposureageproxies(Markowski etal. ,2006;Qin etal. ,2008;

Schultz etal. ,2012).

Throughadvancesinmeasurementandcorrectiontechniques,itnowappears thatdifferencesbetweendifferentmagmaticironmeteoritegroupscanalsobe resolved.Themostrecenteffortsindatingcore-segregationinmagmaticiron meteoriteshasplacedthemintheorder(IC

Ourresultsfortheaverage ∆33 Sofironmeteoritegroupsareplottedagainst theirdifferentHf-WagesinFigure8.ThereisaweakrelationshipbetweentheHf-W agesofthedifferentmagmaticironmeteoritesandtheir ∆33 Svalues,whichdecreases withincreasingHf-Wmetal-silicatedifferentiationage( Fig. 8).Onlycorrecteddata areplotted,butthemostaccuratevaluesareassumedtobethosefromKruijer etal.,

(2013a,b),whichappeartoplotclosesttothetheoretical“max-correction”values fromearlierliterature.

64

Fig.8 MeasuredAverage Δ33 Sforeachgroupofironmeteoritesplottedagainst variousHf-Wagestudies.Solidblackdiamondsandtheirorangeuncertainties represent pre-exposure ɛ182 W values from Kruijer et al. (2013). Hollow diamondsrepresentmaximumcalculatedcosmogenicexposurecorrectionson groupsICandIIIF(fromQin etal., 2008),andSm-basedcorrectionsonIAB andIIEdata,respectively(Schulz etal., 2009,2012).Solidcoloredlinesspan therangeofmax-correctedvaluesfromMarkowski et al. (2006),Qin et al. (2008),Schulz etal. (2009,2012),andKruijer etal. (2013).Errorbarsiny- directionrepresent2SEforgroupsIAB,IVA,IIAB, &IIIAB,andlong-term 2SDreproducibilityforgroupswithlessthan8measurements(IC,IVB,IIIF,& IIE).GreybandrepresentsuncertaintyinCAIinitial,greyarrowdemarcatesa possibletrendinthemagmaticirons.

65

5.2.2VolatileElementContent

Acrudelinearrelationshipisalsoobservedbetweenthe ∆33 Sofdifferentiron meteoritegroups(otherthantheIIIFironmeteorites)andtheirNi-normalizedvolatile elementabundances(suchasGa,Ge,andSb)(Wasson etal. ,2007;Wassonand

Kallemeyn,2002)(Fig. 9a,b,c).ThenormalizationtoNibetterreflectsthestarting

Ga,Ge,andSbconcentrationsofthedifferentironmeteoriteparentbodiespriorto fractionalcrystallization(thoughthisprocessdoesnotchange ∆33 S).Graphswere alsoconstructedoftheaverage ∆33 SandaverageGa/Ni,Ge/Ni,andSb/Niratiosfor thedifferentgroups,butarenotusedduetotheimproperweightingofaveragevalues inthecalculatedlinearregression.Whilethereappearstobearoughvariationin ∆33 S versusthesenormalizedelementalvalues,thismayormaynotimplyanactual relationship.Toexplorethepossibilityofacausalconnection,severalmodelsof volatileelementdepletioninironmeteoritesarediscussedbelow.

Contrastingmodelsusedtoexplaintherelativevolatileelementdepletionsin differentironmeteoritegroupsinclude:(1)variablelossduringimpactprocesses betweendifferentparentbodies(Wasson, Pers.Comm. 2013)and(2)volatile depletionthroughtheincompletecondensationofearlysolarsystemmaterialsasa functionoftemperature[whichdecreaseswithincreasingheliocentricdistanceand time(Wasson,1976;BlandandCiesla2010,2012)].

AstheSunisalargesourceofenergyintheearlysolarnebula,itislikelythat atanygiventime,temperaturedecreasedwithincreasingheliocentricdistance.

66

Fig. 9a Ni-normalized Ge concentrations versus Δ33 S in individual iron 33 meteorites. Fig. 9b Ni-Normalized Ga concentrations versus Δ S in individualironmeteorites.Fig.9c Ni-NormalizedSbconcentrations versus Δ33 S in individual iron meteorites. Concentration data are INAA results fromJ.T.Wasson.Linearregressionsofalldataareshownasdottedlines andtheirR 2valuesareplottedintheupperrightcornerofeachgraph.

67

Correspondingly,volatilecontentinironmeteoritegroupswouldincreasewith increasingheliocentricdistanceanddecreasingtemperature(BlandandCiesla,2010,

2012),predictingthatchondriticmeteoritesformedatgreaterdistancesthantheiron meteoriteparentbodies(andcomplementaryachondrites).However,thevolatile depletionsmayalsobeexplainedbydifferingamountsofimpactmetamorphismon theparentbodies,whichwouldcausedevolatilization,andapurelyheliocentric explanationofvolatilecontentsislikelytobeover-simplistic.

Iftheanomalous ∆33 SvaluesareindeedderivedfromLyman-αphotolysisof

H2Sneartheearlysun,thenbothvolatiledepletionmodelsareconsistentwiththe correlationsbetweenthe∆33 SandNi-normalizedGa,Ge,andSbabundances,asboth hightemperaturesandgreatercollisionalfrequenciesareexpectedatsmaller heliocentricdistances.

Comparisonsbetweenδ34 Sofsamplesandchemicalproxiesforextentof fractionalcrystallizationweremadeinordertotestthepotentialrelationshipbetween core-crystallizationand δ34 Scompositionintrappedtroilitenodules(AppendixH).In themagmaticironmeteoritegroups,whicharethoughttohaveundergonerelatively well-behavedfractionalcrystallization,nosignificantrelationshipswereobserved between δ34 SandNi,Ge,orGa.However,intheIABironmeteoritestheredoes appeartobeaweakcorrelationbetweenNi,Ge,andGacontentsandtheδ34 Svalues, withthehigh-Ni,low-Ge,low-Gaend-membershavingmorepositive δ34 Svalues

(AppendixH).

AstheIABironmeteoritescannotbemodeledthroughsimplefractional crystallization,the δ34 Svariationsareprobablybestexplainedbydifferentdegreesof

68 devolatilizationduringthedifferentimpacteventsthatcreatedtheIABmaingroup anditssub-groups.Largerimpactswouldcausegreateramountsofdevolatilization andwouldincreasethe δ34 Sofresidualsulfur 4andNicontents,anddecreasethe concentrationsofvolatileelementssuchasGeandGa.Asaresult,δ34 S measurementsinIABironmeteoritesmightrepresentaproxyfortheextentof devolatilizationindifferentgroupmembers.

5.3ModelsofSulfurIsotopicDistributionintheEarlySolarNebula

Thecoherent ∆33 Sofironmeteoritesbelongingtothesamegroup,combined withthedifferent ∆33 Sfordifferentgroups,suggestsalinkwithmaterialsthat accretedtoformthedifferentiatedearlysolarsystemplanetesimals,ratherthanan effectrelatedtoplanetaryprocessesorpost-disruptioncosmic-rayspallation reactions.Photolysisintheearlysolarnebulahasbeenproposedtoexplain 33 S enrichmentsfoundinbulkachondrites,rarechondrulecomponents,andsulfonicacids extractedfromtheMurchisoncarbonaceouschondrite(Farquhar etal. ,2000a;Rai et al. ,2005;RaiandThiemens,2007;Cooper etal. ,1997).Thisstudydemonstratesthat theanomaloussulfurinmagmaticironmeteoriteswasmostlikelyinheritedfrom earlynebularphotolysisofH 2S.

Apre-accretionaryphotochemicaloriginforthesulfurisotopesignaturesseen inironmeteoritetroiliteimpliestheinvolvementofagasphasesulfurspeciesaswell asasourceofphotolyticradiationintheearlysolarnebula.Ciesla(2013)andPasek etal. (2005)havearguedthathydrogensulfidewouldhavebeenpresentwithinthe

4Itisalsoreassuringtonotethatthereisnorelationshipbetweenthe ∆33 SandtheNi,Ge,andGa valuesinIABironssupportingtheideathatdevolatilizationreactionsdonotaffect ∆33 Svalues (AppendixI ).

69 inner~1-2AUoftheyoungsolarnebulabecausenebulartemperatureswerehigher than~570to690K[thetemperatureatwhichsulfidationofmetallicironconsumes hydrogensulfidetoproducetroilite(WoodsandHashimoto,1993)].Ifsomeofthis hydrogensulfidewasexposedtoradiationeitheratthesurfaceofthedisk,orinthe innerpartsofthedisk,itmayhaveundergonephotolysisreactionssimilartothose studiedbyChakraborty etal. ,(2013).Lyman αradiationwouldhavebeenhighest duringthesun’sT-Tauriphase,whichlastsapproximately1-2Maforaofsolar mass(Wolk etal. ,2005),andislikelytoberesponsibleforejectinghightemperature components(CAIs)intodistalregionsoftheearlysolarnebulatobemixedwith lowertemperaturecomponents( e.g. Shuetal. ,1996).Asmagmaticironmeteorites aresuggestedtohaveformedintheterrestrialregion(Bottke etal. ,2006),and havecoresegregationageswithin2MaofCAIs,itisnotunlikelythattheyaccreted materialspreviouslysubjectedtoLyman-αradiation.

Trappingofphotolyticproductsulfurintochemicalphasesdistinctfrom hydrogensulfidewouldberequiredtopreserveandtransferananomalous ∆33 Ssignal toprecursormaterialsforthemagmaticironmeteoriteparentbodies.Thelargest positive ∆33 Sdeviation(+0.161‰)inachondritemeteoriteswasrecordedwithinthe oldhamite(CaS)oftheNortonCountryaubrite(Raietal. ,2005),anditmaybethe casethatsimilarrefractorysulfidescouldhaveactedastheearly(transient)carriers ofanomalous 33 Sinironmeteoriteparentbodies,condensinginhotterareaswith greateramountsofgas(possiblyclosertotheSun).

Studiesofcarbonaceouschondritesprovideevidenceforvariable 33 S enrichmentsinsomerareorganicandmineralphasescomparedtothebulksulfurin

70 chondrites(Cooper etal. ,1997;RaiandThiemens,2007;GaoandThiemens,

1993a,b),whichraisesthepossibilitythatthedifferentmaterialsaccretingtoformthe ironmeteoriteparentbodiesalsopossessedsomevariabilityin ∆33 S.

5.3.1VariablePreservationofaHomogeneouslyDistributed ∆33 SCarrier

Whileitisnotclearwhethersimilarprecursorphaseswerepresentinthe parentbodiesofdifferentmagmaticironmeteorites,itcouldbepossiblethatthe variabilityobservedin ∆33 Sreflectsthedifferentialincorporationofanotherwise homogeneously-distributedprecursorcomponent,duringthesegregationofmetaland sulfidesondifferentparentbodies.

However,theIABironmeteorites,whichhavebeenproposedtooriginate fromseparateimpact-derivedmeltpoolsonachondriticprecursorinordertoexplain theirverydifferentcompositions(WassonandKallemeyn,2002),spanasmaller rangeof∆33 Svaluesthanthemagmaticgroups,whichistheoppositeofwhatwould beexpectedifitwasindeedthedifferentialincorporationofanomalousbut homogenously-distributed33 Scarriersintheparentbodiescausingtheobserved variabilityin ∆33 S(asvariableimpactenergieswouldhavecausedthedifferential volatilizationofvarioussulfur-bearingmineralsindifferentmeltpoolsontheIAB parentbody).

TheEarth’smantle,lunarbasalts,bulkchondrites,andIABironmeteorites have ∆33 Svaluesof~0.00‰(Table2 ).Ifthiscompositiondoesindeedrepresentthe bulksolarsystem,thenitwouldbedifficulttoexplainthedetailsofhowdifferent preservationorvolatilizationreactionsonanotherwisehomogenousstarting

71 substancecouldleadtoboththepositiveandnegative ∆33 Svaluesobservedinour dataset.

5.3.2PhotolyticDepletionofanInnerSolarSystemReservoir

Anattractivealternativeforthe ∆33 Svariationamongmagmaticiron meteoritegroupsisthroughsecularvariationinthecompositionofaninner-solar systemsulfurreservoirundergoingprogressivephotolysis(ifitisindeedtheageof metal-silicatesegregationthatisdatedbythedifferent ɛ182 Wcompositionsoftheiron meteoritegroups,andnotdeviationsintheiroriginalHf/Wratios).

ThepreviouslydiscussedHf-Wdatasuggestthatcoresegregationof magmaticironmeteoriteparentbodiesoccurredwithinthefirsttwomillionyears afterCAIformation,earlierthantheagesofmostchondrulesandseveralmillion yearsearlierthanagesforthenon-magmaticironmeteoritegroups.Aweaklydefined decreasefromslightlypositive ∆33 Svaluestoslightlynegative ∆33 Svaluesfor magmaticirongroupswithlaterHf-Wsegregationagesappearstoexist( Fig. 8), whichallowsforthepossibilitythattheanomaloussulfurisotopesignalsevolved fromasinglereservoir,progressivelydistilledbyphotolysisduringtheearlystagesof thesolarnebula.

Asimilarrelationshipbetween ∆33 Sand 26 Al-26 Mgagesisrevealedwhenone considers 26 Al-26 Mg(Kita etal. ,2003;Goodrich etal. ,2010)and ∆33 S(Farquhar et al. ,2000a;Rai etal. ,2005)datafordifferentachondritegroups(,, andHED).

Theproposedlinkbetweenearlyinnersolarsystemprocessesand ∆33 Smay alsobesupportedbyrecentdynamicalmodelingwhichsuggeststhatthefastest

72 accretionratesoccurwheredensitiesarehighest,nearthecenterofprotoplanetary disks,andthatironmeteoriteparentbodiesinoursolarsystemformedinthe terrestrial-planetregion,beforebeingdisplacedintotheasteroidbelt(Bottke etal. ,

2006).Morerapidaccretionrateswouldleadtogreaterincorporationofshort-lived heat-producingradionuclides,whichwouldcauseearliermagmaticdifferentiationin parentbodieswithshorterorbitalperiods.Thismayinturnsuggestthatmagmatic ironmeteoritesandachondrites(whichunderwentgreateramountsofmagmatic differentiationandhavegenerallyolderagesthanchondritesandIABirons)formed earlierandclosertothesunthanchondritesandundifferentiatedmeteorites.

Thecrudelinearrelationshipobservedbetweenthe∆33 Sofdifferentiron meteoritegroupsandtheirNi-normalizedvolatileelementabundancesisalso consistentwiththismodel.Atshorterheliocentricdistancestherewouldbegreater collisionalrates(duetogreaterdensities)andhigherambienttemperatures,bothof whichcouldleadtovolatiledepletion 5.

Aworkingmodelemergesthatlinksthegasphasephotolysisofhydrogen sulfide,possiblybyLyman αradiationoccurringintheinner~1–2AUoftheyoung solarnebula,totheevolutionofmass-independentsulfurisotopesignaturesthatwere capturedbyearly-formingplanetesimals(Fig. 10).Thenon-magmaticironparent bodiesprobablyformedinmoredistalpartsofthesolarnebula,pasttheoptical penetrationdepthofUVlightandatlowertemperatures,decreasingtheavailability ofH 2S(g)(Fig. 10).Thesloweraccretionratesandlowerambienttemperaturesat greaterheliocentricdistanceswouldhaveledtolesseramountsofinternalheating, 5 However,Itisuncertainwhetherthegreaternumberofcollisionsatshorterheliocentricdistances wouldleadtogreateramountsofdevolatilizationcomparedtothedifferentcollisionalenergiesof planetesimalswithlongerfree-paths(atgreaterheliocentricdistances).

73

Fig.10.Possiblemodelfortheearlysolarnebulargenerationofthesulfur isotopicdistributionsinmagmaticandnon-magmaticironmeteorites.In thisworkingmodel,Hf-Wage,temperature,andaccretion rate roughly decrease to the right with increasing heliocentric distances ( e.g. Bland and Ciesla, 2010, 2012; Bottke et al. , 2006). Irradiation of H 2S could leadtoanomaloussulfurfractionationsintheregionsbetweenthelimit forrefractorysulfidecondensationandthepenetrationdepthofUVlight. The main magmatic iron meteorites form from this inner-solar system reservoir that is gradually distilled by photolysis, imparting a residual compositiontolateformingmagmaticirons(IVB&IIIF).TheIABand IIEironmeteoritesaresuggestedtohaveformedatgreaterheliocentric distances,laterintime,pastthepenetrationdepthforUVlight.InsetBis anexpandedviewofthesolarnebuladuringT-Tauriphaseshowingthe likelyformationalzoneoftheoldhamiteprecursorsuggestedbyRai etal. (2005)tohavecarriedanomaloussulfurtoachondrites.

74 laterHf-Wsegregationages(>5MaafterCAIs),andgreaterincorporationofvolatile elementsfortheIABironmeteorites.

Theexistenceofanaverageinnersolarsystem ∆33 Sof~0.00‰(definedby chondrites,IABs,andtheEarth-Moonsystem)thatisintermediatebetweenthe33 S- enrichedand 33 S-depletedcompositionsofmagmaticironmeteoritesandachondrites maybeacriticalpieceofinformationbecauseitimpliesaprocessthateither(1) remixedthesulfurpoolsduringtheformationoflargerplanetaryembryosandplanets intheterrestrial-planetregionor(2)preventedtheanomaloussignaturesfrombeing producedintheregionwheretheEarthwasformed.Thefirstscenarioisconsidered heretobemorelikelybecausetheironmeteoritesaresuggestedtohavecomefrom theterrestrial-planetformingregion,andtheanomaloussulfurcomponentsidentified withinironmeteoritesandachondriteswerelikelytohavebeenre-homogenizedor overwhelmedbyisotopicallynormal(chondritic)sulfurduringtheaccretionofthe

Earth.

75

Chapter6:Conclusions

OurresultsshowthatthemagmaticironmeteoritegroupsIC,IIAB,IIIAB,

IIIF,&IVA,haveresolvablevariationsin ∆33 Swhichareattributedtotheinheritance ofcomponentssourcedfromthephotolysisofH 2Sintheearlysolarnebula.Thisis consistentwiththehypothesisthatthesegroupsformedinproximitytothesun,near anoptically-thinzoneoftheprotoplanetarydiskwherephotolysiscouldtakeplace.

Non-Magmaticironmeteoritegroups,whichdonothaveresolvable ∆33 Svariations, areinterpretedtohaveformedatgreaterheliocentricdistanceswhereanomalous

∆33 Smaterialswererare,beingpasttheopticalpenetrationdepthofUVlightand/or aftertheendoftheSun’sT-Tauriphase,whenitsUVoutputwasgreatlyreduced

(Wolk etal. ,2005;Chakraborty etal. ,2013).

Insummary,theworkdescribedinthisthesishasshownthat:

1. Thesulfurisotopiccompositionoftroiliteinthedifferentgroupsofiron

meteoritesanalyzedcoversonlyaverysmallrangein δ34 S, ∆33 S,and ∆36 S,

whichisconsistentwithpreviousstudies(HulstonandThode,1965b;Gaoand

Thiemens,1991).

2. Therearenewly-identifiedresolvabledifferencesinthe ∆33 Softroilitefrom

differentironmeteoritegroups(rangingfrom-0.029‰to+0.031‰),

especiallybetweenthenon-magmatic(IABandIIE;average ∆33 Sof

+0.004‰)andmagmaticgroups[IC,IIAB,IIIAB,IVA,andIIIF(whichtend

tohaveenrichmentsordepletionsontheorderof~0.020‰relativetoIAB)].

3. Generationofanomalous 33 Sthroughcosmic-rayinducedspallationreactions

isruledoutasthecauseoftheobserved ∆33 Svariationsbasedonthedifferent

76

slopefor ∆36 S/∆33 Sandtheconsistent ∆33 Svaluesobservedformembers

withineachgroup.Bothknownandhypothesizednucleosyntheticsulfur

anomaliesarealsoconsideredtobeunlikelyasthesourcesoftheobserved

∆33 S,butarenotfullyruledout.

4. Theslopeidentifiedfor ∆36 S/ ∆33 S(~-7)forthemajorgroupsanalyzedinthis

study(excl. IIIF)maybeexplainedbyexperimentsdescribedbyChakraborty

etal.(2013)forphotolysisofH 2SbyLyman-αradiation(~-3),giventhe

smallspreadofourdataandouruncertaintieson ∆36 S.

5. PublishedHf-Wagesappeartobeweaklycorrelatedwith ∆33 Sinmagmatic

ironmeteoritegroups,with ∆33 Sgraduallydecreasingfrompositive

(+0.022‰)tonegativevalues(-0.028‰)inmagmaticironmeteoriteswith

latermetal-silicatesegregationages.

6. Anomalous ∆33 Scompositionsinmagmaticironmeteoriteparentbodieswere

mostlikelyinheritedfromcomponentscreatedthroughthephotolysisofH 2S

intheearlysolarnebula,while ∆33 Scompositionsinnon-magmaticiron

meteoritegroupsarechondriticanddonotrequirethishistory.

7. Amodelinwhichthesulfurcompositionsofdifferentmagmaticiron

meteoriteparentbodiesareinheritedatdifferenttimes/locationswithinan

inner-solarsystemH 2Sreservoir,graduallydepletedbyphotolysis,is

consistentwiththeobserved∆33 Svariabilitywithinthedifferentmagmatic

ironmeteoritegroups.

a. Thismodelisalsoconsistentwithdynamicalmodelsofearlysolar

systemformationwhereplanetesimalaccretionbeginsatshort

77

heliocentricdistancesandprogressesoutwards(Bottke etal. ,2006),

providingapotentialsynthesisbetweenHf-W, ∆33 S,andvolatile

elementdatafordifferentironmeteoritegroups.

8. Non-magmaticironmeteoriteshaveaverage ∆33 Svaluesstatistically

indistinguishablefromanalyzedlunarbasalts(-0.004‰)( thisstudy ;Wingand

Farquhar,2013)andfrompublishedvaluesforEarth’smantlecompiledfrom

MORBglasses(+0.005‰)(Labidi etal. ,2012, Thesis ).

a. Astheanomalousinnersolarsystemsulfurreservoirfromwhichthe

magmaticironsarethoughttohavederivedisassumedtoloosely

coincideinspacewiththehypothesizedformationdistanceofiron

meteoritesgroups(1-2AU;Bottke etal.,2006)andtheEarth-Moon

system,itmaybethecasethatlargerplanetaryembryosandplanets

bothre-homogenizedtheanomalous ∆33 Ssignalsanddrownedthem

outthroughtheincorporationofisotopicallynormal(chondritic/IAB)

sulfurfromgreaterheliocentricdistances.

9. Variabilityinthe δ34 Sofmagmaticironmeteorites(rangingfrom-1.41‰to

+1.29‰)doesnotappeartoberelatedtoanyothergeochemicalparameters

consideredinthisstudy,butdoesappeartohaveaweakcorrelationwith

volatileelementswithindifferentIABgroupironmeteorites(AppendixH ),

increasingwithdecreasingvolatilecontentsasapossibleresultofimpact

processesontheparentbody.

78

6.1FutureWork

Basedontheworkpresentedinthisthesis,severalquestionsanduncertainties leadtoamultitudeofdirectionsforfuturework.Themostprevalentquestionsand ideasforfutureworkaresummarizedasfollows:

1. Therelationshipobservedbetweendifferentageproxies(Hf-W&Al-Mg)and

∆33 Sinironmeteoritesandachondritesmaysupportamodelinvokingthe

secularevolutionofaninnersolarsystemsulfurreservoir,however,the

resolutionofmostpublishedagemeasurementsisnotcurrentlysufficientto

decipheranydetailedrelationshipsbetweenageandsulfurisotopic

composition.Therefore,thecurrentinvestigationwouldbegreatlybenefitted

byrefinedageproxies,alongwithgreaternumbersofsulfuranalysesfrom

meteoritegroups(withdifferentages)thathavenotbeenpreviously

measured,suchaspallasites,angrites,and.

2. Specificallyregardingironmeteoriteanalyses,itwouldbeespeciallyusefulto

measuremoremembersfromgroupsIIE,IIIF,andIVB,toconfirmwhetheror

notthefewmemberswhichwereanalyzedfromeachgrouptrulyrepresentthe

sulfurisotopiccompositionsofeachwholegroup.Interestingly,IIDirons

haveelementalcompositionclosetogroupIIIFandmayyieldinteresting

sulfurisotopicresultsifmeasured,whileotherminormagmaticironmeteorite

groupsstillremaintobeanalyzedinordertocompletethefullsetofsulfur

isotopemeasurementsinironmeteorites.

3. Amajorsetbackinthedefinitionofaprecise ∆36 S/ ∆33 Sslopeforthedatain

thisthesisisduetothelowerprecisionofmassspectrometricmeasurements

79

of 36 Srelativeto 33 S.Thisismostlyduetolowabundancesof 36 Sandisobaric

+ interferencesfromC 3F5 ,whichmayberesolvedthroughmodificationstothe

massspectrometer(removalofadditionalinletsorpossibleadditionofan

electronmultiplier),highermassresolution,orthroughrepeatedgas

chromatography(GC)runs.

4. Thesulfurisotopiccompositionsproducedduringthephotolysisofdifferent

gasesatvariousconditionsrelevanttotheearlysolarnebulastillremains

poorlyunderstood.AlthoughH 2Swaslikelytobethemostabundantsulfur-

bearinggasintheearlysolarnebula,andtherecentexperimentalphotolysis

resultsofChakraborty etal. (2013)providereasonableagreementwiththe

ironmeteoritedata,SiShasbeenpredictedtobethemainsulfur-bearinggas

inreducingregionsoftheearlysolarnebula(withC/O>0.95)attemperatures

above900K(Pasek etal. ,2005).InadditiontoSiS,gasessuchasHS,S,PS,

S2,andAlS,arealsopredictedtohaveexistedinreducingareasoftheearly

solarnebula,anddespitethedifficultyofhigh-temperaturephotolysis

experiments,theyaretheonlywaytotesttheeffectsofphotolysisonthese

exoticsulfur-bearinggases,whichisanecessarystepping-stoneinthe

understandingofmultiplesulfurisotopebehaviorsintheearlysolarnebula.

5. Furtherconstraintsonthecapturecrosssectionsofsulfur,relevantto

spallationreactionsandneutroncapturereactions(althoughnotthoughtto

havecreatedtheanomaloussulfursignaturescontainedintheanalyzed

samples),couldleadtothedevelopmentofimportantcosmic-rayexposure

80

correctionsonfuturesulfurisotopicmeasurementsinmeteoriticmaterials,and

couldberefinedthroughgreateramountsofexperimentalworkandmodeling.

6. Sulfurisotopefractionationduringtheevaporationoftroiliteintheearlysolar

nebulawasexperimentallyreproducedbyMcEwing etal. (1980),however,

theydidnotmeasuretheminorisotopesofsulfur.Assumingthe ∆33 S

compositionstobemass-dependent,modeled ∆33 SvariationsduetoRayleigh

fractionationonlyproduced∆33 Ssignaturesofupto+0.010‰(AppendixE ).

However,theactualminorisotopemeasurementsofthisprocessmayreveal

fractionationfactorsdifferentfromthoseassumed,andleadtogreater

variationsin ∆33 S.Therefore,amoreextensiveinvestigationintosulfur

isotopefractionationduringtheevaporationoftroilitewouldbeofgreat

assistanceinevaluatingRayleighfractionationasapossiblesourceof ∆33 Sin

earlysolarsystemmaterials.

7. Totheauthor’sknowledge,therearenosulfurisotopicmeasurementsof

CAIs,whichislikelyduetotheirverylowconcentrationsofprimarysulfur,

butmayperhapsbeaccomplishedbyusingatechniquesuchasSIMS.CAIs

aregenerallythoughttobetheearliestformedsolidsinthesolarsystem,

condensingathightemperaturesinregionsproximaltotheearlysun,

therefore,theworkingmodeldescribedinthisthesispredictsthattheywould

haveanomaloussulfurisotopiccompositions.Therefore,measurementsof

∆33 Sand ∆36 SinCAIsmayhelpconstraintheproposedmodelforsulfur

isotopicdistributionandevolutionintheearlysolarnebula.

81

8. Themostenriched ∆33 Smaterialfoundsofarinachondritesistheoldhamite

(CaS)fromtheNortonCountyaubrite(Rai etal. ,2005),butnosimilarly

enrichedoldhamitehasbeeninvestigatedwithinothermeteorites.

Interestingly,enstatitechondriteswerenotobservedtohave ∆33 Sanomaliesin

previousinvestigations(GaoandThiemens,1993b),butthiscouldpossiblybe

duetolimitationsintheavailableresolutionofisotopicmeasurementsatthe

timeofthestudy.Regardless,mineralogicalseparationofthedifferent

componentsindifferentachondrites(andchondrites)couldpotentiallyleadto

theidentificationofthe 33 S-carrierphase(s)thatwaslikelytohavetransferred

thedifferentanomaloussignalsintothedifferentmagmaticironand

achondriteparentbodies.

9. Aninterestingpossibilitythathasnotbeendiscussedinthispaperisthatofa

solar ∆33 Scompositiondifferingfromthatoftheplanets,ashasbeen

demonstratedforoxygenisotopes(McKeegan etal., 2011).Inthiscase,the

∆33 Sinachondritesandmagmaticironscouldrepresentgreateramountsof

contaminationfromasolarsulfursource.However,thecaseforsulfurmay

notbeassimpleasthecaseofoxygenisotopes,thedataforwhichlieonaline

ofapproximatelyslope-1(consistentwithadditionof 16 O)ontripleoxygen

isotopeplots( e.g. Clayton,1993).Theevaluationofthishypothesiscouldbe

accomplishedthroughanalysesofmultiplesulfurisotopesinsamplesofthe

solarwind,usingatechniquesuchasSIMS.

10. Thequestionregardingwhetherornottheanomaloussulfurisotopicsignalsin

thepresolarnebulawereinheritedfromearliergalacticcosmic-rayphotolysis

82

inthepre-existingmolecularcloudfromwhichthesun(andsolarsystem)was

derived( i.e. carbon-monoxideinLyonsandYoung,2005),orwhetheritwas

createdwithinthesolarsystemitselfbysolarradiationaroundtheyoungsun,

asisproposedinthisthesis,maybeaddressedthroughrefinedspectroscopic

techniquesformeasuringsulfurisotoperatiosinothernebulaeandmolecular

clouds.Themodelproposedinthisthesispredictsthatanomaloussulfur

compositionsshouldexistinthedisksaroundyoungstarsinotherplanetary

systems.However,asuccessfuldeconvolutionofthespectralbandsfor

differentisotopologuesofH 2Sisrequiredinordertoaccuratelymakethese

measurements.

11. Finally,newmodelsforthechemicalevolutionofH2Sandirongrainsina

dynamicalprotoplanetarydisknowincludeparticle-trackingmethods(Ciesla,

2013),andsuggestthatH 2Sconcentrationswerehighestintheinnermost<1

AUoftheearlysolarsystem,decreasingwithtime.Afewmodificationsto

thismodel(includingopticalthicknessesandsolarUVoutputswithrespectto

time)mightallowonetopredicttheformationregion(s)foranomaloussulfur

intheearlysolarnebula,alongwiththepossiblemigration-pathsandfinal

restingplacesofparticleswhichgainedtheirsulfurfromwithintheseregions.

83

AppendixA a)SulfurExtractionyields

84

85

AppendixB

b)Percentidealyieldsvs.SulfurisotopicComposition

86

AppendixC c) Δ33 Sfrommixingmostenrichedanddepletedtroilitefoundinmeteorites

87

AppendixD d)Exponentdifferencesin Δ33 Svalues

88

AppendixE e) Δ33 SfromMixingofRayleighFractionationPoolsduringTroiliteEvaporation

89

AppendixF f)SulfurisotoperelationshipsamongdifferentgroupingsofIrons i)AlldataexcludingIIIF

ii)AllData 0.5 y = -2.4054x + 0.0393 0.4 R² = 0.0337 0.3 0.2 0.1 0.0

S(permil) -0.1 36 ∆ -0.2 -0.3 -0.4 -0.5 -0.04 -0.02 0.00 0.02 0.04 Δ33 S(permil)

90

iii)AllMagmaticIrons

iv)AllmagmaticironsexcludingIIIF

91

AppendixG g)ModeledNucleosyntheticinjectionof 32 S

92

AppendixH h) δ34 SrelationshipswithNi,Ge,andGa(regressionsofonlyIABirons)

93

AppendixI i) Δ33 SrelationshipswithGe,andGa(norelationshipforIABgroups)

94

Bibliography Amelin,Y.,Krot,A.N.,Hutcheon,I.D.,Ulyanov,A.A.(2002).“Leadisotopicagesof chondrulesandcalcium-aluminum-richinclusions” Science,vol.297 ,pp. 1678-1683. Antonelli,M.A.,Peters,M.,Farquhar,J.(2013).“MultipleSulfurIsotopesinIron Meteorites:ImplicationsforNebularEvolution.” 44thLunarandPlanetary ScienceConference ,#1279.TheLunarandPlanetaryInstitute,Houston. Antonelli,M.A.,Peters,M.,Farquhar,J.(2012).“Sulfurisotopiccompositionsof magmaticandnon-magmaticironmeteorites.” 43rdLunarandPlanetary ScienceConference ,#2081.TheLunarandPlanetaryInstitute,Houston. Ault,W.U.andJensen,M.L.(1962).“Summaryofsulfurisotopicstandards.” Biogeochemistryofsulfurisotopes(Ed.M.L.Jensen), SymposiumofN.S.F YaleUniversity. Beaudoin,G.,Taylor,B.E.,RumbleIII,D.,Thiemens,M.H.(1994).“Variationsin thesulfurisotopecompositionoftroilitefromtheCañonDiabloiron meteorite.” GeochimicaetCosmochimicaActa,vol.58 ,pp.4253-4255. Benedix,G.K.,Lauretta,D.S.,McCoy,T.J.(2005)."Thermodynamicconstraintson theformationconditionsofandsilicate-bearingIABirons.” GeochimicaetCosmochimicaActa69(21) ,pp.5123-5131. Benedix,G.K.,McCoy,T.J.,Keil,K.,Love,S.G.(2000)."Apetrologicstudyofthe IABironmeteorites:ConstraintsontheformationoftheIAB-Winonaite parentbody.” Meteoritics&PlanetaryScience35(6) ,pp.1127-1141. Bigeleisen,J.(1996).“Nuclearsizeandshapeeffectsinchemicalreactions.Isotope chemistryoftheheavyelements.” JournaloftheAmericanChemicalSociety vol.188 ,pp.3676. Bigeleisen,J.(1952).“Theeffectsofisotopicsubstitutionontheratesofchemical reactions.” JournalofPhysicalChemistry56(7) ,pp.823-828. Bland,P.A.andCiesla,F.J.(2010)“Theimpactofnebularevolutiononvolatile depletiontrendsobservedindifferentiatedobjects.” 41 st LunarandPlanetary ScienceConference, #1817.TheLunarandPlanetaryInstitute,Houston. Bland,P.A.andCieslaF.J.(2012)“NebularEvolutionandVolatileDepletioninthe InnerSolarSystem.” 75 th AnnualMeteoriticalSocietyMeeting ,#5188. Blichert-Toft,J.,Moynier,F.,Lee,C-.T.A,Telouk,P.,Albarede,F.(2010).“The

95

earlyformationoftheIVAironmeteoriteparentbody.” EarthandPlanetary ScienceLetters296 ,pp.469-480. Bogard,D.D.,Garrison,D.H.,Takeda,H.(2005).“Ar-ArandI-Xeagesandthe thermalhistoryofIABmeteorites.” MeteoriticsandPlanetaryScience40 ,pp. 207-224. Bottke,W.F.,Nesvomy,D.,Grimm,R.E.,Morbidelli,A.,O’Brien.D.P.(2006).“Iron meteoritesasremnantsofplanetesimalsformedintheterrestrialplanet region.” Naturevol.439 ,pp.821-824. BottkeW.F.,DurdaD.D.,Nesvorny´D.,JedickeR.,Morbidelli,A.,Vokrouhlicky´ D.andLevisonH.F.(2005).“Linkingthecollisionalhistoryofthemain asteroidbelttoitsdynamicalexcitationanddepletion.” Icarus179 ,pp.63–94. Buchwald,V.F.(1975).“TheHandbookofIronMeteoritesvol.1-3.”EditedbyG. Boyd, UniversityofCaliforniaPress ,BerkeleyandLosAngeles,California. Bullock,E.S.,McKeegan,K.D.,Gounelle,M.,Grady,M.M.,Russel,S.S.(2010). “SulfurisotopiccompositionofFe-NisulfidegrainsinCIandCM carbonaceouschondrites.” MeteoriticsandPlanetaryScience45,n.5 ,pp. 885-898. Cameron,A.G.W.(1979)."Neutron-RichSilicon-BurningandEquilibrium ProcessesofNucleosynthesis.” AstrophysicalJournal230(1): L53-L57. Campbell,A.J.andM.Humayun(2005)."CompositionsofgroupIVBiron meteoritesandtheirparentmelt.” GeochimicaetCosmochimicaActa69(19), pp.4733-4744. Canfield,D.E.,Raiswell,R.,Westrich,J.T.,Reaves,C.M.,Berner,R.A.(1986).“The useofchromiumreductionintheanalysisofreducedinorganicsulfurin sedimentsandshales.” ChemicalGeology ,54,pp.149-155. Chabot,N.L.(2004)."Sulfurcontentsoftheparentalmetalliccoresofmagmaticiron meteorites.” GeochimicaetCosmochimicaActa68(17), pp.3607-3618. Chakraborty,S.,Jackson,T.L.,Ahmed,M.,Thiemens,M.H.(2013)“SulfurIsotopic FractionationinVacuumUVphotodissociationofhydrogensulfideandits potentialrelevancetometeoriteanalysis.” ProceedingsoftheNational AcademyofSciences , SpecialEdition. Chin,Y.N.,Henkel,C.,Whiteoak,J.B.,Langer,N.,Churchwell,,E.B.(1996). “Interstellarsulfurisotopesandstellaroxygenburning.” Astron.Astrophys. 305 ,pp.960-969.

96

Ciesla,F.J.(2013)“Sulfidizationofironinadynamicsolarnebulaandthe implicationsforplanetarycompositions.” 44 th LunarandPlanetaryScience Conference ,#1315.TheLunarandPlanetaryInstitute,Houston. Clayton,D.D.andS.Ramadurai(1977)."Pre-SolarMeteoriticSulfides.” Nature265 (5593) ,pp.427-428. Clayton,R.N.“OxygenisotopesintheSolarSystem.”(2003) SpaceScienceReviews 106 ,pp.19-32.KluwerAcademicPublishers. Clayton,R.N.andMayeda,T.K.(1996).“Oxygenisotopestudiesofachondrites”. GeochimicaetCosmochimicaActa,vol.60 ,no.11,pp.1999-2017. Clayton,R.N.(1993)."OxygenIsotopesinMeteorites.” AnnualReviewofEarthand PlanetarySciences21 ,pp.115-149. Clayton,R.N.,T.K.Mayeda, etal. (1983)."OxygenIsotopeRelationshipsinIron- Meteorites.” EarthandPlanetaryScienceLetters65(2), pp.229-232. Cobb,J.C.,(1966).“Ironmeteoriteswithlowcosmic-rayexposureages.” Science, vol.151,no.3717 ,p.1524 Colman,J.J.,Xu,X.,Thiemens,M.H.,Trogler,W.C.(1996).“Photopolymerization andmass-independentsulfurisotopefractionationsincarbondisulfide.” Science,vol.273,no.5276 ,pp.774-776. Cooper,G.W.,Thiemens,M.H.,Jackson,T.L.,Chang,S.(1997).“Sulfurand hydrogenisotopeanomaliesinmeteoritesulfonicacids.” Science,vol.277 , pp.1072-1074.

Danielache,S.O.,Hattori,S.,Johnson,M.S.,Ueno,Y.,Nanbu,S.,Yoshida,N.(2012) “Photoabsorptioncross-sectionmeasurementsof 32 S, 33 S, 34 S,and 36 Ssulfur 1 1 dioxideforthe B B1-X A1absorptionband” JournalofGeophysicalResearch 117, D24301,doi:10.1029/2012JD017464. Eugster,O.,Herzog,G.F.,Marti,K.,Caffee,M.W.(2006).“Irradiationrecords, cosmic-rayexposureages,andtransfertimesofmeteorites.” Meteoritesand theEarlySolarSystemII ,pp.829-851. Farquhar,J.,Johnston,D.T.,Wing,B.A.(2007).“Implicationsofconservationof masseffectsonmass-dependentisotopefractionations:influenceofnetwork structureonsulfurisotopephasespaceofdissimilatorysulfatereduction.” GeochimicaetCosmochimicaActa71 ,pp.5862-5875. Farquhar,J.,Savarino,J.,Airieau,S.,Thiemens,M.H.(2001).“Observationof wavelength-sensitivemass-independentsulfurisotopeeffectsduringSO 2

97

photolysis:Implicationsfortheearlyatmosphere. JournalofGeophysical Research106 ,pp.32829–32839. Farquhar,J.,Jackson,T.L.,Thiemens,M.H.(2000a).“A 33 Senrichmentinureilite meteorites:Evidenceforanebularsulfurcomponent.” Geochimicaet CosmochimicaActavol.64 , no.10 ,pp.1819-1825. Farquhar,J.,Savarino,J.,Jackson,T.L.,Thiemens,M.H.,(2000b).“Evidenceof atmosphericsulphurintheregolithfromsulphurisotopesin meteorites. Nature404, pp.50–52. Forrest,J.andNewmanL.(1977).“Silver-110microgramsulfateanalysisforthe shorttimeresolutionofambientlevelsofsulfuraerosol.”Analyical Chemistry,49pp.1579–1584. Gao,X.andM.H.Thiemens(1993a)."IsotopicCompositionandConcentrationof SulfurinCarbonaceousChondrites.” GeochimicaEtCosmochimicaActa 57(13) ,pp.3159-3169. Gao,X.andM.H.Thiemens(1993b)."VariationsoftheIsotopicCompositionof SulfurinEnstatiteandOrdinaryChondrites.” GeochimicaEtCosmochimica Acta57(13), pp.3171-3176. Gao,X..andM.H.Thiemens(1991)."SystematicStudyofSulfurIsotopic CompositioninIron-MeteoritesandtheOccurrenceofExcess 33 Sand 36 S.” GeochimicaEtCosmochimicaActa55(9) ,pp.2671-2679. GoodrichC.A.,Hutcheon,I.D.,Kita,N.T.,Huss,G.R.,Cohen,B.A.,Keil,K.(2010). “53 Mn-53 Crand 26 Al-26 Mgagesofafeldspathiclithologyinpolymict ureilites.” EarthandPlanetaryScienceLetters,295 ,531-540. Greenwood,R.C.,Franchi,I.A.,Jambon,A.,Barrat,J.A.,Burbine,T.H.(2006) “Oxygenisotopevariationinstony-ironmeteorites.” Science313 ,pp.1763- 1765. Haack,H.andT.J.McCoy(2006).“Ironandstony-ironmeteorites.” Treatiseon Geochemistry. UnitedKingdom,Elsevier:Oxford,UnitedKingdom.1:325- 345.Herzog,G.F.,Gibson,E.K.Jr., Heck,P.R.,Hoppe,P.,Huth,J.(2012).“SulfurfourisotopeNanoSIMSanalysisof 81p/wild2dustinimpactcratersonaluminumfoilC2037Nfrom NASA'sstardustmission.” MeteoriticsandPlanetaryScience47,no.4 ,pp. 649-659. Heger,A.,Woosley,S.E.,Rauscher,T.,Hoffman,R.D.,Boyes,M.M.(2002).

98

“Massivestarevolution:nucleosynthesisandnuclearreactionrate uncertainties.” NewAstronomyReviews,vol.46 ,pp.463-468. Hoppe,P.,Fujiya,W.,Zinner,E.(2012).“Sulfurmoleculechemistryinsupernova ejectarecordedbysiliconcarbidestardust.” TheAstrophysicalJournal Letters ,745:L26,5pp. Horan,M.F.,Smoliar,M.I.,Walker,R.J.(1998).“ 182 Wand 187 Re-187 Ossystematics ofironmeteorites:Chronologyformelting,differentiation,andcrystallization in.” GeochimicaetCosmochimicaActavol.62 ,pp.545-554. Huang,F.,Chakraborty,P.,Lundstrom,C.C.,Holmden,C.,Glessner,J.J.G.,Kieffer, S.W.,Lesher,C.E.(2010).“Isotopefractionationinsilicatemeltsbythermal diffusion.” Nature,vol.464 .pp.396-400. Hulston,J.R.andH.G.Thode(1965a)."Variationsin 33 S, 34 S,and 36 SContentsof MeteoritesandTheirRelationtoChemicalandNuclearEffects.” Journalof GeophysicalResearch70(14), p.3475. Hulston,J.R.andH.G.Thode(1965b)."Cosmic-Ray-Produced 36 Sand 33 Sin MetallicPhaseofIronMeteorites.” JournalofGeophysicalResearch70(18) : p.4435. Kaplan,I.R.andHulston,J.R.(1966).“Theisotopicabundanceandcontentofsulfur inmeteorites.” GeochimicaetCosmochimicaActavol.30 ,pp.479-496. KitaN.T.,IkedaY.,ShimodaH.,MorshitaY.,andTogashiS.(2003)“Timingof basalticvolcanisminureiliteparentbodyinferredfromthe 26 Alagesof plagioclasebearingclastsinDAG-319polymictureilite.”34thLunarand PlanetaryScienceConference #1557.TheLunarandPlanetaryInstitute, Houston. Kleine,T.,Hans,U.,Irving,A.J.,Bourdon,B.(2012).“Chronologyofthe parentbodyandimplicationsforcoreformationinprotoplanets.” Geochimica etCosmochimicaActa84, pp.186-203. KleineT.,MezgerK.,PalmeH.,SchererE.andMu¨nkerC.(2005).“Earlycore formationinasteroidsandlateaccretionofchondriteparentbodies:evidence from 182 Hf–182 WinCAIs,metal-richchondrites,andironmeteorites.” GeochimicaetCosmochimicaActa 69,pp.5805–5818. Kruijer,T.S.,Fischer-Godde,M.,Kleine,T.,Sprung,P.,Leya,I.,Wieler,R.(2013a) “NeutroncaptureonPtisotopesinironmeteoritesandtheHf-Wchronology ofcoreformationinplanetesimals.” EarthandPlanetaryScienceLetters361 , pp.162-172.

99

Kruijer,T.S.,Touboul,M.,Fischer-Godde,M.,Bermingham,K.,Kleine,T.,Walker, R.J.(2013b)“Resolutionofsmalldifferencesinthetimeofmetalsegregation Inironmeteoriteparentbodies.” 44 th LunarandPlanetaryScience Conference ,#1920.TheLunarandPlanetaryInstitute,Houston. Labidi,J.,Cartigny,P.,Birck,J.L.,Assayag,N.,Bourrand,J.J.(2012) “Determinationofmultiplesulfurisotopesinglasses:areappraisalofthe MORB δ34 S” ChemicalGeologyvol.334 ,pp.189-198. Lauretta,D.S.,Lodders,K.,FegleyB.Jr.,Kremser,D.T.(1997).“Theoriginof sulfide-rimmedmetalgrainsinordinarychondrites.” EarthandPlanetary Scienceletters151 ,pp.289-201. Lewis,J.S.(1967).“APossibleoriginforsulfatesandsulfurinmeteorites.” Earth andPlanetaryScienceLetters2 ,pp.29-32. Lipschutz,M.E.(1979).“Thermalmetamorphismofprimitivemeteorites-VIII.Noble gases,carbon,andsulfurinAllende(C3)meteoriteheatedat400-1000C.” GeochimicaetCosmochimicaActavol.43 ,pp.395-404. Lipschutz,M.E.,Signer,P.,Anders,E.(1965).“Cosmic-rayexposureagesofiron meteoritesbythe 21 Ne/ 26 Almethod.”JournalofGeophysicalResearch,vol. 70,no.6,pp.1473-1489. Markowski,A.,Quitte,G.,Halliday,A.N.,Kleine,T.(2006)."Tungstenisotopic compositionsofironmeteorites:Chronologicalconstraintsvs.cosmogenic effects.” EarthandPlanetaryScienceLetters242(1-2) ,pp.1-15. Masterson,A.L.,Farquhar,J.,Wing,B.A.(2011).“Sulfurmass-independent fractionationpatternsinthebroadbandUVphotolysisofsulfurdioxide Pressureandthirdbodyeffects.” EarthandPlanetaryScienceLetters306 , pp.253-260. McCoy,T.J.,Walker,R.J.,Goldstein,J.I.,Yang,J.,McDonough,W.F.,Rumble,D., Chabot,N.L.,Ash,R.D.,Corrigan,C.M.,Michael,J.R.,Kotula,P.G.(2011). “GroupIVAirons:Newconstraintsonthecrystallizationandcoolinghistory ofanasteroidalcorewithacomplexhistory.” GeochimicaetCosmochimica Acta75 ,pp.6821-6843. McDermott,K.H.,Greenwood,R.C.,Franchi,I.A.,Anand,M.,Scott,E.R.D.(2011). "TheRelationshipbetweenIIEIronsandHChondrites:Petrologicand OxygenIsotopeConstraints." Meteoritics&PlanetaryScience46 :A152- A152. McDermott,K.H.,Greenwood,R.C.,Franchi,I.A.,Anand,M.,Scott,E.R.D.(2010) “OxygenisotopicconstraintsontheoriginandtherelationshipofIIEiron

100

meteoritesandH-chondrites.”41stLunarandPlanetaryScienceConference. #2763,TheLunarandPlanetaryInstitute,Houston. McKeegan,K.D.,Kallio,A.P.A.,Heber,V.S.,Jarzebinski,G.,Mao,P.H.,Coath, C.D.,Kunihiro,T.,Wiens,R.C.,Nordholt,J.E.,Moses,R.W.Jr.,Reisenfeld, D.B.,Jurewicz,A.J.G.,Burnett,D.S.(2011). “TheOxygenIsotopic CompositionoftheSunInferredfromCapturedSolarWind.” Science332 , no. 6037 ,pp.1528-1532. McEwing,C.E.,Thode,H.G.,Rees,C.E.(1980).“Sulphurisotopeeffectsinthe dissociationandevaporationoftroilite:apossiblemechanismfor 34 S enrichmentinlunarsoils.” GeochimicaetCosmochimicaActavol.44 ,pp. 565-571. Monster,J.,Anders,E.,Thode,H.G.(1965).“ 34 S/ 32 Sratiosforthedifferentformsof sulfurintheOrgeuilmeteoriteandtheirmodeofFormation.” Geochimicaet CosmochimicaActavol.29 ,pp.773–779. Moskovitz,N.A.andWalker,R.J.(2011).“SizeofthegroupIVAironmeteorite core:Constraintsfromtheageandcompositionof.” Earthand PlanetaryScienceLetters308 ,pp.410-416. Palme,H.andJones,A.(2003)“SolarSystemAbundancesoftheElements.” Treatise onGeochemistryvol.1.03, ISBN0-08-043751-6,Elsevier,pp.41-61. Pasek,M.A.,Milsom,J.A.,Ciesla,F.J.,Lauretta,D.S.,Sharp,C.M.,Lunine,J.I. (2005).“Sulfurchemistrywithtime-varyingoxygenabundanceduringsolar systemformation.” Icarus175 ,pp.1-14. Pravdivtseva,O.V.,Meshik,A.P.,Hohenberg,C.M.,Petaev,M.(2009)“Interpreting theI-XesysteminindividualsilicategrainsfromIAB”; Meteoritics andPlanetaryScience44 ,pp.1787-1796. Qin,L.,Dauphas,N.,Wadhwa,M.,Masarik,J.,Janney,P.E.(2008)."Rapid accretionanddifferentiationofiron meteoriteparentbodiesinferredfrom 182 Hf-182 Wchronometryandthermalmodeling.” EarthandPlanetaryScience Letters273(1-2), pp.94-104. Rai,V.K.andM.H.Thiemens(2007)."Mass-independentlyfractionatedsulfur componentsinchondrites," GeochimicaetCosmochimicaActa71(5) ,pp. 1341-1354. Rai,V.K..Jackson,T.L.,Thiemens,M.H.(2005)."Photochemicalmass-independent sulfurisotopesinachondriticmeteorites." Science309(5737),pp.1062-1065. Rauscher,T.,Heger,A.,Hoffman,R.D.,&Woosley,S.E.(2002).“Nucleosynthesis

101

inMassiveStarswithImprovedNuclearandStellarPhysicas.” Astrophysical Journal,576 ,pp.323-348. Rees,C.E.andThode,H.G.(1977).“A 33 SanomalyintheAllendemeteorite.” GeochimicaetCosmochimicaActa,vol.41 ,pp.1679-1682. Rees,C.E.andThode,H.G.(1974)“Sulfurconcentrationsandisotoperatiosin Apollo16and17samples.” Proceedingsof5thLunarScienceConference , pp.1269-1286. Roosbroek,N.V.,Goderis,S.,Debaille,V.,Hublet,G.,Claeys,P.(2011).“Mont DieuaIIEnon-magmaticironmeteoritewithchondrules.”74 th Annual MeteoriticalSocietyMeeting ,#5330. Rubin,A.E.(1997)“MineralogyofMeteoriteGroups.” MeteoriticsandPlanetary Science32 ,pp.231-247. Rubin,A.E.(2002).“SmyerH-Chondriteimpact-meltandevidenceforsulfur vaporization.”GeochimicaetCosmochimicaActavol.66,no.4 ,pp.699-711. Schersten,A.,Elliot,T.,Hawkesworth,C.,Russel,S.,Masarik,J.(2006).“Hf-W evidenceforrapiddifferentiationinironmeteoriteparentbodies.” Earthand PlanetaryScienceLetters241 ,pp.530-542 Schoenberg,R.,Kamber,B.S.,Collerson,K.D.,Eugster,O.(2002).“NewW-isotope evidenceforrapidterrestrialaccretionandveryearlycoreformation.” GeochimicaetCosmochimicaActano.17 ,pp.3151-3160. Schulz,T.,Upadhyay,D.,Munker,C.,Mezger,K.(2012)“Formationandexposure historyofnon-magmaticironmeteoritesandwinonaites:CluesfromSmand Wisotopes.” GeochimicaetCosmochimicaActa85 ,pp.200-212. Schulz,T.,Munker,C.,Palme,H.,Mezger,K.(2009).“Hf-Wchronometryofthe IABironmeteoriteparentbody”. EarthandPlanetaryScienceLetter280 ,pp. 185-193. Scott,E.R.D.,Haack,H.,McCoy,T.J.(1996).“Corecrystallizationandsilicate-metal mixingintheparentbodyoftheIVAironandstony-ironmeteorites.” GeochimicaetCosmochimicaActa,vol.60 , no.9, pp.1615-1631. Scott,E.R.D.andJ.T.Wasson(1976)."ChemicalClassificationofIron-Meteorites .8.GroupsIC,IIE,IIIFand97OtherIrons.” GeochimicaetCosmochimica Acta40(1), pp.103-115. Scott,E.R.D.(1977).“CompositionmineralogyandoriginofgroupICiron meteorites.” EarthandPlanetaryScienceLetters37 ,pp.273-284.

102

Shu,F.H.,Shang,H.,Lee,T.(1996)“Towardsanastrophysicaltheoryofchondrites.” Science271 ,pp.1545-1552. Tachibana,S.,andHuss,G.R.(2005).“Sulfurisotopiccompositionofputative primarytroiliteinchondrulesfromBishunpurandSemarkona.” Geochimica etCosmochimicaActa,vol.69 ,pp.3075-3097. TeplyakovaS.N.,andHumayun,M.(2011).“SiderophileelementsintheElga(IIE) metal.”74 th AnnualMeetingoftheMeteoriticalSociety ,#5286. Thiemens,M.H.andHeidenreich,J.E.III(1983)“TheMass-Independent FractionationofOxygen:ANovelIsotopeEffectanditsPossible CosmochemicalImplications.” Science219,no.4588 ,pp.1073-1075. Tsuchiyama,A.,Uyeda,C.,Makoshi,Y.(1995).“Incongruentevaporation experimentsonironsulfide(Fe 1-δS) underH 2-rich(at1atm)andevacuated conditions.” GeochemicalJournal,vol.31 ,pp.289-302. Turro,N.J.andKraeutler,B.(1980)“Magneticfieldandmagneticisotopeeffectsin organicphotochemicalreactions.Anovelprobeofreactionmechanismsanda methodforenrichmentofmagneticisotopes.” Acc.Chem.Res.13 ,pp.369- 377. VanRoosbroek,N.,Goderis,S.,Debaille,V.,Hublet,G.,Claeys,P.(2011)."Mont DieuaIIENon-MagmaticIronMeteoritewithChondrules." Meteoritics& PlanetaryScience46 :A242-A242. Voshage,H.andFeldmann,H.(1979).“Investigationsoncosmic-ray-produced nuclidesinironmeteorites,3.Exposureages,sizesandsample depthsdeterminedbymassspectrometricanalysesofpotassiumandrare gases.” EarthandPlanetaryScienceLetters45 ,pp.293-308. Walker,R.J.,McDonough,W.F.,Honesto,J.,Chabot,N.L.,McCoy,T.J.,Ash,R.D., Bellucci,J.J.(2008)“ModellingfractionalcrystallizationofgroupIVBiron meteorites.” GeochimicaetCosmochimicaActa,vol.72 ,pp.2198-2216 Wang,P.L.,Rumble,D.III,McCoy,T.J.(2004)."Oxygenisotopiccompositionsof IVAironmeteorites:Implicationsforthethermalevolutionderivedfromin situultravioletlasermicroprobeanalyses.” GeochimicaEtCosmochimica Acta68(5) ,pp.1159-1171 Wasson,J.T.,Huber,H.,Malvin,D.J.(2007)."FormationofIIABironmeteorites." GeochimicaetCosmochimicaActa71(3) ,pp.760-781. Wasson,J.T.andB.G.Choi(2003)."Main-grouppallasites:Chemicalcomposition,

103

relationshiptoIIIABirons,andorigin." GeochimicaetCosmochimicaActa 67(16), pp .3079-3096. Wasson,J.T.andG.W.Kallemeyn(2002)."TheIABiron-meteoritecomplex:A group,fivesubgroups,numerousgrouplets,closelyrelated,mainlyformedby crystalsegregationinrapidlycoolingmelts." GeochimicaetCosmochimica Acta66(13),pp .2445-2473. Wasson,J.T.andJ.W.Richardson(2001)."FractionationtrendsamongIVAiron meteorites:ContrastswithIIIABtrends." GeochimicaetCosmochimicaActa 65(6), pp.951-970. WassonJ.T.(1999)“TrappedmeltinIIIABirons:solid/liquidelementalpartitioning duringthefractionationoftheIIIABmagma.”GeochimicaetCosmochimica Acta 63,pp.2875–2889. WassonJ.T.,ChoiB.G.,JerdeE.A.,andUlff-MøllerF.(1998).“Chemical classificationofironmeteorites.PartXII:Newmembersofthemagmatic groups.”GeochimicaetCosmochimicaActa 62,pp.715–724. WassonJ.T.,OuyangX.W.,WangJ.M.,andJerdeE.(1989)“Chemical classificationofironmeteorites.PartXI:Multi-elementstudiesof38new ironsandthehighabundanceofungroupedironsfromAntarctica.” GeochimicaetCosmochimicaActa53 ,pp.735–744. WassonJ.T.andWangJ.M.(1986)Anon-magmaticoriginofgroupIIEiron meteorites. GeochimicaetCosmochimicaActa 50,pp.725–732. WassonJ.T.andWaiC.M.(1976)“ExplanationfortheverylowGaandGe concentrationsinsomeironmeteoritegroups.”Nature261, pp.114–116. WassonJ.T.(1971)“Chemicalclassificationofironmeteorites.PartV:GroupsIIIC andIIIDandotherironswithgermaniumconcentrationsbetween1and25 ppm.”Icarus14 ,pp.59–70. WassonJ.T.(1970)“Chemicalclassificationofironmeteorites.PartIV:Ironswith Geconcentrationsgreaterthan190ppmandothermeteoritesassociatedwith groupI.”Icarus12, pp.407–423. WassonJ.T.(1969)“Chemicalclassificationofironmeteorites.PartIII: andotherironswithgermaniumconcentrationsbetween80ppmand200 ppm.” GeochimicaetCosmochimicaActa 33,pp.859–876. WassonJ.T.(1967)“Chemicalclassificationofironmeteorites.PartI:Astudyof ironmeteoriteswithlowconcentrationsofgalliumandgermanium. GeochimicaetCosmochimicaActa31, pp.161–180.

104

WassonJ.T.andKimberlinJ.(1967)“Chemicalclassificationofironmeteorites. PartII:Ironsandpallasiteswithgermaniumconcentrationsbetween8and100 ppm.”GeochimicaetCosmochimicaActa 31,pp.2065–2093. Welton,,K.C.,Nishizumi,K.,Lavielle,B.,Caffee,M.W.,Hillegonds,D.J.,Finkel, R.C.,Kollar,D.,Masarik,J.(2008).“Thecomplexexposurehistoriesofthe PittsandHorseCreekironmeteorites:Implicationsformeteoritedelivery models.” MeteoriticsandPlanetaryScience43,n.8 ,pp.1321-1332. Wing,B.A.,andFarquhar,J.(2013)“PlanetarySulfurIsotopicBaselinefromLunar Basalts” GeochimicaetCosmochimicaActa,(submitted). Wolk,S.J.,Harnden,F.R.Jr.,Flaccomio,E.,Micela,G.,Favata,F.,Shang,H, Feigelson,E.D.(2005).“StellarActivityontheYoungofOrionCOUP ObservationsofK5-7Pre-Main-SequenceStars.” AstrophysicalJournal suppl.160 ,pp1-49. Woods,J.A.andHashimoto,A.(1993)“MineralEquilibriuminfractionatednebular systems.” GeochimicaetCosmochimicaActavol.57 ,pp.2377-2388. Woosley,S.E.andHegerA.(2007).“Nucleosynthesisandremnantsinmassivestars ofsolarmetallicity.” PhysicsReports , vol.442 ,pp.269-283. Woosley,S.E.andWeaver,T.A.(1995).“Theevolutionandexplosionofmassive stars2.Explosivehydrodynamicsandnucleosynthesis.” Astrophysical JournalSuppl.S.101 ,pp.181–235. YangJ.,Goldstein,J.I.,Michael,J.R.,Kotula,P.G.,Scott,E.R.D.(2010).“Thermal historyandoriginoftheIVBironmeteoritesandtheirparentbody.” GeochimicaetCosmochimicaActa74 ,pp.4493-4506. Yang,J.,Goldstein,J.I.,Scott,E.R.D.(2008).“Metallographiccoolingratesand originofIVAironmeteorites.” GeochimicaetCosmochimicaActa72 ,pp. 3043-3061.

105