NIST's New Password Rule Book

Total Page:16

File Type:pdf, Size:1020Kb

NIST's New Password Rule Book 100635 Journal vol 1 2019_Layout 1 12/12/18 12:52 PM Page 18 FEATURE NIST’s New Password Rule Book Updated Guidelines Offer Benefits and Risk Overview of the New Guidelines Do you have Previous NIST guidelines advocated a conventional something www.isaca.org/currentissue approach to password security based on policies to say about this such as strict complexity rules, regular password The updated US National Institute of Standards and article? resets and restricted password reuse.2 NIST’s new Technology (NIST) standards on password security Visit the Journal pages standards take a radically different approach.3 For published in the NIST Special Publication (SP) 800- of the ISACA® website example, password changes are not required unless 63-3 “Digital Identity Guidelines”1 represent a novel (www.isaca.org/journal), there is evidence of a compromise, and strict approach to improve IT security while working with, find the article and click complexity rules have been replaced by rather than against, the capabilities and limitations on the Comments link to construction flexibility, expanded character types, share your thoughts. of the weakest link in information security: the greater length and the prohibition of “bad” (i.e., users themselves. The updated NIST guidelines https://bit.ly/2zMRYU3 insecure) passwords. NIST’s new guidelines have offer adopters a number of advantages in usability the potential to make password-based and security while introducing new risk and authentication less frustrating for users and more implementation challenges. These issues should be effective at guarding access to IT resources, but carefully considered before, during and after there are tradeoffs. implementation of the new guidelines. The password requirement basics under the updated NIST SP 800-63-3 guidelines are:4 • Length—8-64 characters are recommended. • Character types—Nonstandard characters, such as emoticons, are allowed when possible. • Construction—Long passphrases are encouraged. They must not match entries in the prohibited password dictionary. • Reset—Required only if the password is compromised or forgotten. • Multifactor—Encouraged in all but the least sensitive applications. Bachman Fulmer, Ph.D., CISA Is an assistant professor of accounting at the University of Tampa (Florida, USA). He has worked in technology risk and assurance services for EY and as an internal auditor focused on technology, compliance and business process improvement. Melissa Walters, Ph.D. Is an associate professor of accounting at the University of Tampa. She has worked in systems implementation, control and support areas and teaches information systems and information systems control/auditing. Bill Arnold, CISSP Is the director of information security at the University of Tampa and is an information security analyst working in the areas of information security planning, implementation, assessment and management. 18 ISACA JOURNAL VOL 1 100635 Journal vol 1 2019_Layout 1 12/12/18 12:52 PM Page 19 Benefits and Risk, From the User’s phrase “Robert has been a Spartans fan since 7 Perspective 2010!” would generate “RhbaSfs2010!”). This 12- Enjoying character acronym generally meets strict password this article? The updated NIST password guidelines are construction requirements and provides sound designed to enhance security by addressing the security. However, the new NIST standards • Read human factors that often undermine intended encourage the use of the entire passphrase rather Implementing the password protection. Under the traditional approach than just the acronym. The 44-character original NIST Cybersecurity to password construction, users are asked to phrase presents a much greater cryptographic Framework. generate highly complex and difficult-to-guess challenge to crack than the 12-character acronym www.isaca.org/ passwords. These passwords must be reset on a and is probably easier for the user to remember. US-cyber- regular schedule, and restrictions generally prevent Figure 1 compares the NIST password approach to implementation users from consecutively recycling passwords. the traditional password approach. • Users are also instructed to refrain from using the Learn more same or similar passwords on multiple IT systems. about, discuss As all users know, this makes remembering and collaborate passwords very difficult. Otherwise well-intentioned UNDER THE NEW on information individuals often cope with these challenges by and cybersecurity ignoring advice and defaulting to common, easy-to- GUIDELINES, USERS ARE ISACA’s Online remember passwords, cycling previously used ENCOURAGED TO SELECT Forums. passwords, and making only minimal changes https://engage. between resets, among other effort-reducing LONGER, MEMORABLE isaca.org/online strategies.5 Others simply write them down and PASSPHRASES RATHER forums 6 post them in a convenient, but insecure location. THAN CRYPTIC Under the new guidelines, users are encouraged to CHARACTER STRINGS WITH select longer, memorable passphrases rather than cryptic character strings with complex construction COMPLEX CONSTRUCTION rules, as it is easier for users to remember coherent RULES. phrases than strings of random characters. This same logic inspired conventional advice to generate secure passwords via acronyms based on easily The new guidelines offer users increased flexibility remembered phrases that are meaningful to the and security without necessarily forcing them to user (e.g., taking the first letter of each word in the change their concept of a secure password. While Figure 1—Password Updates NIST Passwords Traditional Passwords Long memorable passphrases are encouraged. Length can be seen as an obstacle as it adds complexity. Example: “NIST passphrases make long passwords easy!” Example: “[z2#DSGDnr=[6y@g<q{@” Example: “I really look forward to spring weather in Upstate New York.” Memorable might be easy to guess. Example: “P@$$wORD” Problematic passwords are rejected by a dictionary. Example: Common passwords such as “123456” or Strict construction rules guide acceptable choices. “qwerty” and locally relevant passwords like a Example: Minimum length of eight upper and lower case mascot or team name characters, numbers, punctuation, or some combination of the above. Multifactor authentication provides an extra layer of security (e.g., mobile applications/software tokens, hardware tokens, biometrics, key fobs). ISACA JOURNAL VOL 1 19 100635 Journal vol 1 2019_Layout 1 12/12/18 12:52 PM Page 20 the guidelines facilitate and encourage the use of are rejected based on a specialized list. In the longer passphrases, the only construction absence of specific construction rules or restriction imposed under the NIST guidelines is a transparency into the prohibited list itself, users minimum eight-character password length. As such, may become frustrated if they encounter a series of users are not actually required to create passwords rejections. Moreover, for some users, a message that are appreciably different from those to which simply stating that their desired password was not they are accustomed under traditional complexity accepted because it appears on a prohibited list rules. They need only ensure that their password or may not be enough information to make their passphrase is of sufficient length and does not subsequent attempts successful. For users to take appear in a dictionary of prohibited passwords. full advantage of the opportunities for increased security, targeted training and support may be necessary. At the very least, users need basic guidance on how to select acceptable passwords NIST’S GUIDELINES under the new NIST guidelines or they may become 9 ALSO ENCOURAGE frustrated with the process. MULTIFACTOR A lingering threat is the ability of attackers to use personal information from public sources or to AUTHENTICATION IN ALL employ social-engineering techniques to make BUT THE LEAST SENSITIVE intelligent guesses at credentials. The example passphrase “Robert has been a Spartans fan since APPLICATIONS. 2010!” has many of the hallmarks of a good password: It is easy for the user to remember, is sufficiently lengthy and includes a variety of Users will also appreciate not having to change their character types. However, if the individual posts his password on a predefined schedule. Regular university affiliation, interest in school sports and password changes, which prevent the use of graduation date on Facebook (or other social compromised passwords over an extended period media), a motivated attacker could easily gather of time, create headaches for users who must and use this kind of personal information to shorten continually generate and remember new the path to a successful password guess. This type passwords. Users often compensate by making of vulnerability is not unique to the NIST guidelines, only small modifications to the password (such as but the greater flexibility allowed in password adding or switching a single character), which construction could make this weakness a more undermines the intent of the policy. The increased significant issue. effort incurred by forcing users to make regular password changes most likely outweighs the Benefits and Risk, From the Security potential benefit unless there is evidence of a Professional’s Perspective system breach or reason to believe a particular account has been compromised.8 Correspondingly, Security professionals are well aware that existing the new NIST guidelines recommend password guidelines designed to make passwords more resets only in cases where
Recommended publications
  • NSA Vs. Encryption Article Written by Datto Developer Dan Fuhry First Appeared on Mspmentor.Com in November 2013
    SuccessArticle: EncryptionStory NSA vs. Encryption Article written by Datto developer Dan Fuhry first appeared on MSPmentor.com in November 2013. If you’ve been watching the news lately, there is no doubt you have heard about the National Security Agency’s (NSA) surveillance scandal. “We will stand in our firm Recent months have seen a revelation of programs commitment to protect you and that capture domestic and international traffic indiscriminately. Encrypted data gets saved for a your customers.” certain number of years, in case they ever decide to decrypt it. If this alarms you, that’s good. You should be alarmed. I was too, on a very personal level, and have actively been working on changing some long-established habits in order to protect the information that is private and personal to me. For MSPs not in the United States you should be even more alarmed. It’s not even your own government that has the encrypted data, and since you don’t have constitutional protection in the U.S., there is nothing legally standing in the NSA’s way to prevent them from using their dark magical cryptographic powers to obtain your confidential business or personal data. This is a frightening proposition indeed, which is why I want to talk about the position Datto has taken regarding the recent revelations. Before we go any further, allow me to briefly describe my role here. I’m a developer with Datto, and I designed the encryption feature for Datto SIRIS. I picked the ciphers, hash algorithm parameters, and random number generator algorithm, had them peer-reviewed, and then wrote the code.
    [Show full text]
  • Analysis of Password Cracking Methods & Applications
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Spring 2015 Analysis of Password Cracking Methods & Applications John A. Chester The University Of Akron, [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Information Security Commons Recommended Citation Chester, John A., "Analysis of Password Cracking Methods & Applications" (2015). Honors Research Projects. 7. http://ideaexchange.uakron.edu/honors_research_projects/7 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Analysis of Password Cracking Methods & Applications John A. Chester The University of Akron Abstract -- This project examines the nature of password cracking and modern applications. Several applications for different platforms are studied. Different methods of cracking are explained, including dictionary attack, brute force, and rainbow tables. Password cracking across different mediums is examined. Hashing and how it affects password cracking is discussed. An implementation of two hash-based password cracking algorithms is developed, along with experimental results of their efficiency. I. Introduction Password cracking is the process of either guessing or recovering a password from stored locations or from a data transmission system [1].
    [Show full text]
  • Implementation and Performance Analysis of PBKDF2, Bcrypt, Scrypt Algorithms
    Implementation and Performance Analysis of PBKDF2, Bcrypt, Scrypt Algorithms Levent Ertaul, Manpreet Kaur, Venkata Arun Kumar R Gudise CSU East Bay, Hayward, CA, USA. [email protected], [email protected], [email protected] Abstract- With the increase in mobile wireless or data lookup. Whereas, Cryptographic hash functions are technologies, security breaches are also increasing. It has used for building blocks for HMACs which provides become critical to safeguard our sensitive information message authentication. They ensure integrity of the data from the wrongdoers. So, having strong password is that is transmitted. Collision free hash function is the one pivotal. As almost every website needs you to login and which can never have same hashes of different output. If a create a password, it’s tempting to use same password and b are inputs such that H (a) =H (b), and a ≠ b. for numerous websites like banks, shopping and social User chosen passwords shall not be used directly as networking websites. This way we are making our cryptographic keys as they have low entropy and information easily accessible to hackers. Hence, we need randomness properties [2].Password is the secret value from a strong application for password security and which the cryptographic key can be generated. Figure 1 management. In this paper, we are going to compare the shows the statics of increasing cybercrime every year. Hence performance of 3 key derivation algorithms, namely, there is a need for strong key generation algorithms which PBKDF2 (Password Based Key Derivation Function), can generate the keys which are nearly impossible for the Bcrypt and Scrypt.
    [Show full text]
  • Key Derivation Functions and Their GPU Implementation
    MASARYK UNIVERSITY FACULTY}w¡¢£¤¥¦§¨ OF I !"#$%&'()+,-./012345<yA|NFORMATICS Key derivation functions and their GPU implementation BACHELOR’S THESIS Ondrej Mosnáˇcek Brno, Spring 2015 This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/ cbna ii Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Ondrej Mosnáˇcek Advisor: Ing. Milan Brož iii Acknowledgement I would like to thank my supervisor for his guidance and support, and also for his extensive contributions to the Cryptsetup open- source project. Next, I would like to thank my family for their support and pa- tience and also to my friends who were falling behind schedule just like me and thus helped me not to panic. Last but not least, access to computing and storage facilities owned by parties and projects contributing to the National Grid In- frastructure MetaCentrum, provided under the programme “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005), is also greatly appreciated. v Abstract Key derivation functions are a key element of many cryptographic applications. Password-based key derivation functions are designed specifically to derive cryptographic keys from low-entropy sources (such as passwords or passphrases) and to counter brute-force and dictionary attacks. However, the most widely adopted standard for password-based key derivation, PBKDF2, as implemented in most applications, is highly susceptible to attacks using Graphics Process- ing Units (GPUs).
    [Show full text]
  • Thread Commissioning White Paper
    July 13, 2015 This Thread Technical white paper is provided for reference purposes only. The full technical specification is available to Thread Group Members. To join and gain access, please follow this link: http://threadgroup.org/Join.aspx. If you are already a member, the full specification is available in the Thread Group Portal: http://portal.threadgroup.org. If there are questions or comments on these technical papers, please send them to [email protected]. This document and the information contained herein is provided on an “AS IS” basis and THE THREAD GROUP DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT. IN NO EVENT WILL THE THREAD GROUP BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. Copyright 2015 Thread Group, Inc. All rights reserved. Thread Commissioning July 2015 Revision History Revision Date Comments 1.0 January 29, 2015 Initial Release 2.0 July 13, 2015 Public Release 1 Contents Introduction ................................................................................ 2 Terminology ................................................................................ 2 System Topology ............................................................................... 4 Degrees of Separation ..........................................................................................
    [Show full text]
  • Harden Zero Knowledge Password Proofs Against Offline Dictionary
    Harden Zero Knowledge Password Proofs Against Offline Dictionary Attacks Gijs Van Laer Rono Dasgupta Aditya Patil [email protected] [email protected] [email protected] Matthew Green [email protected] December 12, 2016 Abstract Traditional authentication systems offer ease of use but the security they provide often proves to be inadequate. Hackers use means to gain access to company servers and steal entire databases of password hashes. These hashes are then subject to offline dictionary attacks resulting in the disclosure of millions of passwords. Such password breaches have become commonplace and have caused several major companies to face major losses. Password reuse is a common practice among users and a password breach disclosing a single password on a particular service could result in a user also losing access to their other accounts. Solutions such as multi-factor authentication add some level of security but do not completely solve the problem. There is a need to move towards stronger authentication schemes that do not compromise on ease of use, both for the user and the service provider. In this paper, we propose a novel authentication protocol that is proven hard against offline dictionary attacks. Our protocol implements a combination of a Zero Knowledge Password Proof and a sequentially memory hard hash function. In a concrete instan- tiation of the protocol, we use Schnorr's Zero Knowledge Password Proof combined with the Fiat-Shamir Heuristic for the Zero Knowledge Password Proof and scrypt for the sequentially memory hard hash function. We also describe a library implementing our protocol that we have developed along with an example web application that uses the library.
    [Show full text]
  • II-2.03 Encryption Policy
    II-2.03 Encryption Policy The Universities at Shady Grove Effective Date: 5/01/2019 Policy Type: IT Security Policy Section II: Data Security PUBLIC Page 1 of 4 The Universities at Shady Grove is hereinafter referred to as "USG" and the Office of Information Technology as “OIT.” 1.0 Purpose The purpose of this policy is to outline USG's standards for use of encryption technology in order to properly secure and manage appropriately its data assets. There are additional USG security policies that reference the types of data that require encryption. This policy does not cover what types of data must be encrypted, but rather how encryption is to be implemented and controlled. 2.0 Scope The scope of this policy covers all data stored on or transmitted across USG-owned, USG- managed, and USG-leased systems, devices, media, and networks. This policy also applies to all USG hired personnel, contractors, and third-party services. 3.0 Policy 3.1 Encryption Minimum Standards USG requires the use of all encryption algorithms and standards to, at a minimum, comply with the following: • NIST Special Publication 800-175B (“Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms”), • Federal Information Processing Standards (FIPS) Publication 140-2 (“Security Requirements for Cryptographic Modules”), • Or any other superseding publication, regulation, or USM/State of Maryland policy The use of proprietary encryption is expressly forbidden since it has not been subjected to public inspection and its security cannot
    [Show full text]
  • Effect of Grammar on Security of Long Passwords
    Effect of Grammar on Security of Long Passwords Ashwini Rao Birendra Jha Gananand Kini Carnegie Mellon University Massachusetts Institute of Carnegie Mellon University [email protected] Technology [email protected] [email protected] ABSTRACT requirements, e.g. minimum 16 character passwords[21] and Use of long sentence-like or phrase-like passwords such as sentence-like or phrase-like passphrases[6, 11, 3, 12, 27]. In “abiggerbetterpassword”and“thecommunistfairy”is increas- the minimum 16 character password policy, the only restric- ing. In this paper, we study the role of grammatical struc- tion is that passwords cannot contain spaces. An example tures underlying such passwords in diminishing the security of a passphrase policy is “choose a password that contains of passwords. We show that the results of the study have at least 15 characters and at least four words with spaces direct bearing on the design of secure password policies, and between the words”[6]. The increase in the length of the on password crackers used for enforcing password security. password supposedly makes the password difficult to guess. Using an analytical model based on Parts-of-Speech tagging To memorize longer passwords users may rely on mem- we show that the decrease in search space due to the presence ory aids such as rules of English language grammar. Users of grammatical structures can be more than 50%. A signifi- may use memory aids voluntarily or due to policy recom- cant result of our work is that the strength of long passwords mendations. Our analysis of a set of 1434 passwords of 16 does not increase uniformly with length.
    [Show full text]
  • Securezip User Guide
    SecureZIP User Guide SecureZIP is an application for zipping files to save storage space as well as encrypting files with password control to protect information. SecureZIP not only works alone to perform the zipping and encryption functions but also integrates well with Microsoft Office 2010 to facilitate information security in Word, Excel, PowerPoint and Outlook. This user guide is divided into two parts. The first part describes the use of SecureZIP alone while the second part covers its use inside Microsoft Office applications. Part I. Using SecureZIP alone 1. The SecureZIP user interface There are two user interfaces in SecureZIP: Fluent interface and Conventional interface. The former is similar to the ribbon style in recent Microsoft Office applications while the latter is more like the traditional menu system. The Fluent interface has been set by default. Below is the screenshot image of the Fluent interface. If you want to change the SecureZIP interface to the conventional one, click Start to find the SecureZIP application and then select Switch User Interface there. After clicking Switch User Interface, you will see the following window: You may choose to keep the Fluent interface or change it to the Conventional interface. Below is the screenshot image of the Conventional interface. 2. Encryption Method and Encryption Algorithm You can encrypt files to secure the information when you add them to an archive. For additional security, you may also encrypt the names of files and folders in an archive so that no information will be disclosed without the encryption password. Strong encryption is always preferred since it is far more secure than the older traditional ZIP encryption.
    [Show full text]
  • Analysis and Processing of Cryptographic Protocols
    Analysis and Processing of Cryptographic Protocols Submitted in partial fulfilment of the requirements of the degree of Bachelor of Science (Honours) of Rhodes University Bradley Cowie Grahamstown, South Africa November 2009 Abstract The field of Information Security and the sub-field of Cryptographic Protocols are both vast and continually evolving fields. The use of cryptographic protocols as a means to provide security to web servers and services at the transport layer, by providing both en- cryption and authentication to data transfer, has become increasingly popular. However, it is noted that it is rather difficult to perform legitimate analysis, intrusion detection and debugging on data that has passed through a cryptographic protocol as it is encrypted. The aim of this thesis is to design a framework, named Project Bellerophon, that is capa- ble of decrypting traffic that has been encrypted by an arbitrary cryptographic protocol. Once the plain-text has been retrieved further analysis may take place. To aid in this an in depth investigation of the TLS protocol was undertaken. This pro- duced a detailed document considering the message structures and the related fields con- tained within these messages which are involved in the TLS handshake process. Detailed examples explaining the processes that are involved in obtaining and generating the var- ious cryptographic components were explored. A systems design was proposed, considering the role of each of the components required in order to produce an accurate decryption of traffic encrypted by a cryptographic protocol. Investigations into the accuracy and the efficiency of Project Bellerophon to decrypt specific test data were conducted.
    [Show full text]
  • Probabilistic Passphrase Cracking
    Probabilistic Passphrase Cracking Luc Gommans Radically Open Security February 12, 2018 Abstract Passphrases are an alternative to passwords that are supposed to be easier to remember for users. For passwords, cracking tools are widely available, helping us understand their strengths and weaknesses. For passphrase cracking, there is currently no common approach which is universally seen as the most effective way. In this work, we attempted to find and implement the most effective method. We compared Markov chains, n-grams and a hybrid dictionary attack. The latter was found to be most effective, both in terms of efficiency and the number of results. Excluding the time required to build the dictionary from English Wikipedia and Wikiquote articles, it took only 10 minutes to crack over 2.3 million unique passphrases by using a hybrid dictionary attack with hashcat. Future users could download such a dictionary without having to compile it manually from various sources. 1 1 Introduction Requirements for secure passwords are getting more and more stringent to stay ahead of the increase in computational capacity of commonly accessible sys- tems. Using passphrases, users can approach the problem differently: instead of a complex sequence of characters, form a string of random, common words. The most famous example is `correct horse battery staple': four words with no coherence, but many people in the field can recall this phrase without ever trying to memorize it[own]. Studies also show that users have fewer difficulties when memorizing a passphrase than when memorizing equally-strong random passwords[behavioral-analysis][pwd-memorability]. Password cracking tools, which help us understand the strength (or weakness) of passwords, are widely available.
    [Show full text]
  • 8 Steps to a Strong Password, Infographic
    8 steps to a strong password Imagine Lyrics Useful tips for your online protection A PASSWORD A;7;3oLSgkM’%3 epoxy hippo double pA5SWRD bread listen neuron plaza Word character alternatives Passphrase instead of password Imagine all the people living life Beware of a dictionary attack 1 do not work 2 A passphrase is a multi-word password that is specific 3 in peace... 4 Due to the growing sophistication of attacks, replacing letters and has meaning. This “hidden sense” makes the passphrase A few words of caution about passphrases. Although this A dictionary attack is a method of hacking your password with numbers or special characters does not work if the easier to remember for its creator. It is much harder to 8-word phrase looks like an unbeatable passphrase, by systematically entering similar terms from various original word mirrors an existing dictionary word. Attackers memorize passwords containing a long string of letters the opposite is true. Famous quotes and well-known phrases dictionaries. To prevent attackers cracking your password expect character alternatives and can predict their usage. (lower/upper case), numbers and characters than or lyrics are highly predictable. Cybercriminals exploit by this method, we suggest you use at least a 7-word a meaningful passphrase. databases of popular phrases, so it is not so dicult to crack passphrase with words in random order. your multi-word password. Change the order of words randomly. It will make your passphrase more secure. epoxy hippo double bread listen neuron PASSWORDS Your OTP is 364956 ****** plaza 6 months 27 million years More is better One passphrase for one site 2-Factor Authentication Use a password vault 5 Why a 7 word passphrase? Because password strength is 6 The basic rule is do not use the same passwords or 7 2FA is always a good way to deter attackers.
    [Show full text]