Commonly Used CPT Codes for CT (Computed Tomography)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pelvic Anatomyanatomy
PelvicPelvic AnatomyAnatomy RobertRobert E.E. Gutman,Gutman, MDMD ObjectivesObjectives UnderstandUnderstand pelvicpelvic anatomyanatomy Organs and structures of the female pelvis Vascular Supply Neurologic supply Pelvic and retroperitoneal contents and spaces Bony structures Connective tissue (fascia, ligaments) Pelvic floor and abdominal musculature DescribeDescribe functionalfunctional anatomyanatomy andand relevantrelevant pathophysiologypathophysiology Pelvic support Urinary continence Fecal continence AbdominalAbdominal WallWall RectusRectus FasciaFascia LayersLayers WhatWhat areare thethe layerslayers ofof thethe rectusrectus fasciafascia AboveAbove thethe arcuatearcuate line?line? BelowBelow thethe arcuatearcuate line?line? MedianMedial umbilicalumbilical fold Lateralligaments umbilical & folds folds BonyBony AnatomyAnatomy andand LigamentsLigaments BonyBony PelvisPelvis TheThe bonybony pelvispelvis isis comprisedcomprised ofof 22 innominateinnominate bones,bones, thethe sacrum,sacrum, andand thethe coccyx.coccyx. WhatWhat 33 piecespieces fusefuse toto makemake thethe InnominateInnominate bone?bone? PubisPubis IschiumIschium IliumIlium ClinicalClinical PelvimetryPelvimetry WhichWhich measurementsmeasurements thatthat cancan bebe mademade onon exam?exam? InletInlet DiagonalDiagonal ConjugateConjugate MidplaneMidplane InterspinousInterspinous diameterdiameter OutletOutlet TransverseTransverse diameterdiameter ((intertuberousintertuberous)) andand APAP diameterdiameter ((symphysissymphysis toto coccyx)coccyx) -
Systematic Approach to the Interpretation of Pelvis and Hip
Volume 37 • Number 26 December 31, 2014 Systematic Approach to the Interpretation of Pelvis and Hip Radiographs: How to Avoid Common Diagnostic Errors Through a Checklist Approach MAJ Matthew Minor, MD, and COL (Ret) Liem T. Bui-Mansfi eld, MD After participating in this activity, the diagnostic radiologist will be better able to identify the anatomical landmarks of the pelvis and hip on radiography, and become familiar with a systematic approach to the radiographic interpretation of the hip and pelvis using a checklist approach. initial imaging examination for the evaluation of hip or CME Category: General Radiology Subcategory: Musculoskeletal pelvic pain should be radiography. In addition to the com- Modality: Radiography plex anatomy of the pelvis and hip, subtle imaging fi ndings often indicating signifi cant pathology can be challenging to the veteran radiologist and even more perplexing to the Key Words: Pelvis and Hip Anatomy, Radiographic Checklist novice radiologist given the paradigm shift in radiology residency education. Radiography of the pelvis and hip is a commonly ordered examination in daily clinical practice. Therefore, it is impor- tant for diagnostic radiologists to be profi cient with its inter- The initial imaging examination for the evaluation pretation. The objective of this article is to present a simple of hip or pelvic pain should be radiography. but thorough method for accurate radiographic evaluation of the pelvis and hip. With the advent of cross-sectional imaging, a shift in residency training from radiography to CT and MR imag- Systematic Approach to the Interpretation of Pelvis ing has occurred; and as a result, the art of radiographic and Hip Radiographs interpretation has suffered dramatically. -
Disease Staging Software™ Reference Guide
Disease Staging Software™ Version 5.26 Reference Guide COPYRIGHT © 1999-2009 THOMSON REUTERS. ALL RIGHTS RESERVED. - 1 - Copyright © 1999-2009 Thomson Reuters. ALL RIGHTS RESERVED. MEDSTAT® Reg. U.S. Pat. & Tm. Off. All rights reserved. No part of this publication may be reproduced, translated or transmitted in any form, by photocopy, microfilm, xerography, recording or any other means, or stored or incorporated into any information retrieval system, electronic or mechanical, without the prior written permission of the copyright owner. Requests for permission to copy any part of this publication or for additional copies should be addressed to: Thomson Reuters 777 E. Eisenhower Pkwy. Ann Arbor, Michigan 48108. The software, data and other information to which this manual relates have been provided under the terms of a License Agreement with Thomson Reuters, Inc. All Thomson Reuters clients using Medstat Disease Staging Software® are required to obtain their own licenses for use of all applicable medical coding schemes including but not limited to: Major Diagnostic Categories (MDCs), Diagnosis Related Groups (DRGs), and ICD-9-CM. Trademarks: Medstat and Medstat Disease Staging Software are registered trademarks of Thomson Reuters, Inc. Intel and Pentium are registered trademarks of Intel Corporation. Microsoft, Windows, Windows NT, Windows 2000, and Windows XP are registered trademarks of Microsoft Corporation. SAS is a registered trademark of the SAS Institute, Inc. AIX and IBM are registered trademarks of the IBM Corporation. Sun and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. HP-UX is a registered trademark of the Hewlett-Packard Company. Linux® is the registered trademark of Linus Torvalds in the U.S. -
Applied Anatomy of the Hip RICARDO A
Applied Anatomy of the Hip RICARDO A. FERNANDEZ, MHS, PT, OCS, CSCS • Northwestern University The hip joint is more than just a ball-and- bones fuse in adults to form the easily recog- socket joint. It supports the weight of the nized “hip” bone. The pelvis, meaning bowl head, arms, and trunk, and it is the primary in Latin, is composed of three structures: the joint that distributes the forces between the innominates, the sacrum, and the coccyx pelvis and lower extremities.1 This joint is (Figure 1). formed from the articu- The ilium has a large flare, or iliac crest, Key PointsPoints lation of the proximal superiorly, with the easily palpable anterior femur with the innomi- superior iliac spine (ASIS) anterior with the The hip joint is structurally composed of nate at the acetabulum. anterior inferior iliac spine (AIIS) just inferior strong ligamentous and capsular compo- The joint is considered to it. Posteriorly, the crest of the ilium ends nents. important because it to form the posterior superior iliac spine can affect the spine and (PSIS). With respect to surface anatomy, Postural alignment of the bones and joints pelvis proximally and the PSIS is often marked as a dimple in the of the hip plays a role in determining the femur and patella skin. Clinicians attempting to identify pelvic functional gait patterns and forces associ- distally. The biomechan- or hip subluxations, leg-length discrepancies, ated with various supporting structures. ics of this joint are often or postural faults during examinations use There is a relationship between the hip misunderstood, and the these landmarks. -
Learn the Terms
Learn the Terms Healthcare is replete with poly-syllabic clinical terminology and unfamiliar acronyms. Learn the Terms is a quick guide for non- clinical personnel to what these terms mean. You can reference these terms below and others in the AHIA Electronic Audit Library – Terms and Acronyms section. Thanks to Theresa Crothers, RN, CMAS for her contribution. Theresa is a nurse auditor for United Audit Systems, Inc., and is 2005 President, American Association of Medical Audit Specialists. Endoscopic Radiologic (continued) EGD: Esophagogastroduodenoscopy is a test that allows the BE: Barium Enema, also known as a Lower GI, examines the lining of the esophagus, stomach, and upper duodenum to be lower intestine a� er the installation of Barium. visualized by the use of a fl exible fi ber-optic or video endoscope. This test is done to diagnose infl ammation, tumors, ulcers, and KUB: Kidney-Ureter-Bladder is an x-ray that shows the organs any other injury to the esophagus and duodenum. Conscious related to the kidney. Each kidney has a ureter that connects to Sedation is used. the bladder. ERCP: Endoscopic Retrograde Cholangio-Pancreatography Fluoroscopy: A continuous beam of x-ray to follow movement allows for the visualization of the pancreas, liver, and gallbladder, in the body. by using a fl exible lighted scope. A contrast medium is injected IVP: Intravenous Pylogram is an x-ray that shows the structures prior to the exam. Conscious Sedation is used. of the urinary tract using an IV contrast. It is done to evaluate Radiologic size and location of kidney stones, cause of urinary tract infections, and tumor diagnosis. -
2019 Radiology Cpt Codes
2019 RADIOLOGY CPT CODES BONE DENSITOMETRY 1 Bone Density/DEXA 77080 CT 1 CT Abd & Pelvis W/ Contrast 74177 1 CT Enterography W/ Contrast 74177 1 CT Max/Facial W/O Contrast 70486 # CT Sinus Complete W/O Contrast 70486 1 CT Abd & Pelvis W W/O Contrast 74178 1 CT Extremity Lower W/ Contrast 73701 1 CT Neck W/ Contrast 70491 # CT Sinus Limited W/O Contrast 76380 1 CT Abd & Pelvis W/O Contrast 74176 1 CT Extremity Lower W/O Contrast 73700 1 CT Neck W/O Contrast 70490 # CT Spine Cervical W/ Contrast 72126 1 CT Abd W/ Contrast 74160 1 CT Extremity Upper W/ Contrast 73201 1 CT Orbit/ IAC W/ Contrast 70481 # CT Spine Cervical W/O Contrast 72125 1 CT Abd W/O Contrast 74150 1 CT Extremity Upper W/O Contrast 73200 1 CT Orbit/ IAC W/O Contrast 70480 # CT Spine Lumbar W/ Contrast 72132 1 CT Abd W W/O Contrast 74170 1 CT Head W/ Contrast 70460 1 CT Orbit/ IAC W W/O Contrast 70482 # CT Spine Lumbar W/O Contrast 72131 1 CT Chest W/ Contrast 71260 1 CT Head W/O Contrast 70450 1 CT Pelvis W/ Contrast 72193 # CT Spine Thoracic W/ Contrast 72129 1 CT Chest W/O Contrast 71250 1 CT Head W W/O Contrast 70470 1 CT Pelvis W/O Contrast 72192 # CT Spine Thoracic W/O Contrast 72128 1 CT Chest W W/O Contrast 71270 1 CT Max/Facial W/ Contrast 70487 1 CT Pelvis W W/O Contrast 72194 # CT Stone Protocol W/O Contrast 74176 CTA 1 Cardiac Calcium Score only 75571 1 CT Angiogram Abd & Pelvis W W/O Contrast 74174 1 CT Angiogram Head W W/O Contrast 70496 # CT / CTA Heart W Contrast 75574 1 CT Angiogram Abdomen W W/O Contrast 74175 1 CT Angiogram Chest W W/O Contrast 71275 -
Patient Prep Instructions
SCHEDULING CENTER PHONE: (650) 723-6855 FAX: (650) 723-6036 ● HOSPITAL – 300 Pasteur Drive ● BLAKE WILBUR OUTPATIENT CLINIC – 900 Blake Wilbur Drive ● ADVANCE D MEDICINE CENTER/CANCER CENTER – 875 Blake Wilbur Drive ● STANFORD MEDICINE IMAGING CENTER – 451 Sherman Avenue, Palo Alto ● STANFORD MEDICINE OUTPATIENT CENTER – 450 Broadway, Redwood City PATIENT PREP INSTRUCTIONS PLEASE REGISTER 30 MINUTES PRIOR TO THE APPOINTMENT TIME Prior insurance authorization may be required by your insurance company for this radiology study. Please confirm that you have insurance approval. Please bring any insurance information (card & authorization) and the exam requisition with you to the appointment. Stanford Medicine Imaging Center: Monday-Friday 7:00am to 10:00pm Stanford Medicine Outpatient Center: Monday-Friday 7:00am to 10:00pm Blake Wilbur Outpatient Clinic Registration: Monday-Friday 7:00am to 9:30pm Saturday-Sunday 7:00am to 3:30pm AMC/Cancer Center Registration (1st floor Room CC 1227): Monday-Friday 7:00am to 5:00pm Hospital MRI Registration (Ground Floor): Monday-Friday 7:00am to 9:30pm Saturday-Sunday 7:00am to 2:30pm Nuclear Medicine & PET/CT Registration (2nd Floor H2200): Monday-Friday 7:00am to 5:00pm Hospital Radiology East Registration (1st Floor): Monday-Friday 6:45am to 6:00pm Hospital Registration (Main Admitting): Monday-Friday 5:30am to 9:30pm Saturday-Sunday 7:00am to 9:30pm DIABETIC PATIENTS: If you are a diabetic patient taking any medication that contains Metformin (Glucophage, Glucovance, Metaglip, Actoplus, Prandimet, Kombiglyze, Janumet, Avandamet, Fortamet, and Riomet) and are scheduled for an examination that requires IV contrast (CT, IVP or Arthrogram) DO NOT take your medication on the day of the exam and for 48 hours after. -
Imaging Services Order Guide Medicare Guidelines Require Explicit Written and Signed Provider Orders
Imaging Services 2021 Imaging Services Order Guide Medicare guidelines require explicit written and signed provider orders. This guide was created to assist you in ordering and authorizing exams accurately. Please obtain insurance authorizations before scheduling imaging studies. Call one of our licensed/certified technologists if you have questions or comments. NOTE: Please DO NOT call the department to schedule an appointment. CENTRALIZED SCHEDULING . 509-248-9592 GENERAL X-RAY . 509-895-0509 COMPUTED TOMOGRAPHY (CT) . 509-895-0507 MAGNETIC RESONANCE IMAGING (MRI) . 509-895-0505 NUCLEAR MEDICINE . 509-575-8099 `OHANA MAMMOGRAPHY . 509-574-3863 ULTRASOUND . 509-249-5154 VASCULAR ULTRASOUND–Memorial Heart & Vascular . 509-574-0243 VASCULAR STAT REFERRALS–Memorial Heart & Vascular . .509-494-0551 CARDIOVASCULAR SERVICES–Memorial Heart & Vascular . 509-574-0243 BONE DENSITY–Lakeview Campus . 509-972-1170 PROVIDER EMERGENCY . 509-248-7380 Option 0 Consultation of a Clinical Decision Support Mechanism is required to determine if advanced diagnostic imaging services (CT, MRI, Nuclear Medicine, PET) adheres to Appropriate Use Criteria. Order must include Decision Support Number (DSN), G-Code, and Modifier. PHONE | 509-895-0507 PHONE | 509-895-0507 2 3 CT/CAT Scan/Computed Tomography FAX | 509-576-6982 CT/CAT Scan/Computed Tomography FAX | 509-576-6982 *If patient is over 400 lbs., please call the CT department at 509-895-0507. *If patient is over 400 lbs., please call the CT department at 509-895-0507. Consultation of a Clinical Decision Support Mechanism is required. Order must include DSN, G-Code, and Modifier. Consultation of a Clinical Decision Support Mechanism is required. Order must include DSN, G-Code, and Modifier. -
Clinical Pelvic Anatomy
SECTION ONE • Fundamentals 1 Clinical pelvic anatomy Introduction 1 Anatomical points for obstetric analgesia 3 Obstetric anatomy 1 Gynaecological anatomy 5 The pelvic organs during pregnancy 1 Anatomy of the lower urinary tract 13 the necks of the femora tends to compress the pelvis Introduction from the sides, reducing the transverse diameters of this part of the pelvis (Fig. 1.1). At an intermediate level, opposite A thorough understanding of pelvic anatomy is essential for the third segment of the sacrum, the canal retains a circular clinical practice. Not only does it facilitate an understanding cross-section. With this picture in mind, the ‘average’ of the process of labour, it also allows an appreciation of diameters of the pelvis at brim, cavity, and outlet levels can the mechanisms of sexual function and reproduction, and be readily understood (Table 1.1). establishes a background to the understanding of gynae- The distortions from a circular cross-section, however, cological pathology. Congenital abnormalities are discussed are very modest. If, in circumstances of malnutrition or in Chapter 3. metabolic bone disease, the consolidation of bone is impaired, more gross distortion of the pelvic shape is liable to occur, and labour is likely to involve mechanical difficulty. Obstetric anatomy This is termed cephalopelvic disproportion. The changing cross-sectional shape of the true pelvis at different levels The bony pelvis – transverse oval at the brim and anteroposterior oval at the outlet – usually determines a fundamental feature of The girdle of bones formed by the sacrum and the two labour, i.e. that the ovoid fetal head enters the brim with its innominate bones has several important functions (Fig. -
What Are the Differences Between the Skeletons of a Human and a Bird?
What are the differences between the skeletons of a human and a bird? The avian (bird) skeleton has many features that resemble the human skeleton, and the majority of the bones are the same, they are only shaped different. The arm bones of the human consist of the humerus, the radius and the ulna. These bones are also found in the bird. The leg consists of a long femur which attaches to the pelvis and then two bones of the lower leg. In the bird, these two bones: the tibia and fibula are fused together. The head of both birds and humans is protected by a large cranium. The upper jaw of the human, and the upper beak of the bird is composed of a bone called the maxilla. The lower jaw, and lower beak is composed of a bone called the mandible. The main difference between the human and bird skeleton is that the bird's skeleton is adapted for flight. The bones of a bird are hollow which makes the skeleton lighter. The other differences between the bird and human skeleton are very apparent in the pectoral girdle, which is the place where the forelimbs attach to the spine. The bird's forelimbs are wings and must have a strong support system. The collarbone of the bird is fused to form the furculum, or wishbone. The "shoulderblade" of the human is actually a bone called the scapula, birds have a scapula and they also have an additional shoulder blade bone called the corocoid. Another obvious difference between the human and bird skeleton is the shape and size of the sternum. -
DISSERTATION INVESTIGATION of CATIONIC CONTRAST-ENHANCED COMPUTED TOMOGRAPHY for the EVALUATION of EQUINE ARTICULAR CARTILAGE Su
DISSERTATION INVESTIGATION OF CATIONIC CONTRAST-ENHANCED COMPUTED TOMOGRAPHY FOR THE EVALUATION OF EQUINE ARTICULAR CARTILAGE Submitted by Bradley B. Nelson Department of Clinical Sciences In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2017 Doctoral Committee: Advisor: Christopher E. Kawcak Co-Advisor: Laurie R. Goodrich C. Wayne McIlwraith Mark W. Grinstaff Myra F. Barrett Copyright by Bradley Bernard Nelson 2017 All Rights Reserved ABSTRACT INVESTIGATION OF CATIONIC CONTRAST-ENHANCED COMPUTED TOMOGRAPHY FOR THE EVALUATION OF EQUINE ARTICULAR CARTILAGE Osteoarthritis and articular cartilage injury are substantial problems in horses causing joint pain, lameness and decreased athleticism resonant of the afflictions that occur in humans. This debilitating joint disease causes progressive articular cartilage degeneration and coupled with a poor capacity to heal necessitates that articular cartilage injury is detected early before irreparable damage ensues. The use of diagnostic imaging is critical to identify and characterize articular cartilage injury, though currently available methods are unable to identify these early degenerative changes. Cationic contrast-enhanced computed tomography (CECT) uses a cationic contrast media (CA4+) to detect the early molecular changes that occur in the extracellular matrix. Glycosaminoglycans (GAGs) within the extracellular matrix are important for the providing the compressive stiffness of articular cartilage and their degradation is an early event in the development of osteoarthritis. Cationic CECT imaging capitalizes on the electrostatic attraction between CA4+ and GAGs; exposing the proportional relationship between the amount of GAGs present within and the amount of CA4+ that diffuses into the tissue. The amount of CA4+ that resides in the tissue is then quantified through CECT imaging and estimates tissue integrity through nondestructive assessment. -
Arthrogram Contrast Medium Will Be Injected Into the Joint
after ensuring the needle is in the right place the Arthrogram contrast medium will be injected into the joint. Consumer Information The injection may be accompanied by a feeling of fullness in the joint but should not be painful. Contributors: The contrast medium used depends on the exact A/Prof Howard Galloway nature of the Arthrogram and the specialist doctor MBBS, FRANZCR performing the Arthrogram. This is generally Ms Ann Revell, Dr Christine Walker, A/Prof Stacy Goergen iodinated contrast medium. If you are having an MRI Arthrogram, this will be What is an Arthrogram? followed by a very dilute mixture of MRI contrast (gadolinium chelates) together with sterile saline An Arthrogram is a diagnostic test which examines (mildly salty water). If you are having a CT the inside of a joint (e.g. shoulder, knee, wrist, Arthrogram, occasionally air is injected either on its ankle) to assess an injury or a symptom you may be own, or with a small amount of X-ray contrast prior experiencing. to the scan. The test is done by first injecting contrast medium Following the injections you will be taken to either (or “dye” as it is sometimes called) which outlines the MRI suite (for an MRI Arthrogram), or the CT the soft tissue structures in the joint (e.g. ligaments suite (for a CT Arthrogram), where the scan of the and cartilage) and makes them clearer to see on the joint will be performed. images or pictures that will be taken of the joint. This is usually done using fluoroscopy. Fluoroscopy uses X-rays to transmit moving images onto a Are there any after effects of an screen to guide the placement of the needle Arthrogram? containing the contrast medium.