Spectroscopic Analysis of the Gamma Doradus Variable HD 135825 with Ispec and Aspis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrodynamical Simulations of Convection-Related Stellar Micro-Variability II
A&A 506, 167–173 (2009) Astronomy DOI: 10.1051/0004-6361/200911930 & c ESO 2009 Astrophysics The CoRoT space mission: early results Special feature Hydrodynamical simulations of convection-related stellar micro-variability II. The enigmatic granulation background of the CoRoT target HD 49933 H.-G. Ludwig1,, R. Samadi2,M.Steffen3, T. Appourchaux4 ,F.Baudin4, K. Belkacem5, P. Boumier2, M.-J. Goupil2, and E. Michel2 1 GEPI, Observatoire de Paris, CNRS, Univ. Paris 7, 92195 Meudon Cedex, France e-mail: [email protected] 2 LESIA, Observatoire de Paris, CNRS (UMR 8109), Univ. Paris 6, Univ. Paris 7, 92195 Meudon Cedex, France 3 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany 4 Institut d’Astrophysique Spatiale, Univ. Paris 11, CNRS (UMR 8617), 91405 Orsay, France 5 Institut d’Astrophysique et de Géophysique de l’Université de Liège, Allée du 6 Août 17, 4000 Liège, Belgium Received 23 February 2009 / Accepted 17 April 2009 ABSTRACT Context. Local-box hydrodynamical model atmospheres provide statistical information about a star’s emergent radiation field which allows one to predict the level of its granulation-related micro-variability. Space-based photometry is now sufficiently accurate to test model predictions. Aims. We aim to model the photometric granulation background of HD 49933 as well as the Sun, and compare the predictions to the measurements obtained by the CoRoT and SOHO satellite missions. Methods. We construct hydrodynamical model atmospheres representing HD 49933 and the Sun, and use a previously developed scaling technique to obtain the observable disk-integrated brightness fluctuations. We further performed exploratory magneto- hydrodynamical simulations to gauge the impact of small scale magnetic fields on the synthetic light-curves. -
Limits from the Hubble Space Telescope on a Point Source in SN 1987A
Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. -
Highlights of Discoveries for $\Delta $ Scuti Variable Stars from the Kepler
Highlights of Discoveries for δ Scuti Variable Stars from the Kepler Era Joyce Ann Guzik1,∗ 1Los Alamos National Laboratory, Los Alamos, NM 87545 USA Correspondence*: Joyce Ann Guzik [email protected] ABSTRACT The NASA Kepler and follow-on K2 mission (2009-2018) left a legacy of data and discoveries, finding thousands of exoplanets, and also obtaining high-precision long time-series data for hundreds of thousands of stars, including many types of pulsating variables. Here we highlight a few of the ongoing discoveries from Kepler data on δ Scuti pulsating variables, which are core hydrogen-burning stars of about twice the mass of the Sun. We discuss many unsolved problems surrounding the properties of the variability in these stars, and the progress enabled by Kepler data in using pulsations to infer their interior structure, a field of research known as asteroseismology. Keywords: Stars: δ Scuti, Stars: γ Doradus, NASA Kepler Mission, asteroseismology, stellar pulsation 1 INTRODUCTION The long time-series, high-cadence, high-precision photometric observations of the NASA Kepler (2009- 2013) [Borucki et al., 2010; Gilliland et al., 2010; Koch et al., 2010] and follow-on K2 (2014-2018) [Howell et al., 2014] missions have revolutionized the study of stellar variability. The amount and quality of data provided by Kepler is nearly overwhelming, and will motivate follow-on observations and generate new discoveries for decades to come. Here we review some highlights of discoveries for δ Scuti (abbreviated as δ Sct) variable stars from the Kepler mission. The δ Sct variables are pre-main-sequence, main-sequence (core hydrogen-burning), or post-main-sequence (undergoing core contraction after core hydrogen burning, and beginning shell hydrogen burning) stars with spectral types A through mid-F, and masses around 2 solar masses. -
Exodata: a Python Package to Handle Large Exoplanet Catalogue Data
ExoData: A Python package to handle large exoplanet catalogue data Ryan Varley Department of Physics & Astronomy, University College London 132 Hampstead Road, London, NW1 2PS, United Kingdom [email protected] Abstract Exoplanet science often involves using the system parameters of real exoplanets for tasks such as simulations, fitting routines, and target selection for proposals. Several exoplanet catalogues are already well established but often lack a version history and code friendly interfaces. Software that bridges the barrier between the catalogues and code enables users to improve the specific repeatability of results by facilitating the retrieval of exact system parameters used in an arti- cles results along with unifying the equations and software used. As exoplanet science moves towards large data, gone are the days where researchers can recall the current population from memory. An interface able to query the population now becomes invaluable for target selection and population analysis. ExoData is a Python interface and exploratory analysis tool for the Open Exoplanet Cata- logue. It allows the loading of exoplanet systems into Python as objects (Planet, Star, Binary etc) from which common orbital and system equations can be calculated and measured parame- ters retrieved. This allows researchers to use tested code of the common equations they require (with units) and provides a large science input catalogue of planets for easy plotting and use in research. Advanced querying of targets are possible using the database and Python programming language. ExoData is also able to parse spectral types and fill in missing parameters according to programmable specifications and equations. Examples of use cases are integration of equations into data reduction pipelines, selecting planets for observing proposals and as an input catalogue to large scale simulation and analysis of planets. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Communications in Asteroseismology
Communications in Asteroseismology Volume 156 November/December, 2008 Communications in Asteroseismology Editor-in-Chief: Michel Breger, [email protected] Editorial Assistant: Daniela Klotz, [email protected] Layout & Production Manager: Paul Beck, [email protected] Language Editor: Natalie Sas, [email protected] Institut f¨ur Astronomie der Universit¨at Wien T¨urkenschanzstraße 17, A - 1180 Wien, Austria http://www.univie.ac.at/tops/CoAst/ [email protected] Editorial Board: Conny Aerts, Gerald Handler, Don Kurtz, Jaymie Matthews, Ennio Poretti Cover Illustration The Milky Way behind the dome of the 40-inch telescope at the Siding Spring Observatory, Australia. Data from this telescope is used in a paper by Handler & Shobbrook in this issue (see page 18). (Photo kindly provided by R. R. Shobbrook) British Library Cataloguing in Publication data. A Catalogue record for this book is available from the British Library. All rights reserved ISBN 978-3-7001-6539-2 ISSN 1021-2043 Copyright c 2008 by Austrian Academy of Sciences Vienna Austrian Academy of Sciences Press A-1011 Wien, Postfach 471, Postgasse 7/4 Tel. +43-1-515 81/DW 3402-3406, +43-1-512 9050 Fax +43-1-515 81/DW 3400 http://verlag.oeaw.ac.at, e-mail: [email protected] Comm. in Asteroseismology Vol. 156, 2008 Introductory Remarks The summer of 2008 was a densely packed season with a number of excellent astero- seismological conferences. CoAst will publish the proceedings of the Wroclaw, Liege and Vienna (JENAM) meetings. In fact, the proceedings of the HELAS Wroclaw conference is mailed to you together with this regular issue. -
Properties of Bright Variable Stars in Unusual Metal Rich
PROPERTIES OF BRIGHT VARIABLE STARS IN UNUSUAL METAL RICH CLUSTER NGC 6388 Gustavo A. Cardona V. AThesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2011 Committee: Andrew C. Layden, Advisor John B. Laird Dale W. Smith ii ABSTRACT Andrew C. Layden, Advisor We have searched for Long Period Variable (LPV) stars in the metal-rich cluster NGC 6388 using time series photometry in the V and I bandpasses. A CMD was created, which displays the tilted red HB at V = 17.5 mag. and the unusual prominent blue HB at V = 17 to 18 mag. Time-series photometry and periods have been presented for 63 variable stars, of which 30 are newly discovered variables. Of the known variables nine are LPVs. We are the first to present light curves for these stars and to classify their variability types. We find 3 LPVs as Mira, 6 as Semi-regulars (SR) and 1 as Irregular (Irr.), 18 are RR Lyrae, of which we present complementary time series and period for 14 of these stars, and 7 are Population II Cepheids, of which we present complementary time series and period for 4 of them. The newly discovered variables are all suspected LPV stars and we classified them, using time series photometry and periods, as Mira for 1 star, SR for 15 stars, Irr for 7 stars, Suspected Variables for 7 stars, out of which there are 3 very bright stars that could have overexposed the CCD, with no definite borderline between the SR and Irr stars. -
Discovery of Hybrid Γ Dor and Δ Sct Pulsations in BD+18 4914 Through MOST Spacebased Photometry
Comm. in Asteroseismology Vol. 148, 2006 Discovery of hybrid γ Dor and δ Sct pulsations in BD+18 4914 through MOST spacebased photometry J.F. Rowe1,J.M.Matthews1, C. Cameron1,D.A.Bohlender7, H. King1, R. Kuschnig1, D.B. Guenther2, A.F.J. Moffat3,S.M.Rucinski4, D. Sasselov5, G.A.H. Walker1,W.W.Weiss6 1 Department of Physics and Astronomy, University of British Columbia 6224 Agricultural Road, Vancouver BC V6T 1Z1 2 Department of Astronomy and Physics, St. Mary’s University Halifax, NS B3H 3C3, Canada 3 D´epartement de physique, Universit´edeMontr´eal C.P. 6128, Succ. Centre-Ville, Montr´eal, QC H3C 3J7, Canada 4 David Dunlap Observatory, University of Toronto P.O. Box 360, Richmond Hill, ON L4C 4Y6, Canada 5 Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138, USA 6 Institut f¨ur Astronomie, Universit¨at Wien T¨urkenschanzstrasse 17, A–1180 Wien, Austria 7 National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada Abstract We present a total of 57 days of contiguous, high-cadence photometry (14 days in 2004 and 43 in 2005) of the star BD+18 4914 obtained with the MOST1 satellite. We detect 16 frequencies down to a signal-to-noise of 3.6 (amplitude ∼ 0.5 mmag). Six of these are less than 3 cycles/day, and the other ten are between 7 and 16 cycles/day. We intrepret the low frequencies as g-mode γ Doradus-type pulsations and the others as δ Scuti-type p-modes, making BD+18 4914 one of the few known hybrid pulsators of its class. -
Stars Using Data from the NASA TESS Spacecraft
Characterizing Variability in Bright Metallic-Line A (Am) Stars Using Data from the NASA TESS Spacecraft Joyce Ann Guzik Los Alamos National Laboratory, MS T-082, Los Alamos, NM 87545 [email protected] Jason Jackiewicz Department of Astronomy, New Mexico State University, Las Cruces, NM Giovanni Catanzaro INAF--Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy Michael S. Soukup Los Alamos National Laboratory (retired), Albuquerque, NM 87111 Abstract Metallic-line A (Am) stars are main-sequence stars of around twice the mass of the Sun that show element abundance peculiarities in their spectra. The radiative levitation and diffusive settling processes responsible for these abundance anomalies should also deplete helium from the region of the envelope that drives d Scuti pulsations. Therefore, these stars are not expected to be d Scuti stars, which pulsate in multiple radial and nonradial modes with periods of around 2 hours. As part of the NASA TESS Guest Investigator Program, we proposed photometric observations in 2-minute cadence for samples of bright (visual magnitudes around 7-8) Am stars. Our 2020 SAS meeting paper reported on observations of 21 stars, finding one d Scuti star and two d Scuti / g Doradus hybrid candidates, as well as many stars with photometric variability possibly caused by rotation and starspots. Here we present an update including 34 additional stars observed up to February 2021, among them three d Sct stars and two d Sct / g Dor hybrid candidates. Confirming the pulsations in these stars requires further data analysis and follow-up observations, because of possible background stars or contamination in the TESS CCD pixels with scale 21 arc sec per pixel. -
The Tarantula – Revealed by X-Rays (T-Rex) a Definitive Chandra
TheTarantula{ Revealed byX-rays (T-ReX) A Definitive Chandra Investigation of 30 Doradus Our first impressions of spiral and irregular galaxies are defined by massive star-forming regions (MSFRs), signposts marking spiral arms, bars, and starbursts. They remind us that galaxies really are evolving, churned by the continuous injection of energy and processed material. MSFRs offer us a microcosm of starburst astrophysics, where winds from O and Wolf-Rayet (WR) stars combine with supernovae to carve up the neutral medium from which they formed, both triggering and suppressing new generations of stars. With X-ray observations we see the stars themselves|the engines that shape the larger view of a galaxy|along with the hot, shocked ISM created by massive star feedback, which in turn fills the superbubbles that define starburst clusters (Fig. 1). We propose the 2 Ms Chandra/ACIS-I X-ray Visionary Project T-ReX, an intensive study of 30 Doradus (The Tarantula Nebula) in the LMC, the most powerful MSFR in the Local Group. To date Chandra has invested just 114 ks in this iconic target|proportionally far less than other premier observatories (e.g. HST, VLT, Spitzer, VISTA)|revealing only the most massive stars and large-scale diffuse structures. This very deep observation is essential to engage the great power of Chandra's unparalleled spatial resolution, a unique resource that will remain unmatched for another decade. T-ReX will reveal the X-ray properties of hundreds of 30 Dor's low-metallicity massive stars [1], thousands of lower-mass pre-main sequence (pre-MS) stars that record its star formation history [2], and parsec-scale shocks from winds and supernovae that are shredding its ISM [3,4]. -
Arxiv:1202.1422V2 [Astro-Ph.SR] 17 Feb 2012 Dtdb .Bgi,M Eei,E Ihl&C Moutou C
Transiting planets, vibrating stars & their connection nd Proceedings of the 2 CoRoT symposium (14 - 17 June 2011, Marseille) Edited by A. Baglin, M. Deleuil, E. Michel & C. Moutou Some CoRoT highlights - A grip on stellar physics and beyond E. Michel1, A. Baglin1 and the CoRoT Team 1 LESIA, Observatoire de Paris, CNRS UMR 8109, Univ. Pierre et Marie Curie, Univ. Paris Diderot, pl. J. Janssen, 92195 Meudon, France [[email protected]] Abstract. About 2 years ago, back in 2009, the first CoRoT Symposium was the occasion to present and discuss unprecedented data revealing the behaviour of stars at the micro- magnitude level. Since then, the observations have been going on, the target sample has enriched and the work of analysis of these data keeps producing first rank results. These analyses are providing the material to address open questions of stellar structure and evolution and to test the so many physical processes at work in stars. Based on this material, an increasing number of interpretation studies is being published, addressing various key aspects: the extension of mixed cores, the structure of near surface convective zones, magnetic activity, mass loss, ... Definitive conclusions will require cross-comparison of results on a larger ground (still being built), but it is already possible at the time of this Second CoRoT Symposium, to show how the various existing results take place in a general framework and contribute to complete our initial scientific objectives. A few results already reveal the potential interest in considering stars and planets globally, as it is stressed in several talks at this symposium. -
Magnetic Fields in Massive Stars, Their Winds, and Their Nebulae
Noname manuscript No. (will be inserted by the editor) Magnetic Fields in Massive Stars, their Winds, and their Nebulae Rolf Walder · Doris Folini · Georges Meynet Received: date / Accepted: date Abstract Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives – ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment – fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non- thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30 kG (Ap / Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. R. Walder CRAL: Centre de Recherche Astrophysique de Lyon ENS-Lyon, 46, all´ee d’Italie 69364 Lyon Cedex 07, France UMR CNRS 5574, Universit´ede Lyon E-mail: [email protected] D.