An Accurate Solution of the Self-Similar Orbit-Averaged Fokker- Planck Equation for Core-Collapsing Isotropic Globular Clusters: Properties and Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Star Dust National Capital Astronomers, Inc
Star Dust National Capital Astronomers, Inc. April 10, 2010 Volume 68, Issue 8 http://capitalastronomers.org Next Meeting April 2010: Dr. David J. Thompson When: Sat. Apr. 10, 2010 NASA Goddard Space Flight Center Deputy Project Scientist Time: 7:30 pm Fermi Gamma-ray Space Telescope Where: UM Observatory Highlights from the Fermi Speaker: David Thompson, Gamma-ray Space Telescope NASA Goddard Abstract: Since August, 2008, the Fermi Gamma-ray Space Telescope has Table of Contents been scanning the sky, producing a full-sky image every three hours. The Preview of Apr. 2010 Talk 1 cosmic gamma-rays recorded by Fermi come from extreme astrophysical Spectacular Spiral 2 phenomena. Some key observations include: Octavia Occultation 3 (1) Gamma-rays from pulsars appear to come from a region well above Occultations 4 the surface of the neutron star; Arlington Planetarium 5 (2) Multiwavelength studies of blazars show that simple models of jet Calendar 5 emission are not always adequate to explain what is seen; (3) Gamma-ray bursts can exhibit strong emission at high energies even from Directions to Dinner/Meeting distant bursts, with implications for some models of quantum gravity; Members and guests are invited to (4) Cosmic-ray electrons at energies approaching 1 TeV seem to suggest join us for dinner at the Garden a local source for some of these particles. Restaurant located in the UMUC Inn & Conference Center, 3501 Biography: Dave Thompson University Blvd E. The meeting is received his PhD in physics held at the UM Astronomy from the University of Maryland Observatory on Metzerott Rd about in 1973 and almost immediately started a job at NASA Goddard halfway between Adelphi Rd and Space Flight Center with the University Blvd. -
Guide Du Ciel Profond
Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 . -
Prime Focus After Sunset
Highlights of the April Sky. - - - 1st - - - Dusk: Mercury is 10º above the western horizon Prime Focus after sunset. Continues until the 15th. A Publication of the Kalamazoo Astronomical Society - - - 3rd - - - Dawn: Antares is 1º below April 2010 the Moon before sunrise. - - - 6th - - - Last Quarter Moon ThisThis MonthsMonths KAS EventsEvents - - - 11th - - - Dawn: Waning Crescent Moon is 5º above Jupiter. General Meeting: Friday, April 9 @ 7:00 pm th - - - 13 - - - PM: Mars is less than 2º Kalamazoo Area Math & Science Center - See Page 8 for Details from the Beehive Cluster (M44) in Cancer. Continues until the 20th. Observing Session: Saturday, April 10 @ 8:00 pm - - - 14th - - - Saturn & Orion Nebula - Kalamazoo Nature Center New Moon th Observing Session: Saturday, April 17 @ 8:00 pm - - - 15 - - - Dusk: Mercury and a very Saturn & Open Clusters - Kalamazoo Nature Center thin crescent Moon 7º to lower right of Venus. Look low on western horizon. Astronomy Day: Saturday, April 24 @ 10:00 am low on western horizon. Kalamazoo Valley Museum & Fetzer Center - See Page 3 for Details - - - 16st - - - PM: Waxing Crescent Moon is 8º above Venus. PM: Pleiades is 3.5º above the Moon/Mercury pair. InsideInside thethe Newsletter.Newsletter. .. .. - - - 21st - - - First Quarter Moon March Meeting Minutes......................... p. 2 - - - 23rd - - - PM: Venus and Pleiades fit Board Meeting Minutes......................... p. 2 within a 5º field-of-view. Astronomy Day 2010............................ p. 3 - - - 24th - - - Astronomy Day Spectacular Spiral................................... p. 4 PM: Waxing Gibbous Moon NASA Space Place.................................. p. 5 is lower right of Saturn. April Night Sky........................................ p. 6 - - - 25th - - - PM: Waxing Gibbous Moon KAS Officers & Announcements........ p. 7 is lower left of Saturn. -
Chemical Characterisation of the Globular Cluster NGC 5634 Associated to the Sagittarius Dwarf Spheroidal Galaxy?,?? E
A&A 600, A118 (2017) Astronomy DOI: 10.1051/0004-6361/201630004 & c ESO 2017 Astrophysics Chemical characterisation of the globular cluster NGC 5634 associated to the Sagittarius dwarf spheroidal galaxy?,?? E. Carretta1, A. Bragaglia1, S. Lucatello2, V. D’Orazi2; 3; 4, R. G. Gratton2, P. Donati1; 5, A. Sollima1, and C. Sneden6 1 INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia 4 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia 5 Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6, 40127 Bologna, Italy 6 Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712, USA Received 3 November 2016 / Accepted 4 January 2017 ABSTRACT As part of our on-going project on the homogeneous chemical characterisation of multiple stellar populations in globular clusters (GCs), we studied NGC 5634, associated to the Sagittarius dwarf spheroidal galaxy, using high-resolution spectroscopy of red giant stars collected with VLT/FLAMES. We present here the radial velocity distribution of the 45 observed stars, 43 of which are cluster members, the detailed chemical abundance of 22 species for the seven stars observed with UVES-FLAMES, and the abundance of six elements for stars observed with GIRAFFE. On our homogeneous UVES metallicity scale, we derived a low-metallicity [Fe/H] = −1:867 ± 0:019 ± 0:065 dex (±statistical ±systematic error) with σ = 0:050 dex (7 stars). -
98763 Conroy 2011 Apj 741 72
Evidence Against Dark Matter Halos Surrounding the Globular Clusters Mgc1 and Ngc 2419 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Conroy, Charlie, Abraham Loeb, and David N. Spergel. 2011. “EVIDENCE AGAINST DARK MATTER HALOS SURROUNDING THE GLOBULAR CLUSTERS MGC1 AND NGC 2419.” The Astrophysical Journal 741 (2): 72. https://doi.org/10.1088/0004-637x/741/2/72. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41393159 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 741:72 (5pp), 2011 November 10 doi:10.1088/0004-637X/741/2/72 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. EVIDENCE AGAINST DARK MATTER HALOS SURROUNDING THE GLOBULAR CLUSTERS MGC1 AND NGC 2419 Charlie Conroy1, Abraham Loeb1, and David N. Spergel2 1 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA 2 Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA Received 2011 August 3; accepted 2011 August 3; published 2011 October 18 ABSTRACT The conjecture that the ancient globular clusters (GCs) formed at the center of their own dark matter (DM) halos was first proposed by Peebles in 1984 and has recently been revived to explain the puzzling abundance patterns observed within many GCs. In this paper, we demonstrate that the outer stellar density profile of isolated GCs is very sensitive to the presence of an extended dark halo. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Canes Venatici I Cloud of Galaxies Seen in the Hα Line
A&A 479, 603–624 (2008) Astronomy DOI: 10.1051/0004-6361:20078652 & c ESO 2008 Astrophysics Canes Venatici I cloud of galaxies seen in the Hα line S. S. Kaisin and I. D. Karachentsev Special Astrophysical Observatory, Russian Academy of Sciences, N. Arkhyz, KChR, 369167, Russia e-mail: [email protected] Received 11 September 2007 / Accepted 25 September 2007 ABSTRACT We present results of Hα imaging for 42 galaxies in the nearby low-density cloud Canes Venatici I, populated mainly by late-type objects. Estimates of the Hα flux and integrated star formation rate (SFR) are now available for all 78 known members of this scattered system, spanning a large range in luminosity, surface brightness, HI content and SFR. Distributions of the CVnI galaxies versus their SFR, blue absolute magnitude and total hydrogen mass, are given in comparison with those for a population of the nearby virialized group around M 81. We found no essential correlation between star formation activity in a galaxy and its density environment. The bulk of CVnI galaxies had enough time to generate their baryon mass with the observed SFR. Most of them also possess a supply of gas that is sufficient to maintain their observed SFRs during the next Hubble time. Key words. galaxies: evolution – galaxies: ISM – galaxies: dwarf 1. Introduction 2. Observations and data reduction The distribution over the sky of 500 galaxies of the Local CCD images in the Hα-line and continuum were obtained for Volume, with distances within 10 Mpc, shows considerable in- 42 galaxies of the CVnI cloud during observing runs from March homogeneities due to the presence of groups and voids. -
Snake River Skies the Newsletter of the Magic Valley Astronomical Society
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message June 2018 Saturday, June 9th 2018 7:00pm at the Toward the end of last month I gave two presentations to two very different groups. Herrett Center for Arts & Science College of Southern Idaho. One was at the Sawtooth Botanical Gardens in their central meeting room and covered the spring constellations plus some simple setups for astrophotography. Public Star Party Follows at the The other was for the Sun Valley Company and was a telescope viewing session Centennial Observatory given on the lawn near the outdoor pavilion. The composition of the two groups couldn’t be more different and yet their queries and interests were almost identical. Club Officers Both audiences were genuinely curious about the universe and their questions covered a wide range of topics. How old is the moon? What is a star made of? Tim Frazier, President How many exoplanets are there? And, of course, the big one: Is there life out [email protected] there? Robert Mayer, Vice President The SBG’s observing session was rained out but the skies did clear for the Sun [email protected] Valley presentation. As the SV guests viewed the moon and Jupiter, I answered their questions and pointed out how one of Jupiter’s moons was disappearing Gary Leavitt, Secretary behind the planet and how the mountains on our moon were casting shadows into [email protected] the craters. Regardless of their age, everyone was surprised at the details they 208-731-7476 could see and many expressed their amazement at what was “out there”. -
The Astrophysical Journal Supplement Series, 45:259-334
.259W The Astrophysical Journal Supplement Series, 45:259-334, 1981 February 45. © 1981. The American Astronomical Society. All rights reserved. Printed in U.S.A. ... 198lApJS A CATALOG OF RADIAL VELOCITIES IN GALACTIC GLOBULAR CLUSTERS1 R. F. Webbink Department of Astronomy, University of Illinois at Urbana-Champaign Received 1980 February 25; accepted 1980 July 9 ABSTRACT A catalog of all stellar and integrated radial velocities of galactic globular clusters published prior to 1980 is assembled here. Known systematic errors in the data are discussed, and data on 686 stars and 85 globular clusters are presented in the body of the catalog; an Appendix lists published radial velocities in 4 dwarf spheroidal satellites of the Galaxy. Weighted mean velocities for each of the 89 systems in the catalog and Appendix are calculated. Subject headings: clusters: globular— stars: catalogs I. INTRODUCTION data. No catalog of individual stellar and cluster veloci- Radial velocities of galactic globular clusters were ties exists as such. first obtained in the pioneering surveys by Slipher (1918, The present catalog is intended to fill the need for a 1919, 1922, 1924), at Lowell Observatory, and by San- comprehensive listing of all available globular cluster ford (1918, 1919a,6), at Mount Wilson, who together radial velocity data and to provide a systematic reassess- obtained velocities of 18 clusters. In the more than 60 ment of the cluster velocities on this basis. To the best of years since those studies, several other radial velocity the author’s knowledge, all data published prior to 1980 surveys have been published, of which the most exten- January 1 are included here. -
Globular Clusters in the Local Group As Probes of Galaxy Assembly
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Globular clusters in the Local Group as probes of galaxy assembly Jovan Veljanoski Doctor of Philosophy The University of Edinburgh 13 June 2014 Lay Summary Understanding the formation and evolution of galaxies is one of the most active areas of research in astrophysics. Gradual build-up of matter by merging pre-galactic fragments is the current preferred model of constructing massive galaxies. A key prediction of this theory is that outskirts nearby galaxies should contain remnants of this assembly process in the form of fragmented stellar streams. Found in all but the smallest of galaxies, globular star clusters (GC) are excellent probes for studying properties of galaxies. Having high luminosities, they are favourable targets in the outer regions of galaxies where the associated stellar surface brightness is low. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
Wide-Field Survey of Dwarf Satellite Systems Around 10 Hosts in the Local Volume
Draft version February 12, 2020 Typeset using LATEX twocolumn style in AASTeX62 Wide-Field Survey of Dwarf Satellite Systems Around 10 Hosts in the Local Volume Scott G. Carlsten,1 Johnny P. Greco,2, ∗ Rachael L. Beaton,1, 3, y and Jenny E. Greene1 1Department of Astrophysical Sciences, 4 Ivy Lane, Princeton University, Princeton, NJ 08544 2Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210, USA 3The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (Accepted February 12, 2020) Submitted to ApJ ABSTRACT We present the results of an extensive search for dwarf satellite galaxies around 10 primary host galaxies in the Local Volume (LV, D<12 Mpc) using archival CFHT/MegaCam imaging data. The hosts span a wide range in properties, with stellar masses ranging from that of the LMC to 3 times ∼ that of the Milky Way (MW). The surveyed hosts are: NGC 1023, NGC 1156, NGC 2903, NGC 4258, NGC 4565, NGC 4631, NGC 5023, M51, M64, and M104. We detect satellite candidates using a consistent semi-automated detection algorithm that is optimized for the detection of low surface brightness objects. Depending on the host, our completeness limit is Mg 8 to 10 (assuming the ∼ − − −2 distance of the host). We detect objects with surface brightness down to µ0;g 26 mag arcsec at ∼ & 90% completeness. The survey areas of the six best-surveyed hosts cover most of the inner projected R < 150 kpc area, which will roughly double the number of massive LV hosts surveyed at this level of area and luminosity completeness, once distances are measured for the candidates.