Kinetic Modeling and Mechanisms For

Total Page:16

File Type:pdf, Size:1020Kb

Kinetic Modeling and Mechanisms For KINETIC MODELING AND MECHANISMS FOR CATALYTIC UPGRADE OF BIOMASS DERIVATIVES by Matthew A. Christiansen A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering Summer 2014 © 2014 Matthew A. Christiansen All Rights Reserved UMI Number: 3642300 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3642300 Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 KINETIC MODELING AND MECHANISMS FOR CATALYTIC UPGRADE OF BIOMASS DERIVATIVES by Matthew A. Christiansen Approved: __________________________________________________________ Abraham M. Lenhoff, Ph.D. Chair of the Department of Chemical and Biomolecular Engineering Approved: __________________________________________________________ Babatunde A. Ogunnaike, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Dionisios G. Vlachos, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Michael T. Klein, Sc.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Bingjun Xu, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Raymond J. Gorte, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Douglas J. Doren, Ph.D. Member of dissertation committee ACKNOWLEDGMENTS First of all, I thank my advisor Professor Dion Vlachos for all of the mentoring, instruction, and time he provided while I pursued my degree at UD. His efforts to provide a well-rounded education for the members of his group are seldom duplicated in academia, and it has been a privilege to work with him. I am also grateful to Professors Jingguang Chen, Michael Klein, Bingjun Xu, Raymond Gorte, and Douglas Doren who, having each served as members of my committee at various times, provided valuable guidance and feedback. I thank the National Science Foundation and the U.S. Department of Energy for funding my research, the latter in connection with the Catalysis Center for Energy Innovation (CCEI). I am also grateful to have had access to computational resources through the Teragrid project, the Extreme Science and Engineering Discovery Environment (XSEDE), and the National Energy Research Scientific Computing Center (NERSC). A number of other individuals have been especially helpful while I have carried out my graduate work. Sheila Boulden, Gina Frushon, Marguerite Mahoney, and Kathie Young have collectively helped me with the ins and outs of logistical and departmental matters more times than I can count, for which I am very grateful. I thank Dr. Jeffrey Frey and many others in UD IT for their efforts to administer the computer clusters and answer my questions. I sincerely thank Professor Giannis Mpourmpakis, Professor Michail Stamatakis, Professor Rafael Catapan, Dr. Stavros Caratzoulas, and Dr. Glen Jenness for the wonderful collaborations and discussions we have had. I am very grateful to Dr. Michael Salciccioli for technical guidance as I v learned microkinetic modeling and for regular mentoring discussions. Dr. Nasser Abukhdeir, Dr. Ying Chen, Dr. Danielle Hansgen, Dr. Bill Lonergan, Dr. Jake McGill, Dr. Matthew Mettler, Nima Nikbin, Dr. Jonathan Sutton, Dr. Sarah Tupy, and Vassili Vorotnikov graciously offered their time for discussions and provided valuable guidance and advice on everything from coursework and calculations to paper writing and presentations. I also thank Hannah Phillips for the work she did during a summer research project. On a personal note, I am very grateful to my family for their support as I have pursued my degree. My wife Carrie and my daughter Grace always encouraged and motivated me to do my best. Likewise, my parents David and Cindy taught me from early on to go after challenges and to persevere. I am also grateful to God, my Heavenly Father, for guidance and support in all aspects of my life. vi TABLE OF CONTENTS LIST OF TABLES ........................................................................................................ xi LIST OF FIGURES ..................................................................................................... xiv ABSTRACT .............................................................................................................. xxiii Chapter 1 INTRODUCTION .............................................................................................. 1 1.1 Biomass Utilization for Chemicals Production ......................................... 1 1.2 Fundamental Kinetic Modeling: Capabilities and Challenges .................. 2 1.3 Dissertation Scope and Structure ............................................................... 5 2 KINETIC MODELING METHODOLOGY ...................................................... 8 2.1 Transition State Theory, Collision Theory, and Rate Constants ............... 9 2.2 Density Functional Theory Calculations ................................................. 11 2.2.1 Exchange-Correlation Functionals .............................................. 12 2.2.2 Systems with Periodic Symmetry ................................................ 13 2.2.3 Transition State Searches ............................................................ 13 2.2.4 Calculation of Vibrational Frequencies ....................................... 14 2.2.5 Density of States Analysis ........................................................... 15 2.2.6 Calculation of Energetics and Coverage Effects ......................... 15 2.3 Computing Thermodynamic State Properties ......................................... 17 2.4 Thermodynamic Consistency .................................................................. 19 2.5 Semi-empirical Correlations: Brønsted-Evans-Polanyi Relationships .... 21 2.6 Multi-site Kinetics ................................................................................... 22 2.7 Analysis Tools for Microkinetic Modeling ............................................. 22 2.7.1 Rates in Microkinetic Modeling .................................................. 23 2.7.2 Reaction Path Analysis and Partial Equilibrium Analysis .......... 24 2.7.3 Rate-Determining Steps (RDS) and Most Abundant Surface Intermediates (MASI) .................................................................. 25 2.7.4 Model Reduction ......................................................................... 26 2.8 Acknowledgments ................................................................................... 27 vii 3 MICROKINETIC MODELING OF Pt-CATALYZED ETHYLENE GLYCOL STEAM REFORMING ................................................................... 28 3.1 Introduction ............................................................................................. 28 3.2 Model Development ................................................................................ 30 3.3 Model Assessment and Analysis ............................................................. 36 3.4 Conclusions ............................................................................................. 46 3.5 Acknowledgments ................................................................................... 47 4 DFT-COMPUTED MECHANISMS OF ETHYLENE AND DIETHYL ETHER FORMATION FROM ETHANOL ON γ-Al2O3(100) ....................... 48 4.1 Introduction ............................................................................................. 48 4.2 Computational Methods .......................................................................... 50 4.3 Adsorbate Stability and Structure ............................................................ 51 4.4 Reaction Energetics and Kinetics ............................................................ 59 4.4.1
Recommended publications
  • Toxicological Profile for Glyphosate Were
    A f Toxicological Profile for Glyphosate August 2020 GLYPHOSATE II DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. GLYPHOSATE III FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health. The adequacy of information to determine a substance's
    [Show full text]
  • Secondary Electrospray Ionization Proceeds Via Gas-Phase Chemical Ionization Cite This: Anal
    Analytical Methods View Article Online PAPER View Journal | View Issue Secondary electrospray ionization proceeds via gas-phase chemical ionization Cite this: Anal. Methods,2017,9,5052 Alberto Tejero Rioseras, abc Martin Thomas Gaugga and Pablo Martinez-Lozano Sinues *ad Our main goal was to gain further insights into the mechanism by which gas-phase analytes are ionized by interaction with plumes of electrospray solvents. We exposed target vapors to electrosprays of either water or deuterated water and mass analyzed them. Regardless of the solvent used, the analytes were detected in Received 30th April 2017 protonated form. In contrast, when the ionization chamber was humidified with deuterated water, the target Accepted 20th June 2017 vapors were detected in deuterated form. These observations suggest that either there is no interaction DOI: 10.1039/c7ay01121k between analytes and electrospray charged droplets, or if there is any, a subsequent gas-phase ion– rsc.li/methods molecule reaction governs the process. Implications in practical examples such as breath analysis are discussed. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction While it is generally accepted that SESI coupled to modern atmospheric pressure mass spectrometry is a sensitive method to The concept of “ambient ionization-mass spectrometry” detect gases at trace concentrations in real-time, the lack of full essentially involves the exciting possibility of direct analysis understanding of the SESI mechanism prevents making rational with minimal sample preparation.1,2 Well before a plethora of choices for the optimal parameters. In addition, with the advent of acronyms describing ambient ionization methods emerged several ambient mass spectrometry techniques with overlapping during the second half of the 2000's, a number of pioneering features, fundamental aspects of such techniques have been blur- papers describing similar concepts were presented.
    [Show full text]
  • Small Angle Neutron Scattering Contrast Variation Reveals Heterogeneities of Interactions in Protein Gels
    Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels A. Banc1, C. Charbonneau1, M. Dahesh1,2, M-S Appavou3, Z. Fu3, M-H. Morel2, L. Ramos1 1 Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France 2 UMR IATE, UM-CIRAD-INRA-SupAgro, 2 pl Pierre Viala, 34070 Montpellier, France. 3 Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich, Outstation at MLZ, D-85747 Garching, Germany Abstract The structure of model gluten protein gels prepared in ethanol/water is investigated by small angle X-ray (SAXS) and neutrons (SANS) scattering. We show that gluten gels display radically different SAXS and SANS profiles when the solvent is (at least partially) deuterated. The detailed analysis of the SANS signal as a function of the solvent deuteration demonstrates heterogeneities of sample deuteration at different length scales. The progressive exchange between the protons (H) of the proteins and the deuteriums (D) of the solvent is inhomogeneous and 60 nm large zones that are enriched in H are evidenced. In addition, at low protein concentration, in the sol state, solvent deuteration induces a liquid/liquid phase separation. Complementary biochemical and structure analyses show that the denser protein phase is more protonated and specifically enriched in glutenin, the polymeric fraction of gluten proteins. These findings suggest that the presence of H-rich zones in gluten gels would arise from the preferential interaction of glutenin polymers through a tight network of non- exchangeable intermolecular hydrogen bonds. 1 1. Introduction Small-angle scattering techniques are regularly used to probe the structure of polymers, colloids, surfactants and proteins dispersed in a solvent1.
    [Show full text]
  • Contract Report Cr-07-021-Env
    ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370 CONTRACT REPORT CR-07-021-ENV IN SITU CATALYTIC GROUNDWATER TREATMENT USING PD-CATALYSTS AND HORIZONTAL FLOW TREATMENT WELLS Submitted by: Carmen Lebron, Naval Facilities Engineering Service Center Martin Reinhard, Gary Hopkins, and Matthew Davie, Stanford University February 2007 Approved for public release; Distribution is unlimited. Environmental Security Technology Certification Program (ESTCP) In Situ Catalytic Groundwater Treatment Using Pd-Catalysts and Horizontal Flow Treatment Wells ER-0012 February 2007 Final Report Table of Contents 1. Introduction............................................................................................................................... 1 1.1 Background........................................................................................................................... 1 1.2 Objectives of the Demonstration .......................................................................................... 2 1.3 Regulatory Drivers................................................................................................................ 2 1.4 Stakeholder/End-User Issues ................................................................................................ 2 2. Technology Description............................................................................................................ 4 2.1 Pd-Catalyzed Dehalogenation............................................................................................... 4
    [Show full text]
  • Interagency Committee on Chemical Management
    DECEMBER 14, 2018 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 13-17 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction .......................................................................................................................... 3 II. Recommended Statutory Amendments or Regulatory Changes to Existing Recordkeeping and Reporting Requirements that are Required to Facilitate Assessment of Risks to Human Health and the Environment Posed by Chemical Use in the State ............................................................................................................................ 5 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories....... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories ........................................................................................................... 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ....................................................................................................... 12 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern ..............................................................................................................................
    [Show full text]
  • Polymer 166 (2019) 178–183
    Polymer 166 (2019) 178–183 Contents lists available at ScienceDirect Polymer journal homepage: www.elsevier.com/locate/polymer Solvent and polymer H/D isotope effects on miscibility in Poly(ethylene T oxide)/Ethanol system ∗ Guangcui Yuana,b, Boualem Hammoudaa, a Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA b Department of Physics, Georgetown University, Washington, D.C, 20057, USA HIGHLIGHTS • SANS results from a series of PEO/ethanol solutions with various deuterated substitution are reported. • Strong isotope effects on mixing/demixing characters are found when approaching the solubility limit upon cooling. • Flip of the upper/lower critical solution temperature trends due to deuteration is observed. ARTICLE INFO ABSTRACT Keywords: Various combinations between deuterated/nondeuterated poly(ethylene oxide) and (fully and partly) deuter- Poly(ethylene oxide) ated/nondeuterated ethanol solvents were investigated by small-angle neutron scattering. It was found that the Small-angle neutron scattering deuteration process has strong effects on the polymer solution behavior when approaching the solubility limit Isotope effect upon cooling. Deuteration of the polymer and/or of the solvent can change the character of mixing/demixing and even 'flip' the upper/lower critical solution temperature trends in experimental temperature range. 1. Introduction neutron scattering (SANS) measurements have shown strong isotope effects in PEO/water systems [15]: Solvent deuteration is seen to en- Deuteration, i.e., replacing hydrogen atoms by deuterium, is often hance the hydrophilic interaction while deuteration on the polymer used to enhance the contrast in neutron scattering. Deuteration is chain is seen to enhance the hydrophobic interaction. The isotropic commonly performed either on macromolecules or on solvents.
    [Show full text]
  • Dr. Christopher Nicholas (Honeywell UOP) “Well-Defined Materials for Hydrocarbon Transformations: Zeolite Structure / Property Relationships for Catalysis”
    2019 - 2020 October 14, 2019 Prof. Jason Hicks (University of Notre Dame) ”Plasma-Assisted Catalytic Activation of N2 for Ammonia Synthesis” November 11, 2019 Prof. Ian Tonks (University of Minnesota) “Ti-Catalyzed Nitrene Transfer Reactions: Harnessing the TiII/TiIV Redox Couple for New Transformations” December 9, 2019 Prof. Damien Guironnet (University of Illinois) “Engineering the Shape of Macromolecules Through Catalytic Polymerizations and Reactor Engineering” January 13, 2020 Meeting Cancelled February 10, 2020 Prof. Elizabeth Biddinger (City College of New York) “Electrosynthesis of Chemicals and Fuels: Electrochemistry at the Biorefinery” March 9, 2020 Prof. Abhaya K. Datye (University of New Mexico) “Atom Trapping: Key to the Design of Thermally Stable and Regenerable Single Atom Catalysts” April 13, 2020 Professor Omar Farha (Northwestern University) “Smart and Programmable Sponges” August 27, 2020 Spring Symposium 2019 Pines Award Address – Dr. Christopher Nicholas (Honeywell UOP) “Well-Defined Materials for Hydrocarbon Transformations: Zeolite Structure / Property Relationships for Catalysis” Keynote Speaker – Prof. Yogesh Surendranath (Massachusetts Institute of Technology) “Bridging Molecular and Heterogeneous Electrocatalysis Through Graphite Conjugation” Keynote Address – Dr. Daniel Ruddy (National Renewable Energy Laboratory) “Molybdenum carbide catalysts for biomass upgrading – from bulk to nanoscale” Previous Years' Programs Catalysis Club of Chicago 2018 - 2019 October 8, 2018 Professor Ray Gorte (University of Pennsylvania)
    [Show full text]
  • Supporting Information Available Part 2. Mechanistic Aspects of The
    Supporting Information Available Part 2. Mechanistic Aspects of the Reduction of S- Alkyl-thionocarbonates in the Presence of Triethylborane and Air Florent Allais, a Jean Boivin,*a and Van Tai Nguyen*a,b a) Institut de Chimie des Substances Naturelles, C.N.R.S., Gif-sur-Yvette 91198, France. b) National Institute of Medicinal Materials [email protected] and [email protected] Table of Contents General Experimental Methods Page S3 Reagents and Starting Materials Page S3 Deuterium measurements: Page S4 Deuterated compounds (1c) and (2c) Page S5 Synthesis of O,S-diethyl dithiocarbonates (3-5) Page S6 Allyl acetate-d3 (7) Page S8 2-[(Ethoxycarbonothioyl)thio]-6,6-dimethyl-5-oxoheptyl acetate-d3 Page S8 6,6-Dimethyl-5-oxoheptyl acetate-d3 Page S8 Synthesis of triethylborane and deuterated triethylboranes (8), (9), Page S9 and (10) References Page S10 Spectral Data Page S11 Deuterium incorporation measurements Page S54 General Experimental Methods: 1 Solvents and reagents were purified according to standard literature techniques and stored under argon. Experiments that required an inert atmosphere were carried out under dry argon in a flame dried glass system. Column chromatography was carried out on silica gel (230-400 mesh) by gradual elution with mixtures of n-heptane and ethyl acetate. TLC was carried out on using F254 SiO2 coated aluminum plates (0,2 μm, analytical). Vizualisation was accomplished with UV light (254 nm), typical TLC indicating solution (p-anisaldehyde/sulfuric acid/ethanol mixture). 1H and 13C NMR spectra were recorded in deuteriochloroform on 300, 400 or 500 MHz spectrometers.
    [Show full text]
  • The ALMA-PILS Survey: Isotopic Composition of Oxygen-Containing Complex Organic Molecules Toward IRAS 16293–2422B J
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 August 28, 2018 The ALMA-PILS survey: Isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293–2422B J. K. Jørgensen1, H. S. P. Müller2, H. Calcutt1, A. Coutens3, M. N. Drozdovskaya4, K. I. Öberg5 M. V. Persson6, V. Taquet7, E. F. van Dishoeck8; 9, and S. F. Wampfler4 1 Centre for Star and Planet Formation, Niels Bohr Institute & Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K., Denmark 2 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany 3 Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France 4 Center for Space and Habitability (CSH), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland 5 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden 7 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy 8 Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, The Netherlands 9 Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching, Germany August 28, 2018 ABSTRACT Context. One of the important questions of astrochemistry is how complex organic molecules, including potential prebiotic species, are formed in the envelopes around embedded protostars. The abundances of minor isotopologues of a molecule, in particular the D- and 13C-bearing variants, are sensitive to the densities, temperatures and time-scales characteristic of the environment in which they form, and can therefore provide important constraints on the formation routes and conditions of individual species.
    [Show full text]
  • Differential Electrophysiological Responses to Odorant Isotopologues in Drosophilid Antennae
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Article: New Research | Sensory and Motor Systems Differential Electrophysiological Responses to Odorant Isotopologues In Drosophilid Antennae Odorant isotopologues evoke differential EAGs Efstathia Drimyli1,2,*, Alexandros Gaitanidis1,*, Klio Maniati1,3, Luca Turin1,4 and Efthimios MC Skoulakis1 1Division of Neuroscience, Biomedical Sciences Research Centre “Alexander Fleming”, Vari 16672 Greece 2Department of Basic Sciences, School of Nursing, National and Kapodistrian University of Athens, Athens 11527, Greece 3Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Athens 15780, Greece 4Institute of Theoretical Physics, Ulm University, 89073 Ulm, Germany DOI: 10.1523/ENEURO.0152-15.2016 Received: 7 December 2015 Revised: 8 April 2016 Accepted: 2 May 2016 Published: 31 May 2016 Author contributions: E.D., A.G., and K.M. performed research; E.D., A.G., K.M., L.T., and E.M.C.S. analyzed data; E.D., L.T., and E.M.C.S. wrote the paper; A.G., L.T., and E.M.C.S. designed research. Funding: European Union and Greek Secretariat for Research and Technology ARISTIA (2303-QUANTOLF) Funding: US Defence Advanced Research Projects Agency N66001-10-1-4062 The authors declare no competing financial interests. European Union and Greek Secretariat for Research and Technology [ARISTIA (2303-QUANTOLF)]. US Defence Advanced Research Projects Agency [N66001-10-1-4062] *These authors contributed equally. Correspondence should be addressed to Efthimios M. C. Skoulakis, Division of Neuroscience, Biomedical Sciences Research Centre “Alexander Fleming”, 34 Fleming str, Vari 16672 Greece.
    [Show full text]
  • Draft TR-601: Di(2-Ethylhexyl) Phthalate (CASRN 117-81-7)
    1 NTP Technical Report on the 2 Toxicology and Carcinogenesis Studies of 3 Di(2-ethylhexyl) Phthalate (CASRN 117-81-7) 4 Administered in Feed to Sprague Dawley ® ® 5 (Hsd:Sprague Dawley SD ) Rats 6 Technical Report 601 7 February 2021 8 National Toxicology Program 9 Public Health Service 10 U.S. Department of Health and Human Services 11 ISSN: 2378-8925 12 Research Triangle Park, North Carolina, USA NOTICE This DRAFT Technical Report is distributed solely for the purpose of predissemination peer review under the applicable information quality guidelines. It has not been formally disseminated by NTP. It does not represent and should not be construed to represent NTP determination or policy. Peer Review Draft NOT FOR ATTRIBUTION 1 Foreword 2 The National Toxicology Program (NTP), established in 1978, is an interagency program within 3 the Public Health Service of the U.S. Department of Health and Human Services. Its activities 4 are executed through a partnership of the National Institute for Occupational Safety and Health 5 (part of the Centers for Disease Control and Prevention), the Food and Drug Administration 6 (primarily at the National Center for Toxicological Research), and the National Institute of 7 Environmental Health Sciences (part of the National Institutes of Health), where the program is 8 administratively located. NTP offers a unique venue for the testing, research, and analysis of 9 agents of concern to identify toxic and biological effects, provide information that strengthens 10 the science base, and inform decisions by health regulatory and research agencies to safeguard 11 public health. NTP also works to develop and apply new and improved methods and approaches 12 that advance toxicology and better assess health effects from environmental exposures.
    [Show full text]
  • Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] RADIOTRACER STUDIES OF ADSORPTION ON METHANOL SYNTHESIS CATALYSTS THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF GLASGOW BY SUSAN EVITT, B.Sc. OCTOBER, 1986 ProQuest Number: 10991909 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10991909 Published by ProQuest LLO (2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q.
    [Show full text]