Wild Betta Fighting Fish Species in Thailand and Other Southeast Asian

Total Page:16

File Type:pdf, Size:1020Kb

Wild Betta Fighting Fish Species in Thailand and Other Southeast Asian R EVIEW ARTICLE doi: 10.2306/scienceasia1513-1874.2020.064 Wild Betta fighting fish species in Thailand and other Southeast Asian countries Bhinyo Panijpana,+,∗, Namkang Sriwattanarothaib,+, Parames Laosinchaib a Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400 Thailand b Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170 Thailand ∗Corresponding author, e-mail: [email protected], + B. P.and N. S. are co-first authors Received 31 Jul 2020 Accepted 7 Aug 2020 ABSTRACT: This review updates what is known about Betta fish species in Thailand and Southeast Asian countries. The text is made easy to read for an uninitiated audience. It covers wild nest-builders, wild mouthbrooders, their appearance, distribution, and habitats. A section on domesticated fish is included for the general public. Details for more serious readership can be found in photos, maps, a table, and a diagram. DNA analyses for species differentiation leading to a phylogenetic tree and ancestral relationships are discussed. KEYWORDS: Betta spp., fighting fish, mouthbrooder, bubble-nest builder, species distribution, fish molecular taxonomy INTRODUCTION sometimes produce spectacular outcomes. Our group did the DNA work at the Canadian Ichthyologists know that many species of fish fight Centre for DNA barcoding, Guelph, Canada proving with their kinds and others to protect their territo- that wild B. splendens and most of the farmed nest- ries [1–3], but the name fighting fish appears to be builders shown here have basically the same bar- mainly attributed to a member of Betta genus, the coding sequences [7]. Our review of 2010 in this Siamese fighting fish, Betta splendens Regan, 1910. journal was published after the fact. It has been declared “the national aquatic animal” in Naturally, fighters derived mainly from B. splen- 2019 by The National Legislative Assembly of Thai- dens are also produced nowadays but not as many land (NLA). This formal declaration of the fish by as the ornamental ones described above (Fig. 1). the Thai Government may lead to better livelihood The fighter has a stout body, short fins, and sharp for smaller farmers and even high-volume exporters. teeth. Their trained endurance can cause some Mahidol University delegates had contributed sig- of them to fight to the death from injuries in nificant data, especially DNA analysis, during the gambling dens [8, 9]. Fighters are generally very three discussion sessions prior to the NLA historical hardy and not susceptible to pathogens. However, announcement. in general, both farm-bred and wild fish can be Before we describe wild Betta fish, we have to infected by parasites, bacteria, and other pathogenic address the domesticated ones first. agents [10–12]. DOMESTICATED BETTA FISH NEST BUILDERS AND MOUTHBROODERS Most people are familiar with domesticated (not In Betta fish, there are two separate modes of pater- wild-caught) fish bred by farmers and sold in the nal care for fertilized eggs and young fry [13–15]. market for fish lovers both locally and abroad with The nest-building male parent builds a raft of sticky high volumes. These fish mainly bred from wild bubbles shaped like a 3D convex lens, called a nest, B. splendens are desired mostly for their attractive on the water surface or underneath the aquatic plant appearance, body color and iridescence, fin shape leaves, to deposit newly fertilized eggs into each and color pattern, and body size [4–6] (see some bubble to take atmospheric oxygen [16–18]. Once domesticated Betta fish in Fig. 1). These are prod- the eggs hatch, the male parent would try to retrieve ucts of careful and diligent breeders from overseas some of the falling fry back into the nest [19, 20]. and in Thailand using mainly Mendelian genetics. Bubble-nest builders prefer stagnant waters [21]. These efforts often yield hit-and-miss results, but The mouthbrooding male takes fertilized eggs www.scienceasia.org 2 ScienceAsia 46 (2020) (A) (B) (C) (D) (E) (F) Fig. 1 Examples of domesticated Betta splendens sold in the market nowadays: (A) tricolor crown-tail fish possibly emblematic of flags of Thailand, France, the Netherlands etc.; (B) butterfly halfmoon; (C) veil tail or Pla Kat Jeen; (D) giant Betta (Jumbo); (E) Dumbo short fin; (F) fighter or Pla Kat Mor. The pictures are not of the same scale. to incubate in the mouth until the hatching stage. water with low oxygen content [25]: some can Even then, the male parent still keeps their young even survive in water with near-zero dissolved oxy- fry in the mouth for a while before releasing them gen. They can gulp air to put molecular oxy- to swim freely. Brooders prefer running waters, e.g. gen into the labyrinth organ inside the head re- near waterfalls [22, 23]. The male nester parent gion. Their distribution in Thailand is shown in uses the mouth to retrieve fertilized eggs and young Figs.2 and3 The nest builders occupy mainly the hatchlings when it feels danger [17]. They both thus north and central plains, the upper south, and the use their mouths in caring for their offspring. As can west (B. splendens); the northeast (B. smaragdina be seen later, they can evolve from one paternal care Ladiges, 1972); the eastern region (B. siamorientalis type to the other [15, 24]. Kowasupat, Panijpan, Ruenwongsa & Jeenthong, Betta females do not become pregnant after 2012); the upper and lower southern peninsu- viewing desirable males. They simply produce more lar Thailand (B. imbellis Ladiges, 1975); and the eggs that swell the ovary. Fertilization by male west of Bangkok, Samut Sakhon Province, and sperm occurs outside the female body when eggs are Samut Prakan Province (B. mahachaiensis Kowa- released. supat, Panijpan, Ruenwongsa & Sriwattanarothai, All these freshwater Betta fish have a com- 2012) [21–23, 26–29]. Recently, large populations mon feature that is important for their survival in of B. smaragdina were unexpectedly found in the www.scienceasia.org ScienceAsia 46 (2020) 3 Fig. 2 Distribution of selected nest-building Betta species in Thailand and neighboring countries. www.scienceasia.org 4 ScienceAsia 46 (2020) Fig. 3 Distribution of selected wild mouthbrooding Betta species in Thailand and other ASEAN countries. No brooders are found at latitudes above 14.5 degrees north. Wild nesters are also found in Eastern Malaysia and Kalimantan part of the Borneo Island. south region of Kanchanaburi Province [30]. B. simplex and B. mahachaiensis are subjected to The brooders are mainly found in the lower high-volume exports that will push them further into southern peninsular Thailand provinces (Fig. 3), in- the critically endangered species list [27, 32, 33]. cluding big islands, e.g. Samui and Pa Ngan [22, WILD BETTA FISH IN THAILAND 29, 31]. These fish are found in streams with run- ning water originating from waterfalls, which can Five wild-type nest-building fish in Thailand are be quite a distance away. Incidentally, Thailand very colorful when they, especially males, display has endemic species of the Betta genus, namely their full aggressive posture or stage courtship dis- the brooders B. simplex Kottelat, 1994, B. pallida plays [8, 34–36]. The body turns dark, fins are Schindler & Schmidt, 2004, and B. prima Kottelat, unfurled, and colors and color patterns of fins in- 1994, and the nest-builder B. mahachaiensis. Betta tensify. With the naked eye, some of their external prima is found in the eastern region of Thailand. body features of five nest-building Betta in Thailand that are sufficient for differentiating them from one www.scienceasia.org ScienceAsia 46 (2020) 5 Table 1 Comparative table showing, as seen through the naked eye, some external characters of five wild nest-building Betta species of Thailand that sufficiently differentiate one species from another. Betta species B. splendens B. imbellis B. siamorientalis B. mahachaiensis B. smaragdina Opercle Two parallel vertical Two parallel vertical Two parallel vertical Two to three parallel Multiple iridescent red bars iridescent bluish- red bars vertical iridescent yellowish-green to green bars bluish-green bars bluish-green plates or scales Caudal fin – Bluish-green strips – Bluish-green strips – Bluish-green strips – Dark strips fanning – Dark strips fanning fanning out from fanning out from fanning out from out from caudal pe- out from caudal pe- caudal peduncle caudal peduncle caudal peduncle duncle toward poste- duncle toward poste- toward posterior toward posterior toward posterior rior with bifurcation rior with bifurcation – No black dot – No black dot – No black dot – Presence of black – Presence of black – At least 50% of – Less than 20% of – Less than 20% of dots flanking stripes dots flanking stripes red area red area red area – With distal red – With distal red crescent and thin crescent and thin black edge black edge Anal fin At least 40% of red About 5% of red at About 5% of red at – Absence of red area – Absence of red area area distal tip distal tip – Blue interradial area – Blue interradial area Pelvic fin Red-brown to black Red-brown to black Red-brown to black Brown to black with Brown to black and and red from and red from and red from proxi- iridescent green to red from proximal proximal pelvic fin proximal pelvic fin mal pelvic fin base to bluish-green front pelvic fin base to the base to the white tip base to the white tip the white tip margin and white tip white tip (some populations having green to bluish-green front margin) Body scale and – Scale iridescence – Scale iridescence – Scale iridescence – Scale iridescence – Scale iridescence background not prominent prominent prominent very prominent prominent – Body background – Body background – Body background – Body background – Body background dark brown dark brown black black dark brown another are included in Table 1 and Fig.
Recommended publications
  • STORRE Veral Et Al. Tilapia Locomotor Activity .Pdf
    CIRCADIAN RHYTHMS OF LOCOMOTOR ACTIVITY IN THE NILE TILAPIA OREOCHROMIS NILOTICUS Luisa María Veraa, Louise Cairnsa, Francisco Javier Sánchez-Vázquezb, Hervé Migauda* a Reproduction and Genetics Group, Institute of Aquaculture, University of Stirling. Stirling, UK. b Department of Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain. Running title: Circadian rhythms in tilapia *Corresponding author: Dr. Hervé Migaud Institute of Aquaculture, University of Stirling FK9 4LA, Stirling, UK Tel. 0044 1786 467886 Fax. 0044 1786 472133 E-mail: [email protected] 1 ABSTRACT The Nile tilapia behavioural rhythms were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12: 12-h light-dark (LD) cycle were studied, as well as the existence of endogenous rhythmicity under free-running conditions (DD and 45-min LD pulses) in males. When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal and a few displayed an arrhythmic pattern. This variability would be typical of the plastic circadian system of fish and reproductive events clearly affected the behavioural rhythms of female tilapia, a mouthbrooder teleost species. Under DD, 50% (6 out of 12) of male fish showed circadian rhythms with an average period (tau) of 24.1 ± 0.2 h whereas under the 45- min LD pulses 58% (7 out of 12) of fish exhibited free-running activity rhythms and tau was 23.9 ± 0.5 h. However, interestingly in this case activity was always confined to the dark phase.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • GENETICS of the SIAMESE FIGHTING FISH, BETTA Splendensl
    GENETICS OF THE SIAMESE FIGHTING FISH, BETTA SPLENDENSl HENRY M. WALLBRUNN Department of Biology, Uniuersity of Florida, Gainesuille, Florida First received March 13, 1957 ETTA SPLENDENS more commonly known as the Siamese fighting fish has B been popular in aquariums of western Europe and America for over 35 years. Its domestication and consequent inbreeding antedates the introduction into the West by 60 or 70 years. Selection for pugnacity, long fins (see Figure l), and bright colors over this long period has produced a number of phenotypes, none of which is very similar to the short-finned wild form from the sluggish rivers and flooded rice paddies of Thialand (SMITH1945). The aquarium Betta is noted for its brilliant and varied colors. These are pro- duced by three pigments, lutein (yellow), erythropterin (red), and melanin (black) ( GOODRICH,HILL and ARRICK1941 ) and by scattering of light through small hexagonal crystals (GOODRICHand MERCER1934) giving steel blue, blue, or green. Each kind of pigment is contained in a distinct cell type, xanthophores, containing yellow, erythrophores red, and melanophores black. There are no chromatophores containing two pigments such as the xanthoerythrophores of Xiphophorus helleri. The reflecting cells responsible for iridescent blues and greens are known as iridocytes or guanophores and they are more superficial than the other chromatophores. Since the pigment granules may be greatly dispersed in the many branched pseudopods or clumped into a small knot in the center of the chromatophores, the color of any single fish may vary over a wide range of shades, and may do SO in a matter of seconds.
    [Show full text]
  • The Effect of Fluoxetine on Self-Control in Betta Splendens
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2014 The effect of fluoxetine on self-control in betta splendens Kathryn Gwen Lamp The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Lamp, Kathryn Gwen, "The effect of fluoxetine on self-control in betta splendens" (2014). Graduate Student Theses, Dissertations, & Professional Papers. 10770. https://scholarworks.umt.edu/etd/10770 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE EFFECT OF FLUOXETINE ON SELF-CONTROL IN BETTA SPLENDENS by KATHRYN GWEN LAMP Bachelor of Arts, Christopher Newport University, Newport News, VA, 2008 Master of Arts, The University of Montana, Missoula, MT, 2012 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Experimental Psychology The University of Montana Missoula, MT June 2014 Approved by: Dr. Allen Szalda-Petree, Chair Department of Psychology Dr. Nabil Haddad Department of Psychology Dr. Stuart Hall Department of Psychology Dr. Jerry Smith Department of Biomedical and Pharmaceutical Sciences Dr. Keith Parker Department of Biomedical and Pharmaceutical Sciences UMI Number: 3628951 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Snakeheadsnepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN a Biologicalmyanmar Synopsis Vietnam
    Mongolia North Korea Afghan- China South Japan istan Korea Iran SnakeheadsNepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN A BiologicalMyanmar Synopsis Vietnam and Risk Assessment Philippines Thailand Malaysia INDIAN OCEAN Indonesia Indonesia U.S. Department of the Interior U.S. Geological Survey Circular 1251 SNAKEHEADS (Pisces, Channidae)— A Biological Synopsis and Risk Assessment By Walter R. Courtenay, Jr., and James D. Williams U.S. Geological Survey Circular 1251 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. Copyrighted material reprinted with permission. 2004 For additional information write to: Walter R. Courtenay, Jr. Florida Integrated Science Center U.S. Geological Survey 7920 N.W. 71st Street Gainesville, Florida 32653 For additional copies please contact: U.S. Geological Survey Branch of Information Services Box 25286 Denver, Colorado 80225-0286 Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov Library of Congress Cataloging-in-Publication Data Walter R. Courtenay, Jr., and James D. Williams Snakeheads (Pisces, Channidae)—A Biological Synopsis and Risk Assessment / by Walter R. Courtenay, Jr., and James D. Williams p. cm. — (U.S. Geological Survey circular ; 1251) Includes bibliographical references. ISBN.0-607-93720 (alk. paper) 1. Snakeheads — Pisces, Channidae— Invasive Species 2. Biological Synopsis and Risk Assessment. Title. II. Series. QL653.N8D64 2004 597.8’09768’89—dc22 CONTENTS Abstract . 1 Introduction . 2 Literature Review and Background Information . 4 Taxonomy and Synonymy .
    [Show full text]
  • Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus Opercularis)
    animals Article Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus opercularis) Anita Rácz 1,* ,Gábor Adorján 2, Erika Fodor 1, Boglárka Sellyei 3, Mohammed Tolba 4, Ádám Miklósi 5 and Máté Varga 1,* 1 Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] 2 Budapest Zoo, Állatkerti krt. 6-12, H-1146 Budapest, Hungary; [email protected] 3 Fish Pathology and Parasitology Team, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; [email protected] 4 Department of Zoology, Faculty of Science, Helwan University, Helwan 11795, Egypt; [email protected] 5 Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (M.V.) Simple Summary: Paradise fish (Macropodus opercularis) has been a favored subject of behavioral research during the last decades of the 20th century. Lately, however, with a massively expanding genetic toolkit and a well annotated, fully sequenced genome, zebrafish (Danio rerio) became a central model of recent behavioral research. But, as the zebrafish behavioral repertoire is less complex than that of the paradise fish, the focus on zebrafish is a compromise. With the advent of novel methodologies, we think it is time to bring back paradise fish and develop it into a modern model of Citation: Rácz, A.; Adorján, G.; behavioral and evolutionary developmental biology (evo-devo) studies. The first step is to define the Fodor, E.; Sellyei, B.; Tolba, M.; housing and husbandry conditions that can make a paradise fish a relevant and trustworthy model.
    [Show full text]
  • Doublespot Acara (Aequidens Pallidus) Ecological Risk Screening Summary
    Doublespot Acara (Aequidens pallidus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, web version – 03/29/2018 Photo: Frank M Greco. Licensed under Creative Commons BY 3.0 Unported. Available: https://commons.wikimedia.org/wiki/File:Aequidens_pallidus.jpg. (August 2017). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2015): “South America: Amazon River basin, in the middle and lower Negro River, Uatumã, Preto da Eva, and Puraquequara rivers.” Status in the United States No records of Aequidens pallidus in the United States found. 1 Means of Introductions in the United States No records of Aequidens pallidus in the United States found. Remarks No additional remarks. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2015): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Acanthopterygii Order Perciformes Suborder Labroidei Family Cichlidae Genus Aequidens Species Aequidens pallidus (Heckel, 1840)” From Eschmeyer et al. (2017): “pallidus, Acara Heckel [J. J.] 1840:347 […] [Annalen des Wiener Museums der Naturgeschichte v. 2] Rio Negro of Rio Amazonas, South America. Holotype (unique): NMW 33678. •Valid as Aequidens pallidus (Heckel 1840) -- (Kullander in Reis et al. 2003:608 […]). Current status: Valid as Aequidens pallidus (Heckel 1840). Cichlidae: Cichlinae.” Size, Weight, and Age Range From Froese and Pauly (2015): “Max length: 14.3 cm SL male/unsexed; [Kullander 2003]” “Maximum length 20.0 cm TL [Stawikowski and Werner 1998].” 2 Environment From Froese and Pauly (2015): “Freshwater; benthopelagic; pH range: 6.5 - 7.5; dH range: ? - 10.
    [Show full text]
  • Fish Tales | in This Issue
    Fish Tales | In this issue: 3 Presidents Message Greg Steeves 4 A Visit to the Michigan Cichlid Association Greg Steeves 10 DIY Pleco Caves Mike & Lisa Hufsteler Volume 6 Issue 3 13 Zebra Pleco added to The FOTAS Fish Tales is a quarterly publication of the Federation of Tex- as Aquarium Societies a non-profit organization. The views and opinions CITES List! contained within are not necessarily those of the editors and/or the of- Clay Trachtman ficers and members of the Federation of Texas Aquarium Societies. 14 Bettas in the Classroom FOTAS Fish Tales Editor: Gerald Griffin Gerald Griffin [email protected] 17 FOTAS CARES Fish Tales Submission Guidelines Greg Steeves Articles: Please submit all articles in electronic form. We can accept most popular 18 FOTAS 2016 Recap software formats and fonts. Email to [email protected]. Photos and Kyle Osterholt graphics are encouraged with your articles! Please remember to include the photo/graphic credits. Graphics and photo files may be submitted in 22 An Introduction to any format, however uncompressed TIFF, JPEG or vector format is pre- Apistos ferred, at the highest resolution/file size possible. If you need help with graphics files or your file is too large to email, please contact me for alter- David Soares native submission info. 26 Surviving the Dreaded Art Submission: Power Outage! Graphics and photo files may be submitted in any format. However, Gerald Griffin uncompressed TIFF, JPEG or vector formats are preferred. Please submit the 28 Going Wild with Bettas highest resolution possible. Gerald Griffin Next deadline…… January 15th 2017 35 Characodon, a Goodeid COPYRIGHT NOTICE that always surprises! All Rights Reserved.
    [Show full text]
  • Shoaling and Aggressive Behaviour in Juvenile Fighting Fish (Betta Splendens)
    Volume 13, Number 5, Pages 54 - 57 Shoaling and aggressive behaviour in juvenile fighting fish (Betta splendens) Chantima Piyapong1,* and Pongsakorn Ngokkham2 1Department of Biology, Faculty of Science, Burapha University, Chonburi, 20131, Thailand 2Education Program in Biology Teaching, Faculty of Education, Burapha University, Chonburi, 20131, Thailand Abstract The fighting fish (Betta splendens) is known for its aggressive behaviour. In the wild, the adult fighting fish are territorial and show aggressive behaviour. Previous studies showed that adult fighting fish associated with conspecifics showed shoaling behaviour in the laboratory. However, no previous studies have investigated shoaling behaviour in juvenile fighting fish and it could have implication for commercial breeding. Therefore, we examined shoaling preference and aggressive behaviour of the juvenile male fighting fish by using binary choice experiments in the laboratory. When testing these two kinds of behaviour, the test fish were given a choice between a female juvenile fish shoal and a male juvenile fish shoal in order to evaluate whether juvenile male fighting fish preferred shoaling with the same sex or different sex before being reared individually. It was found that males showed no significant difference either in shoaling preference or aggressive behaviour. However, the size of male test fish was positively correlated with aggressive behaviour. Therefore, large juvenile male fighting fish should be reared separately from shoals in the fish culture. Keywords : fighting fish, shoaling preference, aggressive behaviour Article history: Received 8 June 2018, Accepted 25 September 2018 1. Introduction behaviour demonstrated by males [6]. In nature adult Shoaling in fish is a behaviour that allows them to fighting fish disperse to a density of 1.7 fish/m2 [7] and remain together through social attraction [1].
    [Show full text]
  • The Genetic Architecture of Phenotypic Diversity in the Betta Fish (Betta Splendens)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443352; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The genetic architecture of phenotypic diversity in the betta fish (Betta splendens) The genetic architecture of phenotypic diversity in the Betta fish (Betta splendens) Authors: Wanchang Zhang1†, Hongru Wang2†, Débora Y. C. Brandt2, Beijuan Hu1, Junqing Sheng1, Mengnan Wang1, Haijiang Luo1, Shujie Guo1, Bin Sheng1, Qi Zeng1, Kou Peng1, Daxian Zhao1, Shaoqing Jian1, Di Wu1, Junhua Wang1, Joep H. M. van Esch6, Wentian Shi4, Jun Ren3, Rasmus Nielsen2, 5*, Yijiang Hong1* Affiliations: 1 School of Life Sciences, Nanchang University; Nanchang, China 2 Department of Integrative Biology, University of California, Berkeley; Berkeley, CA, USA 3 College of Animal Science, South China Agricultural University; Guangzhou, China 4 Faculty of Philosophy, University of Tübingen; Tübingen, Germany 5 Globe Institute, University of Copenhagen; DK-1165 Copenhagen, Denmark 6 School of Engineering and Applied Science, Rotterdam University; Rotterdam, Netherlands †These authors contributed equally to the work *Corresponding authors: [email protected], [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443352; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Evolution, Culture, and Care for Betta Splendens1 Craig Watson, Matthew Dimaggio, Jeffrey Hill, Quenton Tuckett, and Roy Yanong2
    FA212 Evolution, Culture, and Care for Betta splendens1 Craig Watson, Matthew DiMaggio, Jeffrey Hill, Quenton Tuckett, and Roy Yanong2 The commercial betta, or Siamese fighting fish (Betta to have shaped the evolution of labyrinth fishes, a group splendens), is one of a group of fishes called the anabantoids that formed ~60 million years ago. Life in hypoxic environ- (suborder Anabantoidei), most of which occur in fresh ments appears to have been the driving force behind the waters of Africa and southern Asia. There are roughly 137 evolutionary diversification of labyrinth fishes, including labyrinth fishes in three families, Anabantidae (28 species), the genus Betta, the most diverse group within the family Helostomatidae (1 species), and Osphronemidae (108 Osphronemidae with over 73 species. A variety of behav- species including B. splendens). The anabantoids are also ioral, morphological, and physiological traits evolved in known as labyrinth fishes, which, unlike most other fishes, response to development of air breathing as an adaptation often do not rely primarily on the gills for respiration. The to living in a hypoxic environment. While the labyrinth gills of labyrinth fishes are relatively small and primarily organ may be one of the most obvious traits, others, such as excrete the waste products ammonia and carbon dioxide. bubble nest building for reproduction, are also associated In fact, many labyrinth fishes are obligate air breathers, with this adaptation. The bubble nest allows eggs to develop meaning they must breathe at the surface to survive. in environments with elevated temperature and low pH and Other fishes have evolved a number of solutions to allow dissolved oxygen, relatively free of predators.
    [Show full text]
  • The World's Forgotten Fishes
    THE WORLD’S FORGOTTEN FISHES CONTENTS FOREWORD 4 1. INTRODUCTION 6 2. DAZZLING DIVERSITY 10 3. HEALTHY FRESHWATER FISHERIES = 16 HEALTHY RIVERS, LAKES & WETLANDS 4. WILD FRESHWATER FISHERIES ARE PRICELESS 18 5. FISHING FOR FUN… IS BIG BUSINESS 26 6. THE WORLD’S MOST POPULAR PETS 30 7. HUMANITY’S FRESHWATER HERITAGE 34 8. FRESHWATER FISH IN FREEFALL 36 9. 80 SPECIES EXTINCT 40 Lead Author: Kathy Hughes 10. A BRIGHTER FUTURE FOR FRESHWATER FISHES 42 WWF wish to thank collaborators Ian Harrison, Will Darwall, Richard Lee, Dean Muruven, Carmen Revenga, Julie Claussen, Abby Lynch, Adrian Pinder, Robin Abell, Paula Martinelli, Mike Baltzer, Michele Thieme, Sonja Jähnig, Jeff Opperman, Herman Wanningen, Jeremy Monroe and Harmony Patricio for their support in writing this report. Furthermore, we wish to thank experts Richard van der Laan, Tim Lyons, Paul Van Damme, Mark Owen, Hannah Rudd, Joao Campos-Silva, Leandro Castello, Vidyadhar Atkore, Thadoe Wai, Simon Funge-Smith, John Jorgensen, Naren Sreenivisan, Mark Lloyd, Arlin Rickard and Matt Gollock for their support with individual case studies. About this report and its collaborators Promoting thriving populations of freshwater fishes and the ecosystems within which they thrive is a priority for WWF Publishing office: WWF International and the 15 organisations and alliances that Cover photography © Karine Aigner / WWF-US produced this report. Design by Lou Clements © 1986 Panda symbol WWF – World Wide Fund For Nature (Formerly World Wildlife Fund) ® “WWF” is a WWF Registered Trademark. WWF
    [Show full text]