Earth in Different Dimensions Observing the World

Total Page:16

File Type:pdf, Size:1020Kb

Earth in Different Dimensions Observing the World Earth in Different Dimensions Observing the World Round? observation the key first step to ALL science driven by curiosity a process of discovery answer questions about how the world works knowledge improves quality of life Or flat? Calculate circumference ( C) using simple math: Eratosthenes (Egypt, 235 B.C.) 360 o/7.2 o = C/500 miles; C = 50 x 500 miles = 25,000 miles On June 21 (summer solstice), midday sun a shadow cast by a directly overhead, shining down a deep well in monument in Alexandria the city of Syene (Aswan) the Sun's rays Angle of shadow made by sun shining on a ~5000 stadia = 500 mi ° ° monument at midday on June 21 in Alexandria 7 12' = 7.2 a well in Syene was 7o21’ Alexandria lies ~5000 stadia to the north of Aswan (~ 500 miles ) Remarkable agreement with actual figure of 24,862 miles (40,010 km) – WOW. 1 Where in the World are we? How do we describe where we are on the planet? Latitude (North-South) & Longitude (East-West) based on angular relationships to Earth’s center grid system used to precisely describe locations on the Earth’s surface expressed in degrees (o) of arc each degree is divided into 60 minutes (‘) each minute is divided into 60 seconds (“) 90 °N (North Pole) Latitude Longitude 180 °W 60 °N (180 °E) “parallels” = grid lines “meridians” = grid lines 30 °N that are parallel to the that intersect at poles 150 °W equator 0o = “Prime Meridian” ° 0o at equator, 90 o at 0 (Equator) (Greenwich, England) 120 °W 90 °W 60 °W 30 °W poles Parallels (Latitude) 180 o = halfway around Meridians (Longitude) 0o-90 oN = N. Hemisphere 30 °S Earth 0° o o o o 0 -90 S = S. Hemisphere 60 °S 0 -180 to west of Everywhere on Earth’s surface: Greenwich = W. Hemisphere 90 °S 1o lat. = 60 nautical miles (South Pole) 0o-180 o to east of 1’ lat. = 1 nautical mile Greenwich = E. Hemisphere 2 Equatorial View Polar View Special Latitudes and Latitudinal Zones North Pole 90 °N North Pole 90 °E (90 °N) 120 °E 60 °E 60 °N Arctic Circle northern high latitudes (66.5 ° N) 60 °N 30 °N 150 °E 30 °E mid-latitudes Prime ° ° ° ° ° ° Meridian 30 N 150 W 120 W 90 W 60 W 30 W Tropic of Cancer (23.5 ° N) subtropics 180 °W North Pole ° ° 0 ° 0 Equator (180 E) 90 °N 180 °W 0° Prime tropics (180 °E) Meridian 0° (Equator) 30 °S 150 °W 60 °N 30 °W Tropic of Capricorn (23.5 ° S) subtropics ° 30 °N 30 °S 60 S 120 °W 60 °W Equator ° 0 90 °W mid-latitudes 90 °S Antarctic Circle ° South Pole (66.5 ° S) 60 S Smith College southern high latitudes (90 °S) Lat. 42°19 ’ N, Lon. 72°38 ’ W South Pole The Earth’s tilt – the reason for the seasons Earth's axis of rotation (23.5 ° tilt) Arctic Circle North Pole Tro pic of Ca nce S e r Plane of Earth's orbit around Sun (aka, “the ecliptic”) qua tor Tro pic of U Ca pric orn Antarctic Circle N South Pole 3.
Recommended publications
  • 2. Disc Resources
    An early map of the world Resource D1 A map of the world drawn in 1570 shows ‘Terra Australis Nondum Cognita’ (the unknown south land). National Library of Australia Expeditions to Antarctica 1770 –1830 and 1910 –1913 Resource D2 Voyages to Antarctica 1770–1830 1772–75 1819–20 1820–21 Cook (Britain) Bransfield (Britain) Palmer (United States) ▼ ▼ ▼ ▼ ▼ Resolution and Adventure Williams Hero 1819 1819–21 1820–21 Smith (Britain) ▼ Bellingshausen (Russia) Davis (United States) ▼ ▼ ▼ Williams Vostok and Mirnyi Cecilia 1822–24 Weddell (Britain) ▼ Jane and Beaufoy 1830–32 Biscoe (Britain) ★ ▼ Tula and Lively South Pole expeditions 1910–13 1910–12 1910–13 Amundsen (Norway) Scott (Britain) sledge ▼ ▼ ship ▼ Source: Both maps American Geographical Society Source: Major voyages to Antarctica during the 19th century Resource D3 Voyage leader Date Nationality Ships Most southerly Achievements latitude reached Bellingshausen 1819–21 Russian Vostok and Mirnyi 69˚53’S Circumnavigated Antarctica. Discovered Peter Iøy and Alexander Island. Charted the coast round South Georgia, the South Shetland Islands and the South Sandwich Islands. Made the earliest sighting of the Antarctic continent. Dumont d’Urville 1837–40 French Astrolabe and Zeelée 66°S Discovered Terre Adélie in 1840. The expedition made extensive natural history collections. Wilkes 1838–42 United States Vincennes and Followed the edge of the East Antarctic pack ice for 2400 km, 6 other vessels confirming the existence of the Antarctic continent. Ross 1839–43 British Erebus and Terror 78°17’S Discovered the Transantarctic Mountains, Ross Ice Shelf, Ross Island and the volcanoes Erebus and Terror. The expedition made comprehensive magnetic measurements and natural history collections.
    [Show full text]
  • Why Do We Use Latitude and Longitude? What Is the Equator?
    Where in the World? This lesson teaches the concepts of latitude and longitude with relation to the globe. Grades: 4, 5, 6 Disciplines: Geography, Math Before starting the activity, make sure each student has access to a globe or a world map that contains latitude and longitude lines. Why Do We Use Latitude and Longitude? The Earth is divided into degrees of longitude and latitude which helps us measure location and time using a single standard. When used together, longitude and latitude define a specific location through geographical coordinates. These coordinates are what the Global Position System or GPS uses to provide an accurate locational relay. Longitude and latitude lines measure the distance from the Earth's Equator or central axis - running east to west - and the Prime Meridian in Greenwich, England - running north to south. What Is the Equator? The Equator is an imaginary line that runs around the center of the Earth from east to west. It is perpindicular to the Prime Meridan, the 0 degree line running from north to south that passes through Greenwich, England. There are equal distances from the Equator to the north pole, and also from the Equator to the south pole. The line uniformly divides the northern and southern hemispheres of the planet. Because of how the sun is situated above the Equator - it is primarily overhead - locations close to the Equator generally have high temperatures year round. In addition, they experience close to 12 hours of sunlight a day. Then, during the Autumn and Spring Equinoxes the sun is exactly overhead which results in 12-hour days and 12-hour nights.
    [Show full text]
  • The Mesa Site: Paleoindians Above the Arctic Circle
    U. S. Department of the Interior BLM-Alaska Open File Report 86 Bureau of Land Management BLM/AK/ST-03/001+8100+020 April 2003 Alaska State Office 222 West 7th Avenue Anchorage Alaska 99513 The Mesa Site: Paleoindians above the Arctic Circle Michael Kunz, Michael Bever, Constance Adkins Cover Photo View of Mesa from west with Iteriak Creek in foreground. Photo: Dan Gullickson Disclaimer The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the federal government. Authors Michael Kunz is an Archaeologist, Bureau of Land Management (BLM), Northern Field Office, 1150 University Avenue, Fairbanks, Alaska 99709. Michael Bever is a project supervisor for Pacific Legacy Inc., 3081 Alhambra Drive, Suite 208, Cameron Park, CA 95682. Constance Adkins is an Archaeologist, Bureau of Land Management (BLM), Northern Field Office, 1150 University Avenue, Fairbanks, Alaska 99709. Open File Reports Open File Reports issued by the Bureau of Land Management-Alaska present the results of invento- ries or other investigations on a variety of scientific and technical subjects that are made available to the public outside the formal BLM-Alaska technical publication series. These reports can include preliminary or incomplete data and are not published and distributed in quantity. The reports are available while supplies last from BLM External Affairs, 222 West 7th Avenue #13, Anchorage, Alaska 99513 and from the Juneau Minerals Information Center, 100 Savikko Road, Mayflower Island, Douglas, AK 99824, (907) 364-1553. Copies are also available for inspection at the Alaska Resource Library and Information Service (Anchorage), the USDI Resources Library in Washington, D.
    [Show full text]
  • Educator Guide
    E DUCATOR GUIDE This guide, and its contents, are Copyrighted and are the sole Intellectual Property of Science North. E DUCATOR GUIDE The Arctic has always been a place of mystery, myth and fascination. The Inuit and their predecessors adapted and thrived for thousands of years in what is arguably the harshest environment on earth. Today, the Arctic is the focus of intense research. Instead of seeking to conquer the north, scientist pioneers are searching for answers to some troubling questions about the impacts of human activities around the world on this fragile and largely uninhabited frontier. The giant screen film, Wonders of the Arctic, centers on our ongoing mission to explore and come to terms with the Arctic, and the compelling stories of our many forays into this captivating place will be interwoven to create a unifying message about the state of the Arctic today. Underlying all these tales is the crucial role that ice plays in the northern environment and the changes that are quickly overtaking the people and animals who have adapted to this land of ice and snow. This Education Guide to the Wonders of the Arctic film is a tool for educators to explore the many fascinating aspects of the Arctic. This guide provides background information on Arctic geography, wildlife and the ice, descriptions of participatory activities, as well as references and other resources. The guide may be used to prepare the students for the film, as a follow up to the viewing, or to simply stimulate exploration of themes not covered within the film.
    [Show full text]
  • Coriolis Effect
    Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents who provide nationwide leadership in precollege atmospheric environment education. To support these agents in their teacher training, Project ATMOSPHERE develops and produces teacher’s guides and other educational materials. For further information, and additional background on the American Meteorological Society’s Education Program, please contact: American Meteorological Society Education Program 1200 New York Ave., NW, Ste. 500 Washington, DC 20005-3928 www.ametsoc.org/amsedu This material is based upon work initially supported by the National Science Foundation under Grant No. TPE-9340055. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. © 2012 American Meteorological Society (Permission is hereby granted for the reproduction of materials contained in this publication for non-commercial use in schools on the condition their source is acknowledged.) 2 Foreword This guide has been prepared to introduce fundamental understandings about the guide topic. This guide is organized as follows: Introduction This is a narrative summary of background information to introduce the topic. Basic Understandings Basic understandings are statements of principles, concepts, and information. The basic understandings represent material to be mastered by the learner, and can be especially helpful in devising learning activities in writing learning objectives and test items. They are numbered so they can be keyed with activities, objectives and test items. Activities These are related investigations.
    [Show full text]
  • The Equator Principles July 2020
    __________________________________________________________________________________ THE EQUATOR PRINCIPLES JULY 2020 A financial industry benchmark for determining, assessing and managing environmental and social risk in projects www.equator-principles.com 0 __________________________________________________________________________________ CONTENTS PREAMBLE ................................................................................................................................... 3 SCOPE .......................................................................................................................................... 5 APPROACH .................................................................................................................................. 6 STATEMENT OF PRINCIPLES .......................................................................................................... 8 Principle 1: Review and Categorisation .............................................................................................. 8 Principle 2: Environmental and Social Assessment ............................................................................ 8 Principle 3: Applicable Environmental and Social Standards............................................................ 10 Principle 4: Environmental and Social Management System and Equator Principles Action Plan ... 11 Principle 5: Stakeholder Engagement ............................................................................................... 11 Principle 6: Grievance Mechanism...................................................................................................
    [Show full text]
  • Latitude/Longitude of the Exact Opposite Place LONGITUDE on Earth to Sydney, Australia, 33° 55‘ S, 151° 17‘ E 90° N 180° Sydney LATITUDE 151° 17’ E
    GEO 101, January 16, 2014, Latitude and Longitude Finding your way … How geographers locate where things are… Most common locational system Best reference points are ends of rotational axis Latitude and Longitude Measures angular distance in degrees, not distance in miles or km Basic geometry: circle has 360 degrees Babylonians (≈600 BC) chose the number 360. The reason is that their number system was based on 60. To compare, we base our number system on 10. For us, 10 is a nice, round number and we find it very convenient to count in multiples of 10. But the Babylonians liked 60. LATITUDE Midway between N & S pole is Equator = 0° 90° N 0° 90° S 1 Latitude of Mobile ≈ 30° 42’ N. Parallels of latitude measure the angular distance (degrees) north or south of the Equator. Expressed in degrees, minutes, & seconds 60 minutes in 1 degree 60 seconds in 1 minute The lines themselves run east - west like the rungs on a ladder Find distance in miles between Latitude can be used to approximate Mobile and the Galapagos Islands, distances based on following: which is almost due south of Mobile 360° in a circle Galapagos 0° 10’ S Mobile 30° 42’ N ≈ 25,000 miles around earth 25,000 miles / 360° ≈ 69 miles in 1° Difference 30° 52’ or 30 + 52/60 degrees = 30.87° One degree of latitude always ≈ 69 miles This is true because parallels of latitude 30.87° x 69 mi/degree = 2130 miles stay same distance apart LONGITUDE Arbitrary starting place at Greenwich (London), England 180° = International Date Line East West N P 0° = Prime Meridian 2 One degree of longitude ONLY EQUALS 69 Meridians of longitude measure the miles, at the Equator.
    [Show full text]
  • Latitude and Longitude
    Latitude and Longitude Finding your location throughout the world! What is Latitude? • Latitude is defined as a measurement of distance in degrees north and south of the equator • The word latitude is derived from the Latin word, “latus”, meaning “wide.” What is Latitude • There are 90 degrees of latitude from the equator to each of the poles, north and south. • Latitude lines are parallel, that is they are the same distance apart • These lines are sometimes refered to as parallels. The Equator • The equator is the longest of all lines of latitude • It divides the earth in half and is measured as 0° (Zero degrees). North and South Latitudes • Positions on latitude lines above the equator are called “north” and are in the northern hemisphere. • Positions on latitude lines below the equator are called “south” and are in the southern hemisphere. Let’s take a quiz Pull out your white boards Lines of latitude are ______________Parallel to the equator There are __________90 degrees of latitude north and south of the equator. The equator is ___________0 degrees. Another name for latitude lines is ______________.Parallels The equator divides the earth into ___________2 equal parts. Great Job!!! Lets Continue! What is Longitude? • Longitude is defined as measurement of distance in degrees east or west of the prime meridian. • The word longitude is derived from the Latin word, “longus”, meaning “length.” What is Longitude? • The Prime Meridian, as do all other lines of longitude, pass through the north and south pole. • They make the earth look like a peeled orange. The Prime Meridian • The Prime meridian divides the earth in half too.
    [Show full text]
  • PRIME MERIDIAN a Place Is
    Lines of Latitude and Longitude help us to answer a key geographical question: “Where am I?” What are Lines of Latitude and Longitude? Lines of Latitude and Longitude refer to the grid system of imaginary lines you will find on a map or globe. PARALLELS of Latitude and MERIDIANS of Longitude form an invisible grid over the earth’s surface and assist in pinpointing any location on Earth with great accuracy; everywhere has its own unique grid location, and this is expressed in terms of LATITUDE and LONGITUDE COORDINATES. Lines of LATITUDE are the ‘horizontal’ lines. They tell us whether a place is located in the NORTHERN or the SOUTHERN HEMISPHERE as well as how far North or South from the EQUATOR it is. Lines of LONGITUDE are the ‘vertical’ lines. They indicate how far East or West of the PRIME MERIDIAN a place is. • The EQUATOR is the 0° LATITUDE LINE. o North of the EQUATOR is the NORTHERN HEMISPHERE. o South of the EQUATOR is the SOUTHERN HEMISPHERE. • Lines of Latitude cross the PRIME MERIDIAN (longitude line) at right angles (90°). • Lines of Latitude circle the globe/world in an east- west direction. • Lines of Latitude are also known as PARALLELS. o As they are parallel to the Equator and apart always at the same distance. • Lines of Latitude measure distance north or south from the equator i.e. how far north or south a point lies from the Equator. • The distance between degree lines is about 69 miles (or about 110km). o A DEGREE (°) equals 60 minutes - 60’.
    [Show full text]
  • Social Studies Class 5 Lesson 3 Latitudes and Longitudes
    Social Studies Class 5 Lesson 3 Latitudes And Longitudes Learning Objectives; Parallels or Latitudes Important Latitudes Meridians or Longitudes Locating Places Since the Earth is spherical in shape, it is difficult to locate a place on Earth. So our mapmakers devised a system of imaginary lines to form a net or grid on maps and globes Thus there are a number of horizontal and vertical lines drawn on maps and globes to help us locate a place. Any location on Earth is described by two numbers--- its Latitude and its Longitude. The imaginary lines that run from East to West are called Parallels or Lines of Latitude. The imaginary lines that run North to South from the poles are called Meridians or the lines of Longitude. LATITUDES Lines of Latitude are east-west circles around the globe. Equator is the 0˚ latitude. It runs through the centre of the globe, halfway between the north pole and the south pole which are at 90˚. Equator 0 North pole 90˚N South pole 90˚S The Equator divides the Earth into two equal halves called hemispheres. 1. Northern Hemisphere: The upper half of the Earth to the north of the equator is called Northern Hemisphere. 2. Southern Hemisphere:The lower half of the earth to the south of the equator is called Southern Hemisphere. Features of Latitude These lines run parallel to each other. They are located at an equal distance from each other. They are also called Parallels. All Parallels form a complete circle around the globe. North Pole and South Pole are however shown as points.
    [Show full text]
  • Equator Tropic of Cancer Tropic of Capricorn Arctic Circle An
    Please learn where these ‘imaginary’ lines are on a world map: Equator These are all lines of latitude. Tropic of Cancer Tropic of Capricorn Arctic Circle Antarctic Circle Prime Meridian This is a line of longitude. (Sometimes known as the Greenwich Meridian) The Equator is an imaginary line around the centre of the Earth, dividing it into the Northern and Southern Hemispheres. It is a special line of latitude, located halfway between the North and South Poles. The Prime Meridian is the imaginary line that divides Earth into two equal parts: the Eastern Hemisphere and the Western Hemisphere. It is a line of longitude and the starting point for the measuring system called longitude. Hemisphere = half of the Earth Please learn the location of these hemispheres Northern hemisphere and Southern hemisphere which are separated by the Equator Eastern hemisphere and Western hemisphere which are separated by the Prime Meridian The British Isles are positioned within 3 hemispheres: Northern, eastern and western. Denmark, Sweden and Norway are all found in 2 hemispheres: Northern and eastern. LINES OF LATITUDE To find out how far north or south a place is from the horizontal line called the equator, lines of latitude are used. These lines run parallel to the Equator. LINES OF LONGITUDE To find out how far east or west a place is from the vertical line called the Prime Meridian, lines of longitude are used. These lines run vertically from the North Pole to the South Pole. VIKING LINK: Scandinavia includes the countries of Norway, Sweden and Denmark. It is located in Northern Europe.
    [Show full text]
  • Frozen Kingdoms the Polar Regions
    Frozen Kingdoms Arctic region Antarctic region The Arctic region consists of the Arctic Ocean and the Antarctica is the world’s fifth-largest continent and is The polar regions northern parts of Canada, Alaska, Russia, Finland, Sweden, covered in an ice sheet that is up to 4800m thick. It is the sphere North Pole 90° N emi Norway, Greenland and Iceland. Winter temperatures can coldest, driest, highest and windiest continent on Earth. n H The Earth has two polar er th reach -50°C and summer temperatures can reach 10°C. Temperatures can drop to -89°C, there is little precipitation, regions: the Arctic or N The Arctic region has a varied landscape including and wind speeds can reach 80km per hour. There are only Circle in the Northern Arctic Circle mountains, tundra and boreal forest. It is home to two native species of flowering plants in Antarctica, but there Hemisphere and 66.5° N small populations of people and an amazing variety is a rich sea life, including the emperor penguin, humpback the Antarctic Circle of plants and animals including the polar bear, whale and leopard seal. No people live permanently in the in the Southern Arctic fox, Arctic hare and walrus. Antarctic. However, scientists stay for part of the year to Hemisphere. Polar Tropic of Cancer e carry out research and tourists visit in the summer months to r regions have long, e 23.5° N h see the landscape and wildlife. p s cold winters and i m e H Equator 0° temperatures mostly n r below freezing.
    [Show full text]