A Phytochemical and Pharmacological

Total Page:16

File Type:pdf, Size:1020Kb

A Phytochemical and Pharmacological A PHYTOCHEMICAL AND PHARMACOLOGICAL INVESTIGATION OF INDIGENOUS AGATHOSMA SPECIES Aneesa Moolla A dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Pharmacy Johannesburg, South Africa, 2005. DECLARATION I, Aneesa Moolla, declare that this dissertation is my own work. It is being submitted for the Degree of Master of Pharmacy at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University. Signature: …………………… Date: …………………... ii DEDICATION To my parents Hassim Ahmed Moolla and Sara Bibi Moolla. iii ACKNOWLEDGEMENTS Firstly I would like to sincerely thank my supervisor, Prof. Alvaro M. Viljoen, for the knowledge impacted on me, his guidance and full support throughout the research period and for his motivation towards the completion of this research. His enthusiasm and interest towards the research project encouraged me a great deal. There are not enough words to express my gratitude. I am also indebted to Mrs Sandy F. van Vuuren and Dr Robyn L. van Zyl who tirelessly supervised the antimicrobial and toxicity components of this study. My sincere thanks to Prof. K. Hüsnü C. Başer, Dr Betül Demirci and Dr Temel Özek for access to their database to document the chemical composition of the essential oils; and for their assistance and expertise in generating the gas chromatography-mass spectroscopy (GC-MS) results. Their hospitality during my visit to Anadolu University is highly appreciated. A special thanks to Dr P. Steenkamp and Mr N.M. Harding for their technical guidance on the high performance liquid chromatography analyses. I am indebted to Mr Terry Trinder-Smith for identifying the plant material and assisting with the collection thereof. I would like to extend my sincere thanks to the National Research Foundation (Indigenous Knowledge Systems) and the Medical Faculty Research Endowment Fund, University of the Witwatersrand for financial support. Finally, I would like to acknowledge the technical and administrative staff of the Department of Pharmacy and Pharmacology, all my friends and colleagues at the iv University of the Witwatersrand, and finally all the people who helped me in ways I cannot detail here. v ABSTRACT As part of an investigation of the biological activities of South African plants and due to their extensive traditional use and lack of scientific evidence, a phytochemical and pharmacological investigation was performed on 17 indigenous Agathosma species (19 samples). The chemical composition of the essential oils was determined using gas chromatography coupled to mass spectroscopy (GC-MS). Analysis resulted in the identification of 333 compounds. To evaluate the chemical similarities and differences, cluster analysis was used to assess the essential oil composition of the samples. The results showed qualitative and quantitative differences amongst the taxa. The essential oils of Agathosma hirsuta and A. zwartbergense are particularly rich in citronellal, hence they are tightly clustered in the dendrogram obtained from the cluster analysis. Linalool, myrcene and limonene are the major constituents of both A. capensis (Gamka) and A. capensis (Besemfontein). Qualitative and quantitative differences are noted in the chemical compositions of the leaf oils of Agathosma capensis (Gamka) and A. capensis (Besemfontein). Agathosma arida and A. lanata are united in a single cluster due to the compounds β-pinene, linalool and spathulenol being major components in both species. The presence of 1,8-cineole in large quantities in both Agathosma namaquensis (23.5%) and A. ovalifolia (9.7%), unites them in a single cluster. A wide chemical variability for the essential oils of indigenous Agathosma species has been demonstrated. There was considerable variation in the percentage oil yield of the essential oils. Agathosma hirsuta produced the highest yield (1.15%) whilst A. ovalifolia produced the lowest yield (0.16%). vi Previous studies have revealed that the coumarin and flavonoid components of Agathosma species are responsible for their biological activities. High performance liquid chromatography (HPLC) was used to document the non-volatile composition of Agathosma species and to establish if phenolic patterns were present amongst the species. All species were found to be rich in flavonoids (i.e. flavones and flavonols). Many of the compounds detected were common to most of the species. A pure coumarin, puberulin, was identified in the diethyl ether extract of Agathosma ovata (round-leaf) and detected in the dichloromethane and methanol (1:1) extract of A. namaquensis. Agathosma species have been used traditionally to treat a wide variety of infections. They has been used as a cough remedy, for the treatment of colds and flu, kidney and urinary tract infections, for the treatment of cholera and other stomach ailments. Based on the extensive use and lack of scientific evidence, a study was embarked upon to determine its bioactivity. Using the disc diffusion assay as a preliminary screening and thereafter the minimum inhibitory concentration (MIC) assay, the antimicrobial activity of the essential oils and non-volatile compounds was assessed on two Gram-positive bacteria, Staphylococcus aureus and Bacillus cereus, one Gram-negative bacterium, Klebsiella pneumoniae, and one yeast, Candida albicans. All of the extracts proved to be active against the four pathogens tested with the exception of Agathosma bathii which showed poor activity against Klebsiella pneumoniae (MIC value of 32mg/ml). The extracts exhibited stronger activity against the pathogens as compared to the essential oils. Both the essential oils and extracts exhibited higher activity towards the Gram-positive bacteria than the Gram-negative bacterium, with the extract of Agathosma ovata (round-leaf) displaying the greatest vii activity against Staphylococcus aureus (MIC value of 0.156mg/ml) and Bacillus cereus (MIC value of 0.125mg/ml). The extract of Agathosma parva displayed the greatest activity against Candida albicans and Klebsiella pneumoniae (MIC value of 1.5mg/ml). Amongst the essential oils, Agathosma pungens proved to be the most active against the Gram-positive pathogen, Bacillus cereus (MIC value of 3mg/ml). Agathosma collina was the most active against Candida albicans (MIC value of 3mg/ml) whilst A. zwartbergense proved to be the least active against most of the tested pathogens. The antimicrobial activity of the essential oils may be ascribed to oxygenated constituents, such as 1,8-cineole, linalool and carvacrol. The activity of the extracts may be ascribed to constituents such as flavonoids, coumarins and alkaloids. Due to the availability and accessibility of Agathosma ovata, a seasonal variation study was performed on the chemical composition of the essential oils and how this may impact on the antimicrobial activity. Furthermore, this species has recently been earmarked for commercial development by the flavour and fragrance industry and information on variability is required to establish the harvesting protocol. Ten samples were harvested in total. There was a substantial variation in the oil yield throughout the year, ranging from 0.23% in early Spring to 0.85% in late Autumn. A higher yield was observed during the flowering season as compared to the non-flowering season. Oil yields were low during Summer (0.44%-0.48%) which may have been due to the low oil content in stems and higher proportion of stems after flowering. The proportion of oil-rich green leaves also decreased markedly, hence affecting the yield. Overall the yields were dependant on the season harvested and proportion of plant parts distilled. viii The chemical composition of the essential oils was determined using GC-MS and resulted in the identification of 145 compounds in 10 of the samples. All samples contained a large number of common monoterpenes and had very similar compositions, with minor quantitative variation. Some components common to all samples include: sabinene, p-cymene, β-pinene, α-pinene, α-thujene, myrcene, limonene, linalool and terpinen-4-ol. Sabinene was found to be the most dominant component in all samples, ranging between 25.6% and 44.4%. Myrcene levels dropped sharply between the beginning of Spring and end of Summer, from 14.9% to 1.0%. β-pinene followed a similar trend, peaking during Spring and decreasing during the Summer months. The lowest levels of linalool (4.3%), myrcene (1.0%), β-pinene (3.9%), limonene (1.9%) and sabinene (25.6%), occurred during the Summer months when the temperatures were high. There was a Springtime increase in the levels of β- pinene, terpinen-4-ol, linalool, sabinene, limonene and p-cymene in the non-flowering Agathosma ovata. These changes may have been due to the higher proportion of young leaves during Spring, which may have oil compositions slightly different to those of mature leaves. A rare thiol derivative (tr) that could not be identified was detected in the March sample. Many of the changes were associated with flowering and the results obtained reveal that the chemical composition of the essential oil of Agathosma ovata is subject to seasonal variation. Using the MIC assay, the antimicrobial activity of the essential oils was assessed on two Gram-positive bacteria, Staphylococcus aureus and Bacillus cereus, one Gram- negative bacterium, Klebsiella pneumoniae, and one yeast, Candida albicans. The study
Recommended publications
  • British Chemical Abstracts
    BRITISH CHEMICAL ABSTRACTS _ ' A.-PURE CHEMISTRY | DECEMBER, 1935. General, Physical, and Inorganic Chemistry. Slight correction to the Rydberg constant for 1000 A. have been photographed and arranged into hydrogen (H1). R. C. Williams and R. C. Gibbs three progressions for wliich formuła; are given. (Physical Rev., 1934, [ii], 45, 491). L. S. T. They are due to normal O. Otlier bands at shorter T riplet 3p complex of the hydrogen molecule. XX and between 1210 and 1000 A. liave also been G. H. D ieke (Physical Rev., 1935, [ii], 48, CIO—614; measured. L. S. T. cf. this vol., 917).—M any peculiarities in the Fulcher Oxygen in the sun’s chromosphere. T. R oyds bands of H2 can be explained by the interaction of (Naturę, 1935, 136, 606—607).—The observed infra- the ?yjM\ with tlie 3f>?£ level (cf. following abstract). red O emission lines 7771, 7774, and 7775 show th at N.' M. B. 02 is a normal and probably abundant constituent of 3p3I, -> 2s3L bands of HD and D2. G. H. the sun’s chromosphere. L. S. T. D ieke (Physical Rev., 1935, [ii], 48, 606—609; cf. New emission spectrum of sulphur in the this yoL, 555).—Fuli data for the system in the photographic infra-red. M. D k sib an t and J. extreme red and near infra-red are tabulated, and D uchesne (Compt. rend., 1935, 201, 597—598).— the band consts. are calc. N. M. B. Bands at 6650—7765 A., degraded to the violet, and Vibration and rotation spectrum of the mole­ attributed to S2, are described.
    [Show full text]
  • Can Riparian Seed Banks Initiate Restoration After Alien Plant Invasion? Evidence from the Western Cape, South Africa ⁎ S
    Available online at www.sciencedirect.com South African Journal of Botany 74 (2008) 432–444 www.elsevier.com/locate/sajb Can riparian seed banks initiate restoration after alien plant invasion? Evidence from the Western Cape, South Africa ⁎ S. Vosse a, K.J. Esler a, , D.M. Richardson b, P.M. Holmes c a Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa b Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa c City of Cape Town, Environmental Resource Management Department, Private Bag X5, Plumstead 7801, South Africa Received 15 August 2007; accepted 22 January 2008 Abstract Riparian zones are complex disturbance-mediated systems that are highly susceptible to invasion by alien plants. They are prioritized in most alien-plant management initiatives in South Africa. The current practice for the restoration of cleared riparian areas relies largely on the unaided recovery of native species from residual individuals and regeneration from soil-stored seed banks. Little is known about the factors that determine the effectiveness of this approach. We need to know how seed banks of native species in riparian ecosystems are affected by invasion, and the potential for cleared riparian areas to recover unaided after clearing operations. Study sites were selected on four river systems in the Western Cape: the Berg, Eerste, Molenaars and Wit Rivers. Plots were selected in both invaded (N75% Invasive Alien Plant (IAP) canopy cover) and un- invaded (also termed reference, with b25% IAP canopy cover) sections of the rivers.
    [Show full text]
  • Effect of Rutaceae Plant's Essential Oils and Leaf Extracts on Dermatophytic Fungal Cell Morphology
    Effect of Rutaceae plant’s essential oils and leaf extracts on dermatophytic fungal cell morphology: a hope for the development of an effective antifungal from natural origin Submitted in fulfillment of the academic requirements for the degree of DOCTOR OF PHILOSOPHY By OLUFUNKE OMOWUMI FAJINMI Research Centre for Plant Growth and Development School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal, Pietermaritzburg May 2016 Pictures sourced from google A healthy, glowing, beautiful skin….the pride of every woman i . Table of Contents STUDENT DECLARATION ................................................................................................... v DECLARATION BY SUPERVISORS ....................................................................................... vi COLLEGE OF AGRICULTURE ENGINEERING & SCIENCE DECLARATION 1- PLAGIARISM ........ vii ACKNOWLEDGEMENTS .................................................................................................. viii COLLEGE OF AGRICULTURE ENGINEERING & SCIENCE DECLARATION 2- PUBLICATIONS ....... x LIST OF FIGURES .............................................................................................................. xi LIST OF TABLES ............................................................................................................... xii LIST OF ABBREVIATIONS ................................................................................................ xiv ABSTRACT .....................................................................................................................
    [Show full text]
  • Adverse Drug Reactions in Some African Herbal Medicine: Literature Review and Stakeholders’ Interview Bernard Kamsu-Foguem, Clovis Foguem
    Adverse drug reactions in some African herbal medicine: literature review and stakeholders’ interview Bernard Kamsu-Foguem, Clovis Foguem To cite this version: Bernard Kamsu-Foguem, Clovis Foguem. Adverse drug reactions in some African herbal medicine: literature review and stakeholders’ interview. Integrative Medicine Research, 2014, vol. 3, pp. 126-132. 10.1016/j.imr.2014.05.001. hal-01064004 HAL Id: hal-01064004 https://hal.archives-ouvertes.fr/hal-01064004 Submitted on 15 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 11989 Identification number: DOI: 10.1016/j.imr.2014.05.001 Official URL: http://dx.doi.org/10.1016/j.imr.2014.05.001 To cite this version: Kamsu Foguem, Bernard and Foguem, Clovis Adverse drug reactions in some African herbal medicine: literature review and stakeholders’ interview.
    [Show full text]
  • Obdiplostemony: the Occurrence of a Transitional Stage Linking Robust Flower Configurations
    Annals of Botany 117: 709–724, 2016 doi:10.1093/aob/mcw017, available online at www.aob.oxfordjournals.org VIEWPOINT: PART OF A SPECIAL ISSUE ON DEVELOPMENTAL ROBUSTNESS AND SPECIES DIVERSITY Obdiplostemony: the occurrence of a transitional stage linking robust flower configurations Louis Ronse De Craene1* and Kester Bull-Herenu~ 2,3,4 1Royal Botanic Garden Edinburgh, Edinburgh, UK, 2Departamento de Ecologıa, Pontificia Universidad Catolica de Chile, 3 4 Santiago, Chile, Escuela de Pedagogıa en Biologıa y Ciencias, Universidad Central de Chile and Fundacion Flores, Ministro Downloaded from https://academic.oup.com/aob/article/117/5/709/1742492 by guest on 24 December 2020 Carvajal 30, Santiago, Chile * For correspondence. E-mail [email protected] Received: 17 July 2015 Returned for revision: 1 September 2015 Accepted: 23 December 2015 Published electronically: 24 March 2016 Background and Aims Obdiplostemony has long been a controversial condition as it diverges from diploste- mony found among most core eudicot orders by the more external insertion of the alternisepalous stamens. In this paper we review the definition and occurrence of obdiplostemony, and analyse how the condition has impacted on floral diversification and species evolution. Key Results Obdiplostemony represents an amalgamation of at least five different floral developmental pathways, all of them leading to the external positioning of the alternisepalous stamen whorl within a two-whorled androe- cium. In secondary obdiplostemony the antesepalous stamens arise before the alternisepalous stamens. The position of alternisepalous stamens at maturity is more external due to subtle shifts of stamens linked to a weakening of the alternisepalous sector including stamen and petal (type I), alternisepalous stamens arising de facto externally of antesepalous stamens (type II) or alternisepalous stamens shifting outside due to the sterilization of antesepalous sta- mens (type III: Sapotaceae).
    [Show full text]
  • DESMODIUM ALKALOIDS PART IP CHEMICAL and PHARMACOLOGICAL EVALUATION of D. GANGETICUM by S. Ghosal and S. K. Bhattacharya Introdu
    DESMODIUM ALKALOIDS PART IP CHEMICAL AND PHARMACOLOGICAL EVALUATION OF D. GANGETICUM By S. Ghosal and S. K. Bhattacharya Introduction The members of the genus Desmodiurn (Papilionaceae) are mostly shrubs, widely distributed in tropical and sub-tropical habitats and particularly abundant in India. They are well known for their various medicinal uses in the Indian system of medicine (Chopra et al., 1956). Among about four dozen Desmodium species available in this country, chemical and pharmacological evaluation of D. pulchel- lurn Benth. ex Baker (Ghosal et al., 1971) and only preliminary chemical in- vestigation of the entitled species (Ghosal and Banerjee, 1969) have been re- ported so far. The medicinal uses of the plant extracts and the high alkaloid con- tent of the two aforementioned species prompted us to examine in detail the alka- loid content and pharmacological properties of the available Desmodium species. Such investigation would also serve to locate the active principles of the plants with respect to the reported medicinal uses of their crude extracts.The initial chemical investigation with D. gangeticum DC has now been complemented by detail chemical and pharmacological evaluation of the species at different stages of its development. The results are reported in this paper. Experimental The general procedure for the separation and identification of the CHCla-soluble alkaloids involved gradient-pH extraction from aqueous AcOH solution; column chromatographic reso· lution over Brockman neutral alumina; paper chromatography (Whatrna~ 3MM papers) anc TLC (silica gel G, E. Merck) of the eluates from column chromatorgaphic runs in presence 0 markers (Ghosal and Mukherjee, 1966; Ghosal et aI., 1971a); preparation of picrate hydrochloride, and methiodide where possible; and determination of UV, IR, NMR and mas spectra of the single entities.
    [Show full text]
  • Pachycereus Marginatus Alkaloids
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 1-1964 Pachycereus Marginatus Alkaloids John M. Brewer Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Chemistry Commons Recommended Citation Brewer, John M., "Pachycereus Marginatus Alkaloids" (1964). Master's Theses. 4391. https://scholarworks.wmich.edu/masters_theses/4391 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. PACHYCEREUS MARGINATUS ALKALOIDS By John M. Brewer A thesis presented to the Faculty of the School of Graduate Studies in partial fulfillment of the Degree of Master of Arts Western Michigan University Kalamazoo, Michigan January 1964 ACKNOWLEDGEMENTS I want to express my gratitude and thanks to Dr. C. R. Smith and Dr. Robert E. Harmon who acted as thesis advisers, and to Dr. Lillian Meyer and Dr. Donald Iffland who served as committee members. I am indebted also to many units of The Upjohn Company for the use of their equipment and the good counsel given and interest shown. TA.BLE OF CONTENTS PAGE INTRODUCTION • • • 1 HISTORICAL REVIEW 3 EXPERIMENTAL 6 General Data for Crude Base 6 Paper Chromatography 6 Developing Solvents Used 8 Chromatographic Papers Tested 8 Concentration of Spotting Material 8 Paper Buffering Systems 8 Staining Solutions Tried 10 Countercurrent Distribution Experiments 11 Solvent Systems 11 Countercurrent Distribution Technique 11 Work Up of Countercurrent Distribution 15 Thin Layer Chromatography for Separations 19 Preparation of Plates 19 Development of Plates 19 Spotting ..
    [Show full text]
  • The Riparian Vegetation of the Hottentots Holland Mountains, SW Cape
    The riparian vegetation of the Hottentots Holland Mountains, SW Cape By E.J.J. Sieben Dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Stellenbosch Promoter: Dr. C. Boucher December 2000 Declaration I the undersigned, hereby declare that the work in this dissertation is my own original work and has not previously, in its entirety or in part, been submitted at any University for a degree. Signature Date Aan mijn ouders i Summary Riparian vegetation has received a lot of attention in South Africa recently, mainly because of its importance in bank stabilization and its influence on flood regimes and water conservation. The upper reaches have thus far received the least of this attention because of their inaccessibility. This study mainly focuses on these reaches where riparian vegetation is still mostly in a pristine state. The study area chosen for this purpose is the Hottentots Holland Mountains in the Southwestern Cape, the area with the highest rainfall in the Cape Floristic Region, which is very rich in species. Five rivers originate in this area and the vegetation described around them covers a large range of habitats, from high to low altitude, with different geological substrates and different rainfall regimes. All of these rivers are heavily disturbed in their lower reaches but are still relatively pristine in their upper reaches. All of them are dammed in at least one place, except for the Lourens River. An Interbasin Transfer Scheme connects the Eerste-, Berg- and Riviersonderend Rivers. The water of this scheme is stored mainly in Theewaterskloof Dam.
    [Show full text]
  • Table of Contents
    Table of Contents 0.9.06 Stage-6 40 0.1.1 Publication data 3 0.9.07 Stage-7 40 0.1.2 Table of Contents 13 0.9.08 Stage-8 40 0.1.3 Word of thanks 14 0.9.09 Stage-9 41 0.1.4 Foreword Klein 14 0.9.10 Stage-10 41 0.1.5 Foreword Kuiper 15 0.9.11 Stage-11 41 0.1.6 Introduction 16 0.9.12 Stage-12 42 0.1.7 Introduction use 16 0.9.13 Stage-13 42 0.1.8 Use 17 0.9.14 Stage-14 42 0.2 Goal 18 0.9.15 Stage-15 43 0.3.1 Method 19 0.9.16 Stage-16 43 0.3.2 Element Theory 19 0.9.17 Stage-17 43 0.3.3 Classification of Plants 20 0.9.18 Stage-18 44 0.3.4 Classes 20 000.00 Evolution 44 0.4 Result 21 000.00.00 Kingdom 45 0.4.0 Result 21 000.00.00 Plant Kingdom 47 0.4.1 Phyla and Series 21 000.00.20 Kingdom 49 0.4.2 Classes and Series 22 111.00.00 Archaeoplastidae 51 0.4.3 Subclasses and Series 22 111.02.20 Fucus vesiculosus 51 0.4.4 Orders and Phases 23 111.10.00 Rhodophyta 51 0.4.5 Families and Subphases 23 111.10.13 Helminthochortos 51 0.4.7 Number 23 111.10.20 Chondrus crispus 51 0.5 Discussion 24 111.10.20 Porphyra yezoensis 51 0.5.0 Discussion 24 112.20.00 Glaucophyta 51 0.5.1 Discussion Apg 3 24 210.00.00 Chlorophyta 51 0.5.1 Discussion Apg 3 24 210.01.01 Cladophora rupestris 51 0.5.2 Divergence with Apg3 25 211.00.00 Viridiplantae 53 0.5.3 Discussion Phases 25 220.00.00 Charophyta 54 0.5.4 Discussion Sources 25 221.21.00 Characeae 54 0.5.5 Provings 26 221.21.04 Chara intermedia 55 0.5.6 Discussion Cases 26 300.00.00 Bryophyta 56 0.5.7 Discussion Complexity 27 311.10.00 Anthocerotophyta 57 0.6.1 Presentation 28 322.10.00 Marchantiophyta 57 0.6.2 Central
    [Show full text]
  • <I>Phytophthora</I> Taxa Associated with Cultivated <I>Agathosma</I
    Persoonia 25, 2010: 32– 49 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X538371 Phytophthora taxa associated with cultivated Agathosma, with emphasis on the P. citricola complex and P. capensis sp. nov. C.M. Bezuidenhout1, S. Denman 2, S.A. Kirk 2, W.J. Botha3, L. Mostert 4, A. McLeod4 Key words Abstract Agathosma species, which are indigenous to South Africa, are also cultivated for commercial use. Re- cently growers experienced severe plant loss, and symptoms shown by affected plants suggested that a soilborne avocado disease could be the cause of death. A number of Phytophthora taxa were isolated from diseased plants, and this buchu paper reports their identity, mating type, and pathogenicity to young Agathosma plants. Using morphological and fynbos sequence data seven Phytophthora taxa were identified: the A1 mating type of P. cinnamomi var. cinnamomi, P. cin- glucose-6-phosphate isomerase namomi var. parvispora and P. cryptogea, the A2 mating type of P. drechsleri and P. nicotianae, and two homothallic isozymes taxa from the P. citricola complex. The identity of isolates in the P. citricola complex was resolved using reference malate dehydrogenase isolates of P. citricola CIT groups 1 to 5 sensu Oudemans et al. (1994) along with multi-locus phylogenies (three pathogenicity nuclear and two mitochondrial regions), isozyme analyses, morphological characteristics and temperature-growth root-rot studies. These analyses revealed the isolates from Agathosma to include P. multivora and a putative novel species, taxonomy P. taxon emzansi. Furthermore, among the P. citricola reference isolates the presence of a new species was revealed, described here as P. capensis.
    [Show full text]
  • Cover Next Page > Cover Next Page >
    cover next page > Cover title: The Psychopharmacology of Herbal Medicine : Plant Drugs That Alter Mind, Brain, and Behavior author: Spinella, Marcello. publisher: MIT Press isbn10 | asin: 0262692651 print isbn13: 9780262692656 ebook isbn13: 9780585386645 language: English subject Psychotropic drugs, Herbs--Therapeutic use, Psychopharmacology, Medicinal plants--Psychological aspects. publication date: 2001 lcc: RC483.S65 2001eb ddc: 615/.788 subject: Psychotropic drugs, Herbs--Therapeutic use, Psychopharmacology, Medicinal plants--Psychological aspects. cover next page > < previous page page_i next page > Page i The Psychopharmacology of Herbal Medicine < previous page page_i next page > cover next page > Cover title: The Psychopharmacology of Herbal Medicine : Plant Drugs That Alter Mind, Brain, and Behavior author: Spinella, Marcello. publisher: MIT Press isbn10 | asin: 0262692651 print isbn13: 9780262692656 ebook isbn13: 9780585386645 language: English subject Psychotropic drugs, Herbs--Therapeutic use, Psychopharmacology, Medicinal plants--Psychological aspects. publication date: 2001 lcc: RC483.S65 2001eb ddc: 615/.788 subject: Psychotropic drugs, Herbs--Therapeutic use, Psychopharmacology, Medicinal plants--Psychological aspects. cover next page > < previous page page_ii next page > Page ii This page intentionally left blank. < previous page page_ii next page > < previous page page_iii next page > Page iii The Psychopharmacology of Herbal Medicine Plant Drugs That Alter Mind, Brain, and Behavior Marcello Spinella < previous page page_iii next page > < previous page page_iv next page > Page iv © 2001 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. This book was set in Adobe Sabon in QuarkXPress by Asco Typesetters, Hong Kong and was printed and bound in the United States of America.
    [Show full text]
  • Kirstenbosch NBG List of Plants That Provide Food for Honey Bees
    Indigenous South African Plants that Provide Food for Honey Bees Honey bees feed on nectar (carbohydrates) and pollen (protein) from a wide variety of flowering plants. While the honey bee forages for nectar and pollen, it transfers pollen from one flower to another, providing the service of pollination, which allows the plant to reproduce. However, bees don’t pollinate all flowers that they visit. This list is based on observations of bees visiting flowers in Kirstenbosch National Botanical Garden, and on a variety of references, in particular the following: Plant of the Week articles on www.PlantZAfrica.com Johannsmeier, M.F. 2005. Beeplants of the South-Western Cape, Nectar and pollen sources of honeybees (revised and expanded). Plant Protection Research Institute Handbook No. 17. Agricultural Research Council, Plant Protection Research Institute, Pretoria, South Africa This list is primarily Western Cape, but does have application elsewhere. When planting, check with a local nursery for subspecies or varieties that occur locally to prevent inappropriate hybridisations with natural veld species in your vicinity. Annuals Gazania spp. Scabiosa columbaria Arctotis fastuosa Geranium drakensbergensis Scabiosa drakensbergensis Arctotis hirsuta Geranium incanum Scabiosa incisa Arctotis venusta Geranium multisectum Selago corymbosa Carpanthea pomeridiana Geranium sanguineum Selago canescens Ceratotheca triloba (& Helichrysum argyrophyllum Selago villicaulis ‘Purple Turtle’ carpenter bees) Helichrysum cymosum Senecio glastifolius Dimorphotheca
    [Show full text]