The Cryosphere, 15, 1501–1516, 2021 https://doi.org/10.5194/tc-15-1501-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The tipping points and early warning indicators for Pine Island Glacier, West Antarctica Sebastian H. R. Rosier1, Ronja Reese2, Jonathan F. Donges2,3, Jan De Rydt1, G. Hilmar Gudmundsson1, and Ricarda Winkelmann2,4 1Department of Geography and Environmental Sciences, Northumbria University, Newcastle, UK 2Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany 3Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden 4Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany Correspondence: Sebastian H. R. Rosier (
[email protected]) Received: 30 June 2020 – Discussion started: 4 August 2020 Revised: 21 January 2021 – Accepted: 31 January 2021 – Published: 25 March 2021 Abstract. Mass loss from the Antarctic Ice Sheet is the main 1 Introduction source of uncertainty in projections of future sea-level rise, with important implications for coastal regions worldwide. Central to ongoing and future changes is the marine ice The West Antarctic Ice Sheet (WAIS) is regarded as a tip- sheet instability: once a critical threshold, or tipping point, is ping element in the Earth’s climate system, defined as a ma- crossed, ice internal dynamics can drive a self-sustaining re- jor component of the Earth system susceptible to tipping- treat committing a glacier to irreversible, rapid and substan- point behaviour (Lenton et al., 2008).