Plant Origin Herbicides: Chemistry, Mode of Action and Weed Management

Total Page:16

File Type:pdf, Size:1020Kb

Plant Origin Herbicides: Chemistry, Mode of Action and Weed Management International Journal of Agricultural Sciences Volume 9 | Issue 1| January, 2013 | 413-422 A REVIEW Plant origin herbicides: chemistry, mode of action and weed management D. SUBRAMANYAM*, D. SRINIVASULU1, V. SUMATHI AND K. SAJITHA1 Department of Agronomy, S.V. Agricultural College, TIRUPATI (A.P.) INDIA Abstract : Plant origin herbicides or allelomones are major source of natural herbicides to combat the weed problem in current organic and sustainable agriculture. Some of the secondary metabolites extracted from plant origin provide lead molecules viz., 1, 8-cineole, leptospermone, artemisinin, sorgoleone and benzoquinones act as templates or analogs to produce new synthetic chemical herbicides. Various plant products had sufficient quantities of allelomones that affect the growth and development of weeds directly, however, these effects are concentration dependent. Herbicidal activity of plant aqueous extracts of sorghum, rice, maize, sunflower, eucalyptus and some of the medicinal plants and other plants were explained to control the weeds in different situations. Combined applications of these plant origin aqueous water extracts with reduced rates of synthetic herbicides could be an economic and effective weed management practices in organic and sustainable agriculture to minimize the herbicide load in soil. Key Words : Plant origin herbicides, Chemistry, Weed management View Point Article : Subramanyam, D., Srinivasulu, D., Sumathi, V. and Sajitha, K. (2013). Plant origin herbicides: chemistry, mode of action and weed management. Internat. J. agric. Sci., 9(1): 413-422. Article History : Received : 11.08.2012; Accepted : 19.11.2012 INTRODUCTION organic molecules, synthesizing analog of patent herbicides that do not fall within the boundaries of the existing patent, Herbicides continue to be a key component in most of designing of new herbicide molecule based on molecular target the integrated weed management systems. Extensive and site i.e. bio rational approach and screening of natural products continuous use of synthetic herbicides could lead to serious for herbicidal activity. threats to both environment and public health. Usage of There is great incentive to discover biologically potent synthetic herbicides is becoming more restrictive due to natural products from higher plants that are as good as or various problems viz., residual toxicity, reduction in the choice better than synthetic agrochemicals. The potential wealth of of succeeding crops, development of herbicide resistant weeds natural plant based chemicals was relatively untapped and and source for carcinogenic and mutagenic effects on human chemical structures were not identified. Phytotoxicity of plant beings and animals (Rial-otero et al., 2005) However, herbicide products could lead to find out new herbicide molecules and industry continuously searching for more effective, to plan environmental friendly weed management strategies. economical and environmentally safer herbicide formulations. The use of natural products for weed control has become The need for current sustainable and organic agricultural increasingly popular, particularly in organic and sustainable production system has also generated demand for effective agricultural systems. As the demand increases for cultivation and alternate plant based natural herbicides to combat the of crops under sustainable agriculture and organic farming weed problem from the natural product data base. Duke et al. lead to less usage of synthetic chemical herbicides and (1997) suggested four approaches for identifying synthetic attention is focused on reducing reliance upon synthetic organic herbicides i.e screening of large number of synthetic herbicides and find out natural ways of weed management. * Author for correspondence and Present Address: Krishi Vigyan Kendra, Kalikiri, CHITTOOR (A.P.) INDIA (Email:[email protected]) 1Department of Chemistry, Sri Venkateswara University, TIRUPATI (A.P.) INDIA D. SUBRAMANYAM, D. SRINIVASULU, V. SUMATHI AND K. SAJITHA Allelopathy is a natural and environment friendly based on lead molecules of plant based secondary metabolites phenomenon, which proved to be a useful tool for weed were discussed hereunder. management and thereby increase the crop yield (Putnam et al ., 1983). Chemicals produced with allelopathic influence are 1, 8- cineole : known as allelochemicals and most of them are classified as Essential oils and their constituents act as potential and secondary metabolites (Rice, 1984). These metabolites were ecologically acceptable natural herbicides with novel modes produced from the metabolism of carbohydrates, fats and of action for weed management, particularly with 1,8-cineole amino acids through acetate or shikimic acid path way. (1S,4S-1-isopropyl-4-methyl-7-oxabicyclo[2.2.1]heptanes) Thousands of secondary metabolites obtained from plants is a monoterpenoid of many aromatic plants (Salvia provide diverse and challenged structures, which act as natural leucophylla and Eucalyptus citridora) known to be highly herbicides, appear to have more potential herbicides with better phytotoxic to monocotyledon and some dicotyledon weeds. selectivity to crops (Vyvyan, 2002). Allelochemicals produced It is significantly reduced the germination and growth of weeds by plants used as natural herbicides and these allelomones due to inhibition of mitosis (Romagni et al., 2000). The ester have good herbicidal activity between the concentrations of derivatives of cineole showed increased activity compared to 10-5 to 10-7 M (Macias, 1995). Allelochemicals, which have hydroxyl or carboxylic acid cineole (Barton et al., 2010). sufficient herbicidal activity used as herbicides directly to Structural modification of monoterpene, 1, 8-cineole led to the control the weeds, while other products with lower herbicidal development of a commercial herbicide, cinmethylin (1R, 4S)- activity may be served as chemical templates for development 4-isopropyl-1-methyl-2-(2-methylbenzyloxy)-7-oxabicyclo of synthetic herbicides. [2.2.1] heptane) (Fig. 1) with more physical and biological Most of the plant based products destroy the target properties including improved herbicide selectivity and weed through contact action and in some instances, required persistence in soil. less than half an hour after application of plant based herbicides to show wilting symptoms on target weeds. The magnitude of damage caused by plant products on weeds CH3 CH3 depends on application time, number of applications and O CH2 concentrations of natural products (Neal, 1998). Mostly these O O CH3 products are used as non-selective post-emergent herbicides or burn down products (Young, 2004). The plant products H C CH H C CH derived from secondary metabolism often have complex carbon 3 3 3 3 1,8-Cineole Cinmethylin skeletons with higher molecular weights than synthetic herbicides. Plant products tend to be rich in oxygen and Fig. 1: Molecular structure of 1, 8 cineole and its synthetic analog nitrogen with more number of chiral centers and sp3 hybridized cinmethylin carbons with more number of ring structures. Such type of diversity is useful to synthesize new class of herbicides based Cinmethylin gave an excellent control of Echinochola on the carbon structures from lead molecules found in natural crus-galli (L.) Beauv before emergence from soil to the 3rd leaf allelomones (Dayan et al., 1999). Further, plant products are stage when it was applied @ 100 g a.i ha-1 in rice (Rao and rapidly degraded in the natural environment due to short half- Rao, 1990), however it has phytotoxic effect on in rice seedlings life period and low amount of heavy atoms. The negative at 75g a.i ha-1 (Subramanyam et al., 2007). allelopathic effects of any crop or weed residue (or) allelomones can be used to control the weeds or to develop Leptospermone : new green herbicides (Oudhia and Tripathi, 1996). There are Manuka oil, the essential oil distillated from manuka tree two fundamental approaches to use the plant origin herbicides (Leptospermum scoparium J.R. and G. Frost) and it acts as for weed control is the chemistry of natural lead molecules/ natural pre-emergence herbicide @ 3 l ha-1 to control grassy templates used for development of new synthetic herbicides weeds like large crab grass. Also, it acts as good post- and these plant based herbicides were used directly as green emergence activity in combination with lemon grass oil. The herbicides to control the weeds in different crops. main ingredient responsible for herbicidal activity in manuka oil is leptospermone (2,2,4,4-tetramethy l-6-(3 Lead molecules for development of new synthetic herbicides: methylbutanoyl) cyclohexane -1,3,5-trione), a-triketone and Lead molecules isolated from natural secondary it was stable in the soil up to 7 days after its application (Dayan metabolites/ allelomones from different plants used as et al., 2011). templates for synthesis of new synthetic herbicides to control The mode of action of leptospermone had similar to that weed management. Some of the plant derivatives are highly of synthetic herbicide sulcotrione ( 2-(2-chloro-4-(methyl phytotoxic to target weeds. The synthetic herbicides produced sulfonyl) benzyl) cyclohexane-1-3-dione) (Fig. 2) and Internat. J. agric. Sci. | Jan., 2013| Vol. 9 | Issue 1 | 413-422414 Hind Agricultural Research and Training Institute PLANT ORIGIN HERBICIDES: CHEMISTRY, MODE OF ACTION & WEED MANAGEMENT mesotrione as these two synthetic herbicides inhibit p-hydroxy 1997). Dehydrozaluzanin is another sesquiterpene
Recommended publications
  • Weed Risk Assessment for Phalaris Paradoxa L. (Poaceae)
    Weed Risk Assessment for Phalaris United States paradoxa L. (Poaceae) – Awned Department of canary-grass Agriculture Animal and Plant Health Inspection Service September 27, 2016 Version 1 Photos of Phalaris paradoxa from Rignanese (2007). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Phalaris paradoxa Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701- 7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. The PPQ WRA process includes three analytical components that together describe the risk profile of a plant species (risk potential, uncertainty, and geographic potential; PPQ, 2015). At the core of the process is the predictive risk model that evaluates the baseline invasive/weed potential of a plant species using information related to its ability to establish, spread, and cause harm in natural, anthropogenic, and production systems (Koop et al., 2012).
    [Show full text]
  • Archives of Dairy Research and Technology Ghosh RK, Et Al
    Archives of Dairy Research and Technology Ghosh RK, et al. Arch Diary Res Technol: ADRT-102. Research Article DOI: 10.29011/ADRT- 102. 100002 Invasive Weed Threats in India and Their Ecosafe Management R. K. Ghosh*, Anannya Ghosh, Dibyendu Mondal Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya (BCKV), India *Corresponding author: R. K. Ghosh, Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya (BCKV), Mohanpur, 741252, Nadia, West Bengal, India. Tel: +919433145340; Email: [email protected] Citation: Ghosh RK, Ghosh A, Mondal D (2018) Invasive Weed Threats in India and Their Ecosafe Management. Arch Diary Res Technol: ADRT-102. DOI: 10.29011/ADRT- 102. 100002 Received Date: 27 March, 2018; Accepted Date: 16 April, 2018; Published Date: 23 April, 2018 Abstract The Ecosphere is badly tormenting for Food, Oil, Nutrient, Fuel, Ecological and Health [FONFEH] securities because of global warming and population increasing. The Best Management Practice [BMP] of resources with more biological management in system agriculture is the prime solution to overcome this problem. Pest causes 33 % production losses nationally. The major pest weed alone cause more than 10 % production loss. Because of climate change impacts the weed pest biodiversity is changing. Ambrosia, Conyza, Cynoglossum, Cyperus, Eichhornia, Elatine, Oryza (wild), Parthenium, Phalaris, Polypogon, Viola etc. alien anthophytes are invaded in newer regions and dispersed in many crop fields around the globe and their menace is gradually arrogance forcing urgent Ecosafe management to protect environment for increasing productivity as well as food and oil security. Utilization of these alien invasive weeds as compost making, green manuring, bio pesticides, breeding, biogas, pharmaceutical etc.
    [Show full text]
  • Pollen Morphology of Poaceae (Poales) in the Azores, Portugal
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/283696832 Pollen morphology of Poaceae (Poales) in the Azores, Portugal ARTICLE in GRANA · OCTOBER 2015 Impact Factor: 1.06 · DOI: 10.1080/00173134.2015.1096301 READS 33 4 AUTHORS, INCLUDING: Vania Gonçalves-Esteves Maria A. Ventura Federal University of Rio de Janeiro University of the Azores 86 PUBLICATIONS 141 CITATIONS 43 PUBLICATIONS 44 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Maria A. Ventura letting you access and read them immediately. Retrieved on: 10 December 2015 Grana ISSN: 0017-3134 (Print) 1651-2049 (Online) Journal homepage: http://www.tandfonline.com/loi/sgra20 Pollen morphology of Poaceae (Poales) in the Azores, Portugal Leila Nunes Morgado, Vania Gonçalves-Esteves, Roberto Resendes & Maria Anunciação Mateus Ventura To cite this article: Leila Nunes Morgado, Vania Gonçalves-Esteves, Roberto Resendes & Maria Anunciação Mateus Ventura (2015) Pollen morphology of Poaceae (Poales) in the Azores, Portugal, Grana, 54:4, 282-293, DOI: 10.1080/00173134.2015.1096301 To link to this article: http://dx.doi.org/10.1080/00173134.2015.1096301 Published online: 04 Nov 2015. Submit your article to this journal Article views: 13 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgra20 Download by: [b-on: Biblioteca do conhecimento
    [Show full text]
  • Flora of North America North of Mexico
    Flora of North America North of Mexico Edited by FLORA OF NORTH AMERICA EDITORIAL COMMITTEE VOLUME 24 MagnoUophyta: Commelinidae (in part): Foaceae, part 1 Edited by Mary E. Barkworth, Kathleen M. Capéis, Sandy Long, Laurel K. Anderton, and Michael B. Piep Illustrated by Cindy Talbot Roché, Linda Ann Vorobik, Sandy Long, Annaliese Miller, Bee F Gunn, and Christine Roberts NEW YORK OXFORD • OXFORD UNIVERSITY PRESS » 2007 Oxford Univei;sLty Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education. Oxford New York /Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto Copyright ©2007 by Utah State University Tlie account of Avena is reproduced by permission of Bernard R. Baum for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. The accounts of Arctophila, Dtipontui, Scbizacbne, Vahlodea, xArctodiipontia, and xDiipoa are reproduced by permission of Jacques Cayouette and Stephen J. Darbyshire for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. The accounts of Eremopoa, Leitcopoa, Schedoiioms, and xPucciphippsia are reproduced by permission of Stephen J. Darbyshire for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Utah State University.
    [Show full text]
  • Antifungal Activity of Some Common Weed Extracts Against Seed- Borne Phytopathogenic Fungi Alternaria Spp
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/261510497 ANTIFUNGAL ACTIVITY OF SOME COMMON WEED EXTRACTS AGAINST SEED- BORNE PHYTOPATHOGENIC FUNGI ALTERNARIA SPP ARTICLE · APRIL 2013 CITATIONS DOWNLOADS VIEWS 3 133 83 3 AUTHORS, INCLUDING: Gaurav Kumar Pal Brijesh Kumar Academy of Scientific and Innovative Research National Dairy Research Institute 7 PUBLICATIONS 7 CITATIONS 5 PUBLICATIONS 5 CITATIONS SEE PROFILE SEE PROFILE Available from: Gaurav Kumar Pal Retrieved on: 14 July 2015 International Standard Serial Number (ISSN): 2249-6793 International Journal of Universal Pharmacy and Life Sciences 3(2): March-April 2013 INTERNATIONAL JOURNAL OF UNIVERSAL PHARMACY AND LIFE SCIENCES Life Sciences Research Article……!!! Received: 24-11-2012; Revised; Accepted: 24-04-2013 ANTIFUNGAL ACTIVITY OF SOME COMMON WEED EXTRACTS AGAINST SEED- BORNE PHYTOPATHOGENIC FUNGI ALTERNARIA SPP Gaurav Kumar Pal*, Brijesh Kumar, S.K.Shahi Bio-Resource Tech Laboratory, Department of Microbiology, CCS University Campus Meerut, India Keywords: ABSTRACT Antifungal activity, Herbal fungicides are mostly using to control plant disease of fungi Ageratum conyzoides, because of their ecofriendly nature and their cost effectiveness. The present investigation focuses on the antifungal activity of solvent Parthenium hysterophorus, based extracts extracted from some common weeds Achyranthes MIC aspera, Parthenium hysterophorus, Cannabis sativa, Calotropis gigantean, Chenopodium album, Canada thistle, Phalaris
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]
  • Étude Des Interactions Trophiques Entre Les Communautés De Carabes Et De Graines Adventices Sous L’Angle D’Un Système Proie-Prédateur Paul Deroulers
    Étude des interactions trophiques entre les communautés de carabes et de graines adventices sous l’angle d’un système proie-prédateur Paul Deroulers To cite this version: Paul Deroulers. Étude des interactions trophiques entre les communautés de carabes et de graines adventices sous l’angle d’un système proie-prédateur. Interactions entre organismes. Université de La Rochelle, 2017. Français. NNT : 2017LAROS030. tel-01804985 HAL Id: tel-01804985 https://tel.archives-ouvertes.fr/tel-01804985 Submitted on 1 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du grade de DOCTEUR DE L’UNIVERSITÉ DE LA ROCHELLE École Doctorale : Sciences pour l’Environnement Gay Lussac Spécialité : Biologie de l’environnement, des populations, écologie Au Centre d’Études Biologiques de Chizé Présentée par : Paul DEROULERS Étude des interactions trophiques entre les communautés de carabes et de graines adventices sous l’angle d’un système proie-prédateur Directrice de thèse : Isabelle BADENHAUSSEUR Soutenue le 30 novembre 2017 devant la Commission
    [Show full text]
  • Santa Monica Mountains National Recreation Area Vascular Plant
    Santa Monica Mountains National Recreation Area Vascular Plant Species List (as derived from NPSpecies 18 Dec 2006) FAMILY NAME Scientific Name (Common Name) (* = non-native) - [Abundance] ASPLENIACEAE AIZOACEAE Asplenium vespertinum (spleenwort) - [Rare] Carpobrotus edulis (hottentot-fig) * - [Common] Galenia pubescens * - [Rare] AZOLLACEAE Malephora crocea * - [Uncommon] Azolla filiculoides (duck fern, mosquito fern) - [Rare] Mesembryanthemum crystallinum (common ice plant) * - [Common] BLECHNACEAE Mesembryanthemum nodiflorum (slender-leaved ice plant) * Woodwardia fimbriata (chain fern) - [Uncommon] - [Uncommon] DENNSTAEDTIACEAE Tetragonia tetragonioides (New Zealand-spinach) * - Pteridium aquilinum var. pubescens (western bracken) - [Uncommon] [Uncommon] AMARANTHACEAE DRYOPTERIDACEAE Amaranthus albus (tumbleweed) - [Common] Dryopteris arguta (coastal woodfern) - [Common] Amaranthus blitoides (prostrate pigweed) * - [Common] Amaranthus californicus (California amaranth) - [Uncommon] EQUISETACEAE Amaranthus deflexus (low amaranth) * - [Uncommon] Equisetum arvense - [Uncommon] Amaranthus powellii - [Unknown] Equisetum hyemale ssp. affine (common scouring rush) - Amaranthus retroflexus (rough pigweed) * - [Common] [Uncommon] Equisetum laevigatum (smooth scouring-rush) - [Uncommon] ANACARDIACEAE Equisetum telmateia ssp. braunii (giant horsetail) - Malosma laurina (laurel sumac) - [Common] [Uncommon] Rhus integrifolia (lemonadeberry) - [Common] Equisetum X ferrissi ((sterile hybrid)) - [Unknown] Rhus ovata (sugar
    [Show full text]
  • Checklist of the Vascular Plants of San Diego County 5Th Edition
    cHeckliSt of tHe vaScUlaR PlaNtS of SaN DieGo coUNty 5th edition Pinus torreyana subsp. torreyana Downingia concolor var. brevior Thermopsis californica var. semota Pogogyne abramsii Hulsea californica Cylindropuntia fosbergii Dudleya brevifolia Chorizanthe orcuttiana Astragalus deanei by Jon P. Rebman and Michael G. Simpson San Diego Natural History Museum and San Diego State University examples of checklist taxa: SPecieS SPecieS iNfRaSPecieS iNfRaSPecieS NaMe aUtHoR RaNk & NaMe aUtHoR Eriodictyon trichocalyx A. Heller var. lanatum (Brand) Jepson {SD 135251} [E. t. subsp. l. (Brand) Munz] Hairy yerba Santa SyNoNyM SyMBol foR NoN-NATIVE, NATURaliZeD PlaNt *Erodium cicutarium (L.) Aiton {SD 122398} red-Stem Filaree/StorkSbill HeRBaRiUM SPeciMeN coMMoN DocUMeNTATION NaMe SyMBol foR PlaNt Not liSteD iN THE JEPSON MANUAL †Rhus aromatica Aiton var. simplicifolia (Greene) Conquist {SD 118139} Single-leaF SkunkbruSH SyMBol foR StRict eNDeMic TO SaN DieGo coUNty §§Dudleya brevifolia (Moran) Moran {SD 130030} SHort-leaF dudleya [D. blochmaniae (Eastw.) Moran subsp. brevifolia Moran] 1B.1 S1.1 G2t1 ce SyMBol foR NeaR eNDeMic TO SaN DieGo coUNty §Nolina interrata Gentry {SD 79876} deHeSa nolina 1B.1 S2 G2 ce eNviRoNMeNTAL liStiNG SyMBol foR MiSiDeNtifieD PlaNt, Not occURRiNG iN coUNty (Note: this symbol used in appendix 1 only.) ?Cirsium brevistylum Cronq. indian tHiStle i checklist of the vascular plants of san Diego county 5th edition by Jon p. rebman and Michael g. simpson san Diego natural history Museum and san Diego state university publication of: san Diego natural history Museum san Diego, california ii Copyright © 2014 by Jon P. Rebman and Michael G. Simpson Fifth edition 2014. isBn 0-918969-08-5 Copyright © 2006 by Jon P.
    [Show full text]
  • Medicinal Grass Resources from Sambhal District of Rohilkhand Region (U.P.), India
    MEDICINAL GRASS RESOURCES FROM SAMBHAL DISTRICT OF ROHILKHAND REGION (U.P.), INDIA Rajkumar1 and Beena Kumari2* 1,2Angiosperms Taxonomy Laboratory, Department of Botany, Hindu College, Moradabad.244001(U.P) Abstract Grasses are the members of Poaceae (Gramineae) family which are the most vital part in our life as food, medicine, cattle-fodder and many different things. Sambhal district is represented by 6 subfamilies and 14 tribes of family Poaceae. Subfamily Panicoideae (24 species) had the highest number of species followed by Chloridoideae (9 species), Pooideae (5 species) and Bambusoideae (1 species), Ehrhartoideae (1species), Arundinoideae (1 species) each, while Centothecoideae, Aristidoideae, Anomochlooideae, Danthonioideae, Pharoideae, and Puelioideae are not represented in this area. We recorded total 41 species out of which 18 grass species used in fungal infection, fever, haematuria, urinary diseases, intestinal worm, asthma, jaundice, cough, wounds, snakebite, rheumatism etc. Key words: Grasses, diseases, medicinal value, Sambhal District. I. INTRODUCTION Poaceae or Gramineae is a large and nearly ubiquitous family of monocotyledonous flowering plants known as grasses. Poaceae includes the cereal grasses, bamboos and the grasses of natural grassland and cultivated lawns and pasture. The grass family is one of the most widely distributed and abundant groups of plants on Earth. Grasses are found on almost every continent and are absent only from Antarctica. Grasses are the signature of Poaceae with more than 10,290 species (Clark, 2004; Clayton et al., 2012). It is the fourth largest family of flowering plants, surpassed only by Asteraceae (24,000 species), Orchidaceae (20,000 species) and Fabaceae (18,000 species). Some notable work on Indian grasses are done by Achariyar and Tadulinga (1921), Blatter (1935), Bor (1960), Duthie (1883,88), Raizada (1961,66) Singh (1971), Jain et al., (1975) Vedprakash et al.
    [Show full text]
  • Phalaris, Poaceae)
    Evolutionary history of the canary grasses (Phalaris, Poaceae) Stephanie M. Voshell Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biological Sciences Khidir W. Hilu, Committee Chair Robert H. Jones Brent D. Opell John G. Jelesko May 1, 2014 Blacksburg, VA Keywords: Phalaris, polyploidy, phylogenetics, phylogeography, chromosome evolution Evolutionary history of the canary grasses (Phalaris, Poaceae) Stephanie M. Voshell ABSTRACT Canary grasses (Phalaris, Poaceae) include 21 species widely distributed throughout temperate and subtropical regions of the world with centers of diversity in the Mediterranean Basin and western North America. The genus contains annual/perennial, endemic/cosmopolitan, wild, and invasive species with basic numbers of x=6 (diploid) and x=7 (diploid/tetraploid/hexaploid). The latter display vastly greater speciation and geographic distribution. These attributes make Phalaris an ideal platform to study species diversification, dispersal, historic hybridization, polyploidy events, and chromosome evolution in the grasses. This body of research presents the first molecular phylogenetic and phylogeographic reconstruction of the genus based on the nuclear ITS and plastid trnT-F DNA regions allowing species relationships and the importance of polyploidy in speciation to be assessed. Divergence dates for the genus were determined using Bayesian methods (BEAST, version 1.6.2) and historic patterns of dispersal were analyzed with RASP (version 2.1b). Self-incompatibility and the feasibility of hybridization between major groups within the genus were studied with a series of greenhouse experiments. Acetocarmine and fluorescent staining techniques were used to study the morphology of the chromosomes in a phylogenetic context and the nuclear DNA content (C values) was quantified using flow cytometry.
    [Show full text]
  • Environmental Management 147: 108–123
    Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation Manuscript - NO track change Click here to view linked References Can artificial ecosystems enhance local biodiversity? The case of a constructed wetland in a 1 2 Mediterranean urban context 3 4 Abstract 5 6 7 Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: 8 9 5 their success is mainly assessed observing the rate of pollution reduction, but CW can also 10 11 contribute to the conservation of ecosystem services. Among the many ecosystem services 12 13 provided, the biodiversity of constructed wetlands has received less attention. 14 The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed 15 16 wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity and 17 18 10 enhance local biodiversity. A floristic survey has been carried out yearly one year after the 19 20 construction of the artificial ecosystem in 2004, observing the modification of the vascular flora 21 22 composition in time. The flora of the ESF accounted for 54% of the whole Regional Park’s flora; 23 alien species amount to 12%, taxa of conservation concern are 6%. Comparing the data in the years, 24 25 except for the biennium 2006/2007, we observed a continuous increase of species richness, together 26 27 15 with an increase of endemics, species of conservation concern and alien species too. Once the 28 29 endemics appeared, they remained part of the flora, showing a good persistence in the artificial 30 31 wetland.
    [Show full text]