A New Recombineering System for Precise Genome-Editing In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shewanella Oneidensis MR-1 Nanowires Are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components
Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components Sahand Pirbadiana, Sarah E. Barchingerb, Kar Man Leunga, Hye Suk Byuna, Yamini Jangira, Rachida A. Bouhennic, Samantha B. Reedd, Margaret F. Romined, Daad A. Saffarinic, Liang Shid, Yuri A. Gorbye, John H. Golbeckb,f, and Mohamed Y. El-Naggara,g,1 aDepartment of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089; bDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; cDepartment of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211; dPacific Northwest National Laboratory, Richland, WA 99354; eDepartment of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180; fDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802; and gMolecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved July 30, 2014 (received for review June 9, 2014) Bacterial nanowires offer an extracellular electron transport (EET) or outer membrane cytochromes, and multicellular bacterial pathway for linking the respiratory chain of bacteria to external cables that couple distant redox processes in marine sediments surfaces, including oxidized metals in the environment and (6–13). Functionally, bacterial nanowires are thought to offer an engineered electrodes in renewable energy devices. Despite the extracellular electron transport (EET) pathway linking metal- global, environmental, and technological consequences of this reducing bacteria, including Shewanella and Geobacter species, to biotic–abiotic interaction, the composition, physiological relevance, the external solid-phase iron and manganese minerals that can and electron transport mechanisms of bacterial nanowires remain serve as terminal electron acceptors for respiration. -
Effects of the Anaerobic Respiration of Shewanella Oneidensis MR-1 on the Stability of Extracellular U(VI) Nanofibers
Microbes Environ. Vol. 28, No. 3, 312–315, 2013 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME12149 Effects of the Anaerobic Respiration of Shewanella oneidensis MR-1 on the Stability of Extracellular U(VI) Nanofibers SHENGHUA JIANG1,2, and HOR-GIL HUR1* 1School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500–712, Republic of Korea; and 2International Environmental Analysis and Education Center, Gwangju Institute of Science and Technology, Gwangju 500–712, Republic of Korea (Received July 23, 2012—Accepted April 8, 2013—Published online May 29, 2013) Uranium (VI) is considered to be one of the most widely dispersed and problematic environmental contaminants, due in large part to its high solubility and great mobility in natural aquatic systems. We previously reported that under anaerobic conditions, Shewanella oneidensis MR-1 grown in medium containing uranyl acetate rapidly accumulated 3 long, extracellular, ultrafine U(VI) nanofibers composed of polycrystalline chains of discrete meta-schoepite (UO ·2H2O) nanocrystallites. Wild-type MR-1 finally transformed the uranium (VI) nanofibers to uranium (IV) nanoparticles via further reduction. In order to investigate the influence of the respiratory chain in the uranium transformation process, a series of mutant strains lacking a periplasmic cytochrome MtrA, outer membrane (OM) cytochrome MtrC and OmcA, a tetraheme cytochrome CymA anchored to the cytoplasmic membrane, and a trans-OM protein MtrB, were tested in this study. Although all the mutants produced U(VI) nanofibers like the wild type, the transformation rates from U(VI) nanofibers to U(IV) nanoparticles varied; in particular, the mutant with deletion in tetraheme cytochrome CymA stably maintained the uranium (VI) nanofibers, suggesting that the respiratory chain of S. -
Antibacterial Activity and Mechanism of Linalool Against Shewanella Putrefaciens
molecules Article Antibacterial Activity and Mechanism of Linalool against Shewanella putrefaciens Fengyu Guo 1,2,3, Qiong Liang 1, Ming Zhang 1, Wenxue Chen 1,2,3, Haiming Chen 1,2,3 , Yonghuan Yun 1,2,3 , Qiuping Zhong 1,2,3,* and Weijun Chen 1,2,3,* 1 College of Food Science and Technology, Hainan University, Haikou 570228, China; [email protected] (F.G.); [email protected] (Q.L.); [email protected] (M.Z.); [email protected] (W.C.); [email protected] (H.C.); [email protected] (Y.Y.) 2 Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China 3 Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China * Correspondence: [email protected] (Q.Z.); [email protected] (W.C.) Abstract: The demand for reduced chemical preservative usage is currently growing, and natural preservatives are being developed to protect seafood. With its excellent antibacterial properties, linalool has been utilized widely in industries. However, its antibacterial mechanisms remain poorly studied. Here, untargeted metabolomics was applied to explore the mechanism of Shewanella putrefaciens cells treated with linalool. Results showed that linalool exhibited remarkable antibacterial activity against S. putrefaciens, with 1.5 µL/mL minimum inhibitory concentration (MIC). The growth of S. putrefaciens was suppressed completely at 1/2 MIC and 1 MIC levels. Linalool treatment reduced the membrane potential (MP); caused the leakage of alkaline phosphatase (AKP); and released the DNA, RNA, and proteins of S. putrefaciens, thus destroying the cell structure and expelling the cytoplasmic content. -
A Biofilm Enhanced Miniature Microbial Fuel Cell Using Shewanella Oneidensis DSP10 and Oxygen Reduction Cathodes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Navy Research U.S. Department of Defense 2007 A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes Justin C. Biffinger US Naval Research Laboratory, [email protected] Jeremy Pietron Naval Research Laboratory Ricky Ray Naval Research Laboratory Brenda J. Little Naval Research Laboratory, [email protected] Bradley R. Ringeisen Naval Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usnavyresearch Part of the Operations Research, Systems Engineering and Industrial Engineering Commons Biffinger, Justin C.; Pietron, Jeremy; Ray, Ricky; Little, Brenda J.; and Ringeisen, Bradley R., "A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes" (2007). U.S. Navy Research. 14. https://digitalcommons.unl.edu/usnavyresearch/14 This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Navy Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biosensors and Bioelectronics 22 (2007) 1672–1679 A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes Justin C. Biffinger a, Jeremy Pietron a, Ricky Ray b, Brenda Little b, Bradley R. Ringeisen a,∗ a Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375, United States b Oceanography Division, Naval Research Laboratory, Building 1009, John C. -
The Hybrid Motor in Shewanella Oneidensis MR-1
Flagellar motor tuning The hybrid motor in Shewanella oneidensis MR-1 Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universität Marburg vorgelegt von Anja Paulick aus Hoyerswerda Marburg (Lahn), 2012 Die Untersuchungen zur vorliegenden Arbeit wurden von Mai 2008 bis März 2012 am Max-Planck-Institut für terrestrische Mikrobiologie unter der Leitung von Dr. Kai M. Thormann durchgeführt. Vom Fachbereich Biologie der Philipps-Universität Marburg (HKZ: 1180) als Dissertation angenommen am: 03.04.2012 Erstgutachter: Dr. Kai M. Thormann Zweitgutachter: Prof. Dr. Martin Thanbichler Weitere Mitglieder der Prüfungskommission: Prof. Dr. Klaus Lingelbach Prof. Dr. Uwe G. Maier Prof. Dr. Alexander Böhm Tag der mündlichen Prüfung: 06.09.2012 Die während der Promotion erzielten Ergebnisse sind zum Teil in folgenden Originalpublikationen veröffentlicht: Paulick A, Koerdt A, Lassak J, Huntley S, Wilms I, Narberhaus F, Thormann KM: Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol 2009, 71:836-850. Koerdt A1, Paulick A1, Mock M, Jost K, Thormann KM: MotX and MotY are required for flagellar rotation in Shewanella oneidensis MR-1. J Bacteriol 2009, 191:5085-5093. Thormann KM, Paulick A: Tuning the flagellar motor. Microbiology 2010, 156:1275-1283. Ergebnisse aus in dieser Promotion nicht erwähnten Projekten sind in folgenden Originalpublikationen veröffentlicht: Bubendorfer S, Held S, Windel N, Paulick A, Klingl A, Thormann KM: Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN-32. Mol Microbiol 2011. 1 diese Autoren wirkten gleichberechtigt an der Publikation mit Ich versichere, dass ich meine Dissertation: “Flagellar motor tuning The hybrid motor in Shewanella oneidensis MR-1” selbstständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. -
Growth Protein Involved in Aerobic and Anoxic Shewanella Oneidensis
Shewanella oneidensis MR-1 Sensory Box Protein Involved in Aerobic and Anoxic Growth A. Sundararajan, J. Kurowski, T. Yan, D. M. Klingeman, M. Downloaded from P. Joachimiak, J. Zhou, B. Naranjo, J. A. Gralnick and M. W. Fields Appl. Environ. Microbiol. 2011, 77(13):4647. DOI: 10.1128/AEM.03003-10. Published Ahead of Print 20 May 2011. http://aem.asm.org/ Updated information and services can be found at: http://aem.asm.org/content/77/13/4647 These include: REFERENCES This article cites 60 articles, 33 of which can be accessed free at: http://aem.asm.org/content/77/13/4647#ref-list-1 on April 26, 2012 by MONTANA STATE UNIV AT BOZEMAN CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://aem.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 2011, p. 4647–4656 Vol. 77, No. 13 0099-2240/11/$12.00 doi:10.1128/AEM.03003-10 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Shewanella oneidensis MR-1 Sensory Box Protein Involved in Aerobic and Anoxic Growth A. Sundararajan,1,2,3 J. Kurowski,1 T. Yan,4 D. M. Klingeman,4 M. P. Joachimiak,5,8 J. Zhou,6,8 B. Naranjo,7 J. A. Gralnick,7 and M. W. Fields2,3,8* Downloaded from Department of Microbiology, Miami University, Oxford, Ohio 450561; Department of Microbiology, Montana State University, Bozeman, Montana2; Center for Biofilm Engineering, Montana State University, Bozeman, Montana3; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee4; Lawrence Berkeley National Laboratory, Berkeley, California5; Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma6; Department of Microbiology and BioTechnology Institute, University of Minnesota, St. -
A Highly Efficient Recombineering-Based Method for Generating Conditional Knockout Mutations Pentao Liu, Nancy A
Methods A Highly Efficient Recombineering-Based Method for Generating Conditional Knockout Mutations Pentao Liu, Nancy A. Jenkins, and Neal G. Copeland1 Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA Phage-based Escherichia coli homologous recombination systems have recently been developed that now make it possible to subclone or modify DNA cloned into plasmids, BACs, or PACs without the need for restriction enzymes or DNA ligases. This new form of chromosome engineering, termed recombineering, has many different uses for functional genomic studies. Here we describe a new recombineering-based method for generating conditional mouse knockout (cko) mutations. This method uses homologous recombination mediated by the phage Red proteins, to subclone DNA from BACs into high-copy plasmids by gaprepair,and together with Cre or Flpe recombinases, to introduce loxPorFRT sites into the subcloned DNA. Unlike other methods that use short 45–55-bpregions of homology for recombineering, our metho d uses much longer regions of homology. We also make use of several new E. coli strains, in which the proteins required for recombination are expressed from a defective temperature-sensitive prophage, and the Cre or Flpe recombinases from an arabinose-inducible promoter. We also describe two new Neo selection cassettes that work well in both E. coli and mouse ES cells. Our method is fast, efficient, and reliable and makes it possible to generate cko-targeting vectors in less than 2 wk. This method should also facilitate the generation of knock-in mutations and transgene constructs, as well as expedite the analysis of regulatory elements and functional domains in or near genes. -
Identification of the Specific Spoilage Organism in Farmed Sturgeon
foods Article Identification of the Specific Spoilage Organism in Farmed Sturgeon (Acipenser baerii) Fillets and Its Associated Quality and Flavour Change during Ice Storage Zhichao Zhang 1,2,†, Ruiyun Wu 1,† , Meng Gui 3, Zhijie Jiang 4 and Pinglan Li 1,* 1 Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; [email protected] (Z.Z.); [email protected] (R.W.) 2 Jiangxi Institute of Food Inspection and Testing, Nanchang 330001, China 3 Beijing Fisheries Research Institute, Beijing 100083, China; [email protected] 4 NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Institute for Drug Control, Beijing 102206, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6273-8678 † The authors contributed equally to this work. Abstract: Hybrid sturgeon, a popular commercial fish, plays important role in the aquaculture in China, while its spoilage during storage significantly limits the commercial value. In this study, the specific spoilage organisms (SSOs) from ice stored-sturgeon fillet were isolated and identified by analyzing their spoilage related on sensory change, microbial growth, and biochemical properties, including total volatile base nitrogen (TVBN), thiobarbituric acid reactive substances (TBARS), and proteolytic degradation. In addition, the effect of the SSOs on the change of volatile flavor compounds was evaluated by solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The results showed that the Pseudomonas fluorescens, Pseudomonas mandelii, Citation: Zhang, Z.; Wu, R.; Gui, M.; and Shewanella putrefaciens were the main SSOs in the ice stored-sturgeon fillet, and significantly affect Jiang, Z.; Li, P. -
A Homologous Recombination-Based Method of Genetic Engineering
PROTOCOL Recombineering: a homologous recombination-based method of genetic engineering Shyam K Sharan1, Lynn C Thomason2, Sergey G Kuznetsov1 & Donald L Court3 1Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA. 2SAIC-Frederick Inc., Gene Regulation and Chromosome Biology Laboratory, Basic Research Program, Frederick, Maryland, 21702, USA. 3Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA. Correspondence should be addressed to S.K.S. ([email protected]) or D.L.C. ([email protected]). Published online 29 January 2009; doi:10.1038/nprot.2008.227 Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in Escherichia coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-stranded linear DNA substrates, natureprotocols so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene / m tags can be inserted and regions of bacterial artificial chromosomes or the E. coli genome can be subcloned by gene retrieval using o c . recombineering. Most of these constructs can be made within about 1 week’s time. e r u t a n . INTRODUCTION w w Recombineering is an in vivo method of genetic engineering used This protocol will emphasize modification of bacterial artificial w / / 1–5 : primarily in Escherichia coli that uses short 50 base homologies . -
Bacterial Artificial Chromosome Mutagenesis Using Recombineering
Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2011, Article ID 971296, 10 pages doi:10.1155/2011/971296 Review Article Bacterial Artificial Chromosome Mutagenesis Using Recombineering Kumaran Narayanan1, 2 and Qingwen Chen2 1 Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA 2 School of Science, Monash University, Sunway Campus, Room 2-5-29, Bandar Sunway, 46150, Malaysia Correspondence should be addressed to Kumaran Narayanan, [email protected] Received 2 August 2010; Accepted 21 October 2010 Academic Editor: Masamitsu Yamaguchi Copyright © 2011 K. Narayanan and Q. Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gene expression from bacterial artificial chromosome (BAC) clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo. -
Genetic Engineering Using Homologous Recombination1
17 Oct 2002 13:49 AR AR174-GE36-14.tex AR174-GE36-14.SGM LaTeX2e(2002/01/18) P1: IBC 10.1146/annurev.genet.36.061102.093104 Annu. Rev. Genet. 2002. 36:361–88 doi: 10.1146/annurev.genet.36.061102.093104 GENETIC ENGINEERING USING HOMOLOGOUS RECOMBINATION1 Donald L. Court, James A. Sawitzke, and Lynn C. Thomason Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702; e-mail: [email protected], [email protected], [email protected] Key Words DNA replication forks, strand annealing, in vivo cloning, oligo recombination, recombineering ■ Abstract In the past few years, in vivo technologies have emerged that, due to their efficiency and simplicity, may one day replace standard genetic engineering tech- niques. Constructs can be made on plasmids or directly on the Escherichia coli chromo- some from PCR products or synthetic oligonucleotides by homologous recombination. This is possible because bacteriophage-encoded recombination functions efficiently re- combine sequences with homologies as short as 35 to 50 base pairs. This technology, termed recombineering, is providing new ways to modify genes and segments of the chromosome. This review describes not only recombineering and its applications, but also summarizes homologous recombination in E. coli and early uses of homologous recombination to modify the bacterial chromosome. Finally, based on the premise that phage-mediated recombination functions act at replication forks, specific molecular models are -
Improved Bacterial Recombineering by Parallelized Protein Discovery
Improved bacterial recombineering by parallelized protein discovery Timothy M. Wanniera,1, Akos Nyergesa,b, Helene M. Kuchwaraa, Márton Czikkelyb, Dávid Baloghb, Gabriel T. Filsingera, Nathaniel C. Bordersa, Christopher J. Gregga, Marc J. Lajoiea, Xavier Riosa, Csaba Pálb, and George M. Churcha,1 aDepartment of Genetics, Harvard Medical School, Boston, MA 02115; and bSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary Edited by Susan Gottesman, National Institutes of Health, Bethesda, MD, and approved April 17, 2020 (received for review January 30, 2020) Exploiting bacteriophage-derived homologous recombination pro- recombineering, is the molecular mechanism that drives MAGE cesses has enabled precise, multiplex editing of microbial genomes and DIvERGE (4, 32, 33). This method was first described in and the construction of billions of customized genetic variants in a E. coli, and is most commonly promoted by the expression of bet single day. The techniques that enable this, multiplex automated ge- (here referred to as Redβ) from the Red operon of Escherichia nome engineering (MAGE) and directed evolution with random ge- phage λ (5, 6, 34). Redβ is an ssDNA-annealing protein (SSAP) nomic mutations (DIvERGE), are however, currently limited to a whose role in recombineering is to anneal ssDNA to compli- handful of microorganisms for which single-stranded DNA-annealing mentary genomic DNA at the replication fork. Although im- proteins (SSAPs) that promote efficient recombineering have been provements to recombineering efficiency have been made (7–9), identified. Thus, to enable genome-scale engineering in new hosts, the core protein machinery has remained constant, with Redβ efficient SSAPs must first be found.