Analysis of Nano Indentation Size Effect Based on Dislocation Dynamics and Crystal Plasticity H.J
Total Page:16
File Type:pdf, Size:1020Kb
Analysis of Nano indentation Size effect based on Dislocation Dynamics and Crystal Plasticity H.J. Chang To cite this version: H.J. Chang. Analysis of Nano indentation Size effect based on Dislocation Dynamics and Crystal Plasticity. Chemical and Process Engineering. Institut National Polytechnique de Grenoble - INPG, 2009. English. tel-00526500 HAL Id: tel-00526500 https://tel.archives-ouvertes.fr/tel-00526500 Submitted on 15 Oct 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUT POLYTECHNIQUE DE GRENOBLE N° attribué par la bibliothèque |__|__|__|__|__|__|__|__|__|__| THESE EN COTUTELLE INTERNATIONALE pour obtenir le grade de DOCTEUR DE L’Institut polytechnique de Grenoble et de Seoul National University Spécialité : 2MGE : Matériaux, Mécanique, Génie civil, Electrochimie préparée au laboratoire Science et Ingénierie des Matériaux et des Procédés (SIMaP) Groupe Génie Physique et Mécanique des Matériaux (GPM2) dans le cadre de l’Ecole Doctorale I-MEP2 et au laboratoire Material Deformation and Processing (LMDP) dans la Seoul National Université présentée et soutenue publiquement par Hyung-Jun CHANG le 15 Juin 2009 TITRE : Analysis of Nano indentation Size effect based on Dislocation Dynamics and Crystal Plasticity Sous la direction de : Marc FIVEL, Laurent TABOUROT et Marc VERDIER JURY M. Yves BRECHET , Président M. Samuel FOREST , Rapporteur M. Heung Nan HAN , Rapporteur M. Kyu Hwan OH , Examinateur M. Marc FIVEL , Directeur de thèse M. Laurent TABOUROT , Co-Directeur de thèse M. Marc VERDIER , Co-Directeur de thèse Abstract This thesis deals with experiments and simulations of nanoindentation in copper single crystals. Indentation experiments are performed with different orientations of the indentation axis and both the load-displacement curve and the surface imprint observed by atomic force microscopy are analysed and compared. Indentation size effect is observed for low penetration of the indenter. Simulations are then performed using crystal plasticity finite element modelling. ABAQUS user subroutines are specially developed in order to account for the physics of dislocation activity in the twelve glide systems of copper crystals. 3D simulations are then performed and comparisons with the experiments give access to key parameters of the constitutive equations. The indentation size effect is reproduced using a simplified size effect theory implanted in the finite element modelling. Finally, a multiscale approach based on discrete dislocation dynamics is used to reproduce (111) indentations of copper single crystals. Molecular dynamics simulations give details of dislocation nucleation beneath the indenter. Dislocation dynamics simulations are then performed and the indentation size effect is addressed. Keywords: Nanoindentation, Crystal plasticity, Finite element method (FEM), Dislocation dynamics (DD), Molecular dynamics (MD), Indentation size effect, Multi-scale simulation, ABAQUS, TRIDIS, CASTEM 1 Table of Contents Abstract ......................................................................................................................................... 1 Table of Contents .......................................................................................................................... 2 Notations ....................................................................................................................................... 6 I. Introduction.............................................................................................................................. 14 II. State of the art of crystal plasticity modeling ......................................................................... 20 1. Crystal plasticity theories................................................................................................ 20 1.1 Crystal plasticity theory based on empirical rules................................................. 21 Global deformation and local deformation ......................................................... 21 Mathematical description of crystal plasticity..................................................... 23 Constitutive equations......................................................................................... 26 Hardening law ..................................................................................................... 27 1.2 Dislocation based theories of crystal plasticity ..................................................... 29 Origin of the flow law ......................................................................................... 29 Hardening rule..................................................................................................... 31 1.3 Applications of the model ..................................................................................... 33 Tensile test – a simple integration ....................................................................... 33 Tensile test - FEM integration............................................................................. 39 1.4 What should be retained from this section ............................................................ 42 2. Generalized continuum mechanics to understand size effect.......................................... 43 2.1 Recent theories for size effect ............................................................................... 44 Cosserat plasticity ............................................................................................... 45 Second grade constitutive framework ................................................................. 47 2.2 Proposition of a simplified strain gradient model ................................................. 49 Microscopic effect of Nye tensor as an origin of extra stress ............................. 49 Model for size effect based on averaged strain ................................................... 54 2.3 Applications of the model ..................................................................................... 58 2.4 What should be retained from this section ............................................................ 62 3. Dislocation dynamics theory........................................................................................... 63 3.1 Stress field from dislocation segment in isotropic media...................................... 64 Displacement due to dislocation segment in isotropic media ............................. 64 Displacement gradient due to dislocation segment in isotropic media ............... 65 Stress field due to dislocation segment in isotropic media.................................. 66 3.2 Stress field from dislocation segment in anisotropic media.................................. 67 2 Displacement and displacement gradient in anisotropic media........................... 67 Displacement gradient from dislocation segment in anisotropic media.............. 68 Stress field from dislocation segment in anisotropic media................................ 71 3.3 Comparison between equations for isotropic and anisotropic media.................... 72 Stress field from dislocation loops in isotropic and anisotropic media............... 72 Limitation of the formula for anisotropic media ................................................. 74 III. Indentation of copper single crystal ...................................................................................... 76 Theoretical analysis of indentation...................................................................... 76 Indentation size effect ......................................................................................... 77 Numerical simulation of indentation................................................................... 78 1. Analysis methods ............................................................................................................ 79 1.1 Determination of contact area ............................................................................... 80 Direct method to get a contact area from FEM simulation ................................. 81 Indirect method to get a contact area from contact pressure distribution............ 82 Indirect method to get the contact area from surface normal angle distribution. 83 1.2 Correction of material properties from indentation results ................................... 85 Stiffness and indentation modulus....................................................................... 85 Load verse depth curve ....................................................................................... 87 1.3 What should be retained from this section ............................................................ 89 2. Experimental indentation ................................................................................................ 90 2.1 Sample preparation................................................................................................ 90 2.2 Indenter properties................................................................................................. 92 2.3 Experimental