The Origins of the RNA World

Total Page:16

File Type:pdf, Size:1020Kb

The Origins of the RNA World Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press The Origins of the RNA World Michael P. Robertson and Gerald F. Joyce Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037 Correspondence: [email protected] SUMMARY The general notion of an “RNA World” is that, in the early development of life on the Earth, genetic continuity was assured by the replication of RNA and genetically encoded proteins were not involved as catalysts. There is now strong evidence indicating that an RNA World did indeed exist before DNA- and protein-based life. However, arguments regarding whether life on Earth began with RNA are more tenuous. It might be imagined that all of the compo- nents of RNA were available in some prebiotic pool, and that these components assembled into replicating, evolving polynucleotides without the prior existence of any evolved macro- molecules. A thorough consideration of this “RNA-first” view of the origin of life must recon- cile concerns regarding the intractable mixtures that are obtained in experiments designed to simulate the chemistry of the primitive Earth. Perhaps these concerns will eventually be resolved, and recent experimental findings provide some reason for optimism. However, the problem of the origin of the RNA World is far from being solved, and it is fruitful to consider the alternative possibility that RNA was preceded by some other replicating, evolving mole- cule, just as DNA and proteins were preceded by RNA. Outline 1 Introduction 4 Concluding remarks 2 An “RNA-first” view of the origin of life References 3 An “RNA-later” view of the origin of life Editors: John F. Atkins, Raymond F. Gesteland, and Thomas R. Cech Additional Perspectives on RNA Worlds available at www.cshperspectives.org Copyright # 2010 Cold Spring Harbor Laboratory Press; all rights reserved. Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a003608 1 Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press M.P. Robertson and G.F. Joyce 1 INTRODUCTION and recent experimental findings provide some reason for optimism. However, the problem of the origin of the RNA The general idea that, in the development of life on the World is far from being solved, and it is fruitful to consider Earth, evolution based on RNA replication preceded the the alternative possibility that RNA was preceded by some appearance of protein synthesis was first proposed over other replicating, evolving molecule, just as DNA and pro- 40 yr ago (Woese1967; Crick 1968; Orgel 1968). It was sug- teins were preceded by RNA. gested that catalysts made entirely of RNA are likely to have been important at this early stage in the evolution of life, 2 AN “RNA-FIRST” VIEW OF THE ORIGIN OF LIFE but the possibility that RNA catalysts might still be present Abiotic Synthesis of Polynucleotides in contemporary organisms was overlooked. The unantici- pated discovery of ribozymes (Kruger et al. 1982; Guerrier- This section considers the synthesis of oligonucleotides 0 Takada et al. 1983) initiated extensive discussion of the role from ß-D-nucleoside 5 -phosphates, leaving aside for now of RNA in the origins of life (Sharp 1985; Pace and Marsh the question of how the nucleotides became available on 1985; Lewin 1986) and led to the coining of the phrase “the the primitive Earth. Two fundamentally different chemical RNAWorld” (Gilbert 1986). reactions are involved. First, the nucleotide must be con- “The RNA World” means different things to different verted to an activated derivative, for example, a nucleoside investigators, so it would be futile to attempt a restrictive 50-polyphosphate. Next the 30-hydroxyl group of a nucleo- definition. All RNA World hypotheses include three basic tide or oligonucleotide molecule must be made to react assumptions: (1) At some time in the evolution of life, with the activated phosphate group of a monomer. Synthe- genetic continuity was assured by the replication of RNA; sis of oligonucleotides from nucleoside 30-phosphates will (2) Watson-Crick base-pairing was the key to replication; not be discussed because activated nucleoside 20-or (3) genetically encoded proteins were not involved as cata- 30-phosphates in general react readily to form 20,30-cyclic lysts. RNA World hypotheses differ in what they assume phosphates. These cyclic phosphates are unlikely to oligo- about life that may have preceded the RNA World, about merize efficiently because the equilibrium constant for the metabolic complexity of the RNA World, and about dimer formation is only of the order of 1.0 L/mol (Erman the role of small-molecule cofactors, possibly including and Hammes 1966; Mohr and Thach 1969). In the presence peptides, in the chemistry of the RNAWorld. of a complementary template somewhat larger oligomers There is now strong evidence indicating that an RNA might be formed because the free energy of hybridization World did indeed exist on the early Earth. The smoking would help to drive forward the chain extension reaction. gun is seen in the structure of the contemporary ribosome In enzymatic RNA and DNA synthesis, the nucleoside (Ban et al. 2000; Wimberly et al. 2000; Yusupov et al. 2001). 50-triphosphates (NTPs) are the substrates of polymeriza- The active site for peptide-bond formation lies deep within tion. Polynucleotide phosphorylase, although it is a deg- a central core of RNA, whereas proteins decorate the out- radative enzyme in nature, can be used to synthesize side of this RNA core and insert narrow fingers into it. oligonucleotides fromnucleoside50-diphosphates. Nucleo- No amino acid side chain comes within 18 A˚ of the active side 50-polyphosphates are, therefore, obvious candidates site (Nissen et al. 2000). Clearly, the ribosome is a ribozyme for the activated forms of nucleotides. Although nucleoside (Steitz and Moore 2003), and it is hard to avoid the conclu- 50-triphosphates are not formed readily, the synthesis of nu- sion that, as suggested by Crick, “the primitive ribosome cleoside 50-tetraphosphates from nucleotides and inorganic could have been made entirely of RNA” (1968). trimetaphosphate provides a reasonably plausible prebiotic Amoretenuousargumentcanbemaderegarding route to activated nucleotides (Lohrmann 1975). Other whether life on Earth began with RNA. In what has been re- more or less plausible prebiotic syntheses of nucleoside ferred to as “The Molecular Biologist’s Dream” (Joyce and 50-polyphosphates from nucleotides have also been re- Orgel 1993), one might imagine that all of the components ported (Handschuh et al. 1973; Osterberg et al. 1973; Reim- of RNAwere available in some prebiotic pool, and that these ann and Zubay 1999). Less clear, however, is how the first components could have assembled into replicating, evolving phosphate would have been mobilized to convert the nu- polynucleotides without the prior existence of any evolved cleosides to 50-nucleotides. Nucleoside 50-polyphosphates macromolecules. However, a thorough consideration of are high-energy phosphate esters, but are relatively unreac- this “RNA-first” view of the origin of life inevitably triggers tive in aqueous solution. This may be advantageous for “The Prebiotic Chemist’s Nightmare”,with visions of the in- enzyme-catalyzed polymerization, but is a severe obstacle tractable mixtures that are obtained in experiments designed for the nonenzymatic polymerization of nucleoside 50-pol- to simulate the chemistryof the primitive Earth. Perhaps this yphosphates, which would occur far more slowly than the continuing nightmare will eventually have a happy ending, hydrolysis of the resulting polynucleotide. 2 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a003608 Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Origins of the RNA World In a different approach to the activation of nucleotides, and30,50-phosphodiester-linkedadducts(Fig.1A),inorderof the isolation of an activated intermediate is avoided by decreasing abundance (Sulston et al. 1968). Thusthe conden- using a condensing agent such as a carbodiimide (Khorana sation of several monomers would likely yield an oligomer 1961). This is a popular method in organic synthesis, containing one pyrophosphate and a preponderance of but its application to prebiotic chemistry is problematic. 20,50-phosphodiester linkages (Fig. 1B). There is little chance Potentially prebiotic molecules such as cyanamide and of producing entirely 30,50-linked oligomers from activated cyanoacetylene activate nucleotides in aqueous solution, nucleotides unless a catalyst can be found that increases the but the subsequent condensation reactions are inefficient proportion of 30,50-phosphodiester linkages. Several metal 2+ 2+ (Lohrmann and Orgel 1973). ions, particularly Pb and UO2 , catalyze the formation of Most attempts to study nonenzymatic polymerization oligomers fromnucleoside 50-phosphorimidazolides(Sleeper of nucleotides in the context of prebiotic chemistry have and Orgel 1979; Sawai et al. 1988). The Pb2+-catalyzed reac- used nucleoside 50-phosphoramidates, particularly nucleo- tion is especially efficient when performed in eutectic solu- side 50-phosphorimidazolides. Although phosphorimida- tions of the activated monomers (in concentrated
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0203610 A1 Meller Et Al
    US 20130203610A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0203610 A1 Meller et al. (43) Pub. Date: Aug. 8, 2013 (54) TOOLS AND METHOD FOR NANOPORES Related U.S. Application Data UNZIPPING-DEPENDENT NUCLECACID (60) Provisional application No. 61/318,872, filed on Mar. SEQUENCING 30, 2010. (75) Inventors: Amit Meller, Brookline, MA (US); Alon Publication Classification Singer, Brighton, MA (US) (51) Int. Cl. (73) Assignee: TRUSTEES OF BOSTON CI2O I/68 (2006.01) UNIVERSITY, Boston, MA (US) (52) U.S. Cl. CPC .................................... CI2O I/6874 (2013.01) (21) Appl. No.: 13/638,455 USPC ................................................. 506/6:506/16 (57) ABSTRACT (22) PCT Filed: Mar. 30, 2011 Provided herein is a library that comprises a plurality of molecular beacons (MBs), each MB having a detectable (86). PCT No.: PCT/US2O11AO3O430 label, a detectable label blocker and a modifier group. The S371 (c)(1), library is used in conjunction with nanopore unzipping-de (2), (4) Date: Apr. 17, 2013 pendent sequencing of nucleic acids. Patent Application Publication Aug. 8, 2013 Sheet 1 of 18 US 2013/020361.0 A1 . N s Patent Application Publication Aug. 8, 2013 Sheet 2 of 18 US 2013/020361.0 A1 I’9IAI ::::::::::: Dº3.modoueN Patent Application Publication Aug. 8, 2013 Sheet 3 of 18 US 2013/020361.0 A1 Z’9IAI ~~~~~~~~~);........ Patent Application Publication Aug. 8, 2013 Sheet 4 of 18 US 2013/020361.0 A1 s :·.{-zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz iii. 9 iii.338 lii &S Patent Application Publication Aug. 8, 2013 Sheet 5 of 18 US 2013/020361.0 A1 s r Patent Application Publication Aug.
    [Show full text]
  • Peptide Analogue of Glycol Nucleic Acid†
    Communications to the Editor Bull. Korean Chem. Soc. 2011, Vol. 32, No. 8 2863 DOI 10.5012/bkcs.2011.32.8.2863 γ3PNA: Peptide Analogue of Glycol Nucleic Acid† Taedong Ok, Joohee Lee, and Hee-Seung Lee* Molecular-Level Interface Research Center, Department of Chemistry, KAIST, Daejeon 305-701 *E-mail: [email protected] Received February 7, 2011, Accepted February 9, 2011 Key Words : Peptide nucleic acids, GNA In the research of the chemical etiology of nucleic acid chemical yield were obtained with Mmt for γ3C and γ3G, Boc structure, the studies from Eschenmoser group1 and Nielsen for γ3A, respectively. In addition, the order of reactions at the group2 have demonstrated that the Watson-Crick base pairing initial steps turned out to be important for efficient synthesis. can be supported by various backbone derivatives. Inspired by For example, in case of γ3C, the protection of the amino groups the groundbreaking results, other researchers have devoted should be prior to the substitution reaction, whereas the other their attention to finding artificial nucleic acids that can form route worked better for the purine monomers (γ3A and γ3G). duplexes, in which both synthetic accessibility and new The detailed synthetic procedures are summarized in characteristics for potential therapeutic (or diagnostic) use are Scheme 1. The common intermediate bromide 1 was easily desirable aims.3 In this context, GNA (glycol nucleic acid, prepared from (S)-epichlorohydrin (> 99%ee) in three steps Figure 1A) is a promising artificial nucleic acid because it is (34% overall yield).6,7 For the synthesis of γ3A, the bromide 1 structurally very simple with a high atom economy and was reacted with unprotected adenine base in the presence of forms a duplex by Watson-Crick base pairing.4 sodium hydride in DMF for 48 hr at room temperature.
    [Show full text]
  • Download This Article in PDF Format
    BIO Web of Conferences 4, 00014 (2015) DOI: 10.1051/bioconf/20150400014 C Owned by the authors, published by EDP Sciences, 2015 From neonts to filionts and their progenies... Biodiversity draws its origins from the origins of life itself Marie-Christine Maurela Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 45 rue Buffon, CP. 50, 75005 Paris, France “Should the question of the priority of the egg over the chicken, or of the chicken over the egg disturb you, it is because you assume that animals were originally what they are to-day; what madness!" The dream of d’Alembert, 1760, Denis Diderot Abstract. Since the origins, different modes of life exist. Indeed it is difficult to imagine how things could have been constructed by a single event that would have marked the birth of life. A brief historical background of the subject will be presented here. Then, we shall wander through the history of the discoveries that have led the way of experimental science over the last 150 years and shall dwell on one of the major paradigms, that of the RNA World. This paradigm illustrates the path followed by the living that tries all possible means when expressed at the molecular level as simple free molecule leading to RNA fragments and to modern subviral particles such as viroids then to ramifications and compartments. Between the ancient and the modern RNA world we underline how environment talks to molecules leading to the global living tissus which establish the ground of biodiversity.
    [Show full text]
  • "Synthesis of Glycerol Nucleic Acid (GNA) Phosphoramidite
    Synthesis of Glycerol Nucleic Acid (GNA) UNIT 4.40 Phosphoramidite Monomers and Oligonucleotide Polymers Su Zhang1,2 and John C. Chaput1,2 1Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 2The Biodesign Institute at Arizona State University, Tempe, Arizona ABSTRACT This unit describes a straightforward method for preparing glycerol nucleic acid (GNA) phosphoramidite monomers and oligonucleotide polymers using standard cyanoethyl phosphoramidite chemistry. GNA is an unnatural nucleic acid analog composed of an acyclic three-carbon sugar-phosphate backbone that contains one stereogenic center per repeating unit. GNA has attracted significant attention as a nucleic acid derivative due to its unique ability to form stable Watson-Crick anti-parallel duplex structures with thermal and thermodynamic stabilities rivaling those of natural DNA and RNA. The chemical simplicity of this nucleic acid structure provides access to enantiomerically pure forms of right- and left-handed helical structures that can be used as unnatural building blocks in DNA nanotechnology. Curr. Protoc. Nucleic Acid Chem. 42:4.40.1-4.40.18. C 2010 by John Wiley & Sons, Inc. Keywords: glycerol nucleic acid (GNA) r phosphoramidite r oligonucleotide r chemical synthesis r solid-phase synthesis r thermal stability r nanotechnology INTRODUCTION Acyclic oligonucleotides are experiencing a tremendous resurgence in basic and applied research due to their unique structural and biophysical properties (for a review, see Zhang et al., 2010). This unit contains procedures that describe the chemical synthesis of one type of acyclic nucleic acid polymer commonly referred to as glycerol nucleic acid or GNA. The chemical synthesis and purification of glycerol nucleoside analogs bearing adenine (A), cytosine (C), guanine (G), and thymine (T) as the bases, and of oligonucleotides thereof (Fig.
    [Show full text]
  • Leslie E. Orgel 1927–2007
    Leslie E. Orgel 1927–2007 A Biographical Memoir by Jack D. Dunitz and Gerald F. Joyce ©2013 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. LESLIE ELEAZER ORGEL January 12, 1927–October 27, 2007 Elected to the NAS, 1990 Leslie Eleazer Orgel was a theoretical chemist and inves- tigator of the origins of life who made deep and lasting contributions in both of these scientific areas. He was born in London, England, on January 12, 1927, the second of three children of Simon and Deborah (Gnivisch) Orgel. His older brother Nevill was born on July 2, 1922, and died on December 28, 1957. His younger sister Delia was born on June 19, 1933, and currently resides in Silver Spring, Maryland. Leslie Orgel died on October 27, 2007, in San Diego, California, from pancreatic cancer. He is survived by his wife of 57 years, Alice (Levinson) Orgel; by his three children, Vivienne (b. April 4, 1955), Richard (b. November 29, 1956), and Robert (b. June 25, 1968); and by five By Jack D. Dunitz grandchildren. and Gerald F. Joyce After attending Dame Alice Owen’s School in London, which was evacuated during World War II to Bedford, England, Orgel studied chemistry at the University of Oxford, graduating in 1948 as BA with First Class Honours in Chem- istry. He then undertook graduate research with Leslie Sutton, senior chemistry tutor at Magdalen College and himself a distinguished physical chemist. Orgel’s1 first publication (1951) dealt with the semi-empirical calculation of electric dipole moments of conjugated heterocyclic molecules, and can be of no more than historical interest today.
    [Show full text]
  • The Eightfold Path to Non-Enzymatic RNA Replication Jack W Szostak
    Szostak Journal of Systems Chemistry 2012, 3:2 http://www.jsystchem.com/content/3/1/2 PERSPECTIVES Open Access The eightfold path to non-enzymatic RNA replication Jack W Szostak Abstract The first RNA World models were based on the concept of an RNA replicase - a ribozyme that was a good enough RNA polymerase that it could catalyze its own replication. Although several RNA polymerase ribozymes have been evolved in vitro, the creation of a true replicase remains a great experimental challenge. At first glance the alternative, in which RNA replication is driven purely by chemical and physical processes, seems even more challenging, given that so many unsolved problems appear to stand in the way of repeated cycles of non- enzymatic RNA replication. Nevertheless the idea of non-enzymatic RNA replication is attractive, because it implies that the first heritable functional RNA need not have improved replication, but could have been a metabolic ribozyme or structural RNA that conferred any function that enhanced protocell reproduction or survival. In this review, I discuss recent findings that suggest that chemically driven RNA replication may not be completely impossible. Keywords: Non-enzymatic replication, RNA World, protocell, origin of life, prebiotic chemistry, fidelity 1. Introduction assembly of ribonucleotides and RNA oligomers will Considerable evidence supports the RNA World hypoth- eventually be found. esis of an early phase of life, prior to the evolution of Unfortunately, even given prebiotically generated RNA coded protein synthesis, in which cellular biochemistry templates and abundant ribonucleotides, we do not under- and genetics were largely the province of RNA (reviewed stand how cycles of template-directed RNA replication in [1,2]).
    [Show full text]
  • Panspermia — the Theory That Life Came from Outer Space
    CEN Tech. J., vol. 7(1), 1993, pp. 82–87 Panspermia — The Theory that Life came from Outer Space DR JERRY BERGMAN ABSTRACT In debates about the creation-evolution controversy, many evolutionists allege that the existing naturalistic origin of life theory is generally regarded as highly possible. That these theories are in fact not tenable is shown by the fact that many prominent evolutionists now hypothesize an alternate method. Since the theistic world view is unacceptable, they thus assume a set of conditions elsewhere in the solar system or the universe which are theorized to be more favourable for the origin of life. The recognition that the conditions on the earth are such that the origin of life is close to impossible forces this approach if a naturalistic world view is maintained. Nowhere does the literature reveal as vividly the impossibility of a naturalistic origin of life on the earth than in this area. The fact that an entirely hypothetical scenario has been proposed which is supported by virtually no evidence and only, at best, indirect inferences which can be interpreted as evidence, forces a review of the theory of panspermia. Much science fiction has in time become science fact — journeying to the moon, for example —and this should not surprise us. Many science fiction writers are scientists by profession, or at least trained in science at the graduate level. Isaac Asimov, a Ph.D. in biochemistry, is the best known example. Writing good science fiction requires both a good grasp of science fact and a vivid imagination. One of the latest science fictions which is now becoming ‘respectable’ science theory is panspermia, the belief that the source of life on earth was from other worlds.
    [Show full text]
  • A Deeper Look at the Origin of Life by Bob Davis
    A Deeper Look at the Origin of Life By Bob Davis Every major society from every age in history has had its own story about its origins. For instance, the Eskimos attributed their existence to a raven. The ancient Germanic peoples of Scandinavia believed their creator—Ymir—emerged from ice and fire, was nourished by a cow, and ultimately gave rise to the human race. Those are just two examples. But no matter the details, these origin stories always endeavor to answer people’s innate questions: Where did we come from? What is our destiny? What is our purpose? Two widely held theories in today’s world are abiogenesis and the Genesis story. The first states that life emerged through nature without any divine guidance; the second involves a supernatural Creator. Abiogenesis Abiogenesis is sometimes called “chemical evolution” because it seeks to explain how non-living (“abio”) substances gave rise to life (“genesis”). Abiogenesis was added to the list of origin stories over one hundred years ago when Charles Darwin first speculated that life could have begun in a “warm little pond, with all sorts of ammonia and phosphoric salts, lights, heat, electricity, etc. present, so that a protein compound was chemically formed ready to undergo still more complex changes.”1 Many summarize abiogenesis—coupled with its more famous twin, Darwinian macroevolution—in a somewhat disparaging but memorable way: “From the goo to you by way of the zoo!”2 Let’s use this phrase to help us understand what is meant by “abiogenesis.” The “goo” refers to the “primordial soup” or “warm little pond” where non-life is said to have given birth to life.
    [Show full text]
  • Nucleic Acid Assembly, Polymerization, and Ligand
    NUCLEIC ACID ASSEMBLY, POLYMERIZATION, AND LIGAND BINDING A Dissertation Presented to The Academic Faculty by Aaron E. Engelhart In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry and Biochemistry Georgia Institute of Technology December 2010 NUCLEIC ACID ASSEMBLY, POLYMERIZATION, AND LIGAND BINDING Approved by: Dr. Nicholas V. Hud, Advisor Dr. Loren D. Williams School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Stefan France Dr. David G. Lynn School of Chemistry and Biochemistry Department of Chemistry Georgia Institute of Technology Emory University Dr. Roger M. Wartell School of Biology Georgia Institute of Technology Date Approved: August 24, 2010 ACKNOWLEDGEMENTS I would like to thank my advisor, Nicholas Hud. I could not have asked for a better mentor professionally and scientifically, and he has been a joy to interact with personally. His patience, insightfulness, and ability to develop a model to explain data and an experiment to confirm it are traits I strive to emulate. He has made me a better scientist. In addition, his boundless scientific curiosity has resulted in countless enjoyable conversations about new ideas to examine in the lab – which, in turn, has helped me learn how to figure out which ideas are worth chasing after. My committee has provided valuable insight and advice throughout my time here. Loren Williams, Stefan France, David Lynn, and Roger Wartell have frequently, upon seeing my data, suggested another aspect of chemistry to which it might apply (and which I had not considered). Each of these people has, at one time or another, made a suggestion that helped me solve a tough problem in the lab.
    [Show full text]
  • The RNA World” Mean to “The Origin of Life”?
    life Concept Paper What Does “the RNA World” Mean to “the Origin of Life”? Wentao Ma Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; [email protected] Received: 30 September 2017; Accepted: 24 November 2017; Published: 29 November 2017 Abstract: Corresponding to life’s two distinct aspects: Darwinian evolution and self-sustainment, the origin of life should also split into two issues: the origin of Darwinian evolution and the arising of self-sustainment. Because the “self-sustainment” we concern about life should be the self-sustainment of a relevant system that is “defined” by its genetic information, the self-sustainment could not have arisen before the origin of Darwinian evolution, which was just marked by the emergence of genetic information. The logic behind the idea of the RNA world is not as tenable as it has been believed. That is, genetic molecules and functional molecules, even though not being the same material, could have emerged together in the beginning and launched the evolution—provided that the genetic molecules can “simply” code the functional molecules. However, due to these or those reasons, alternative scenarios are generally much less convincing than the RNA world. In particular, when considering the accumulating experimental evidence that is supporting a de novo origin of the RNA world, it seems now quite reasonable to believe that such a world may have just stood at the very beginning of life on the Earth. Therewith, we acquire a concrete scenario for our attempts to appreciate those fundamental issues that are involved in the origin of life.
    [Show full text]
  • The Origins of Cellular Life
    Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press The Origins of Cellular Life Jason P. Schrum, Ting F. Zhu, and Jack W. Szostak Howard Hughes Medical Institute, Department of Molecular Biology and the Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 Correspondence: [email protected] Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology,defined asthe emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication wouldyield a laboratory model of a protocell with the potential forclassical Darwinian biologi- cal evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model. he emergence of the first cells on the early membrane-encapsulated nucleic acids, and the TEarth was the culmination of a long history chemical and physical processes that allowed of prior chemical and geophysical processes.
    [Show full text]
  • Cause of Cambrian Explosion - Terrestrial Or Cosmic?
    Progress in Biophysics and Molecular Biology xxx (2018) 1e21 Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Cause of Cambrian Explosion - Terrestrial or Cosmic? * Edward J. Steele a, j, , Shirwan Al-Mufti b, Kenneth A. Augustyn c, Rohana Chandrajith d, John P. Coghlan e, S.G. Coulson b, Sudipto Ghosh f, Mark Gillman g, Reginald M. Gorczynski h, Brig Klyce b, Godfrey Louis i, Kithsiri Mahanama j, Keith R. Oliver k, Julio Padron l, Jiangwen Qu m, John A. Schuster n, W.E. Smith o, Duane P. Snyder b, Julian A. Steele p, Brent J. Stewart a, Robert Temple q, Gensuke Tokoro o, Christopher A. Tout r, Alexander Unzicker s, Milton Wainwright b, j, Jamie Wallis b, Daryl H. Wallis b, Max K. Wallis b, John Wetherall t, D.T. Wickramasinghe u, J.T. Wickramasinghe b, N. Chandra Wickramasinghe b, j, o, Yongsheng Liu v, w a CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia b Buckingham Centre for Astrobiology, University of Buckingham, UK c Center for the Physics of Living Organisms, Department of Physics, Michigan Technological University, Michigan, United States d Department of Geology, University of Peradeniya, Peradeniya, Sri Lanka e University of Melbourne, Office of the Dean, Faculty Medicine, Dentistry and Health Sciences, 3rd Level, Alan Gilbert Building, Australia f Metallurgical & Materials Engineering IIT, Kanpur, India g South African Brain Research Institute, 6 Campbell Street, Waverly, Johannesburg, South Africa h University Toronto
    [Show full text]